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Using some properties of the matrix measure, we obtain a general condition for the
stability of a convex hull of matrices that will be applied to study the stability of
interval dynamical systems. Some classical results from stability theory are repro-
duced and extended. We present a relationship between the matrix measure and
the real parts of the eigenvalues that make it possible to obtain stability criteria.
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1. Introduction. Matrix stability plays an important role in mathematical

analysis and its numerous applications to the areas of control theory, differen-

tial equations, and linear algebra. The concept of stability itself can be defined

in many different ways depending on the context. Of special importance are

stable (semistable) matrices—those whose eigenvalues have negative (nonpos-

itive) real parts. A matrix M is D-stable if D ·M is stable for every choice of a

positive diagonal matrix D. The notion of D-stability of a real square matrix

was introduced mathematical economists Arrow and MacManus [2] in study-

ing stability of equilibria in competitive market dynamic models. Relations

between stability and D-stability were considered in [2, 7]. Another important

stability concept is that of strong stability that arises when diffusion models of

biological systems are linearized at a constant equilibrium. Solutions to most

of the above problems depend on the stability of linear dynamical system of

the form dx/dt = A ·X, which is studied on the basis of qualitative data on

the entries of the matrix as in [13].

The stability of a linear dynamical system is determined by the eigenvalues

of the system matrix. When the parameters in the system matrix are uncer-

tain, we are interested in the stability of the matrix given this uncertainty.

First studies in this area were realized by Chebyshev and Markov (see a survey

of their works in [4]). The most interesting case is when the uncertainty in each

parameter in the system matrix is modeled by an interval, that is, the lower

and upper bounds are known. A natural conjecture would be that the family

of system matrices is stable if and only if all the vertex matrices are stable. In

[8, 9], sufficient conditions have been obtained, for which the above conjecture

is true in the discrete case. In [5], an extension of Gershgorin’s circle theorem
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was used to obtain a simple sufficient condition for the stability of the family

of system matrices. The same theorem was also used in [1] to obtain more

sufficient conditions. When the vertices of the matrix family are symmetric,

the corresponding uncertain dynamical systems are stable if and only if the

vertex matrices are stable, see [12]. In [10], Kharitonov presented a necessary

and sufficient condition for the stability of dynamical systems whose paramet-

ric uncertainty is restricted to a rectangular domain. A more general version

was discussed in [14], where the rectangular domain was replaced by a path-

wise connected region Γ in the complex plane. The concept of Γ -stability was

then introduced, and necessary and sufficient conditions for the Γ -stability of

a family of systems of differential equations were established. The results of

[14] were generalized in [11].

In this paper, we prove a very general sufficient condition for a matrix fam-

ily such that the stability of a finitely many well-chosen matrices guarantees

stability of the convex hull and positive cone of the whole matrix family. This

result implies the results in [1, 8, 12]. In some special cases dealing with the

stability of interval dynamical systems, the condition becomes necessary as

well as sufficient. Illustrative examples will be given.

2. Main results. Consider the convex hull of n×n matrices in the set Rn×n

described by

C =
{
M |M =

m∑
j=1

γjMj, γj ≥ 0,
m∑
j=1

γj = 1

}
. (2.1)

The matrix M is said to be stable if all of its eigenvalues have negative real

parts. We say that C is stable if each matrix in C is stable. In what follows,

Re denotes the real part of a complex number and λ(M) or λj(M) denotes the

eigenvalue of the matrixM . To state our results, some definitions are required.

Let |x| denote a vector norm of x on Cn, and let ‖M‖ be the induced matrix

norm of M given by the vector norm | · |. Let µ(M) be the matrix measure of

M defined as

µ(M)= lim
θ→0+

‖I+θM‖−I
θ

, (2.2)

where I is the identity matrix. The following well-known Coppel inequality

[3] gives an upper bound for the magnitude of the solution of a differential

equation ẏ(t)=M(t)y(t) in terms of the matrix measure

∥∥y(t)∥∥≤ ∥∥y(t0)∥∥exp

(∫ t
t0
µ
(
M(τ)

)
dτ
)
, (2.3)

which proves useful in the discussions to follow. The next lemma may be found

in [3].
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Lemma 2.1. The matrix measure µ(M) is well defined for any norm and has

the following properties:

(a) µ is convex on Cn×n, that is, for any γj ≥ 0 (1 ≤ j ≤ k), ∑k
j=1γj = 1, and

any matrices Mj (1≤ j ≤ k), we have

µ


 k∑
j=1

γjMj


≤ k∑

j=1

γjµ
(
Mj
)
; (2.4)

(b) for any norm and any M , we have

−‖M‖ ≤ −µ(−M)≤ Reλ(M)≤ µ(M)≤ ‖M‖; (2.5)

(c) for the 1-norm |x|1 =
∑n
j=1 |xj|, the induced matrix measure µ1 is given

by

µ1(M)=max
j

[
Re
(
mjj

)+∑
i≠j

∣∣mij
∣∣], (2.6)

for the 2-norm |x|2 =
(∑n

j=1 |xj|2
)1/2

, the induced matrix measure µ2 is given

by

µ2(M)=max
i

[
λi
(
M+M∗)

2

]
, (2.7)

and for the∞-norm |x|∞ =max1≤j≤n |xj|, the induced matrix measure is given

by

µ∞(M)=max
i

[
Re
(
mii

)+∑
j≠i

∣∣mij
∣∣]; (2.8)

(d) for any nonsingular matrix N and any vector norm ‖·‖, with the induced

matrix measure µ, ‖Nx‖ defines another vector norm and its induced matrix

measure µN is given by

µN(M)= µ
(
NMN−1). (2.9)

Theorem 2.2. If there exists a norm such that µ(Mj) < 0 (1≤ j ≤m), then

C is stable.

Proof. Let M be any matrix in C , then there exist γj ≥ 0 and
∑m
j=1γj = 1,

so that M =∑m
j=1γjMj . Since µ is convex and M ∈ C , we have

µ(M)≤
m∑
j=1

γjµ
(
Mj
)
< 0. (2.10)
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Then by Lemma 2.1(b), we have Reλj(M)≤ µ(M) < 0, which implies that M
is stable. Therefore, C is stable and this completes the proof.

The previous result can be generalized to the case where M is in a positive

cone. Let

P =
{
M |M =

m∑
j=1

γjMj | γj ≥ 0, M ≠ 0

}
(2.11)

be a cone of matrices, which we refer to as a positive cone, then P is said to be

stable if each nonzero matrix in P is stable. The following theorem follows.

Theorem 2.3. If there exists a matrix measure µ such that µ(Mj) < 0 for

1≤ j ≤m, then P is stable.

Proof. The matrix measure enjoys the following properties that can be

found in [3]:

(1) µ(A+B)≤ µ(A)+µ(B) for any two matrices A and B,

(2) µ(αA)=αµ(A) for any A and any α≥ 0,

from which the proof of the theorem follows directly.

Although the conditions of Theorems 2.2 and 2.3 are only sufficient, for a

certain class of vertices they become also necessary. Let ∗ denote the complex

conjugate transpose operation, and let S be a set of matrices. We say that S is

∗-closed if M∗ ∈ S for any M ∈ S. This leads to the following theorem.

Theorem 2.4. LetV be the set of vertex matrices for a convex hull of matrices

C , and let V be ∗-closed. Then, C is stable if and only if there exists a matrix

measure µ such that µ(M) < 0 for any M ∈ V .

Proof. The sufficiency is guaranteed by Theorem 2.2. To prove necessity,

we choose the vector 2-norm. For any M ∈ V , we have M∗ ∈ V since V is ∗-

closed. Since C is stable, (M+M∗)/2 is stable, that is, maxj λj(M+M∗)/2< 0.

From Lemma 2.1(c), we conclude that µ2(M) < 0 and the proof is complete.

Of special interest is the following list of corollaries.

Corollary 2.5. If the vertex matrices are normal, then C is stable if and

only if V is stable.

Proof. To prove sufficiency, letM ∈ V . SinceM is normal, then by [6, Theo-

rem 2.5.4]M can be diagonalized using a unitary transformation, that is, there

exists a unitary matrix U such that M = UDU−1. Using the 2-norm, which is

invariant under a unitary transformation, the induced matrix measure is also

invariant; therefore,

µ2(M)= µ2
(
UDU−1)= µ2(D)=max

j
Reλj(D)=max

j
Reλj(M). (2.12)
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Hence, if M is stable, then µ2(M) < 0 for any M ∈ V , and from Theorem 2.2

we conclude that C is stable.

Since necessity is trivial, the proof is then complete.

The main results of [12] can now be given in the next corollary, the proof of

which follows directly from Theorem 2.4.

Corollary 2.6. If the vertex matrices are symmetric, then C is stable if and

only if V is stable.

The next corollary represents one of the main results of [8], and can now be

directly concluded from Theorem 2.2 by choosing the vector 2-norm.

Corollary 2.7. If for any M ∈ V , (M+MT)/2 is stable, then C is stable.

A more general case than Corollary 2.7 is the following result.

Corollary 2.8. If there exists a positive matrix H such that HM+MTH is

stable for any M ∈ V , then C is stable.

Proof. IfH is positive definite, letH =K2, where K is also positive definite;

then, if we use the norm ‖x‖ = ‖Kx‖2, the induced matrix measure µK is given

by

µK(M)= µ2
(
KMK−1)=max

j
Reλj

(
KMK−1+K−TMTKT

2

)

=max
j

Reλj

(
K−1HM+MTH

2
K−1

)
≤ maxj λj

(
HM+MTH

)
2α(H,M)

,

(2.13)

where α(H,M) = maxj λj(H) if HM + MTH is negative semidefinite and

α(H,M) = minj λj(H) if HM +MTH is positive semidefinite. If HM +MTH
is stable for any M ∈ V , then it is negative definite; hence µK(M) < 0 for any

M ∈ V . From Theorem 2.2, it follows that C is stable.

Now, the main results of [1] follow directly from Theorem 2.2 as shown

below.

Corollary 2.9. Let C0 =
∑m
j=1Mj/m. Suppose that there exists a nonsingu-

lar N such that NC0N−1 is diagonal. Then if there exists a matrix measure µ
such that µ(NMjN−1) < 0 (1≤ j ≤m), C is stable.

Proof. For any norm | · | with N nonsingular, choose a new norm ρ(x) =
|Nx|. The new induced matrix measure is µρ(M)= µ(NMN−1) by Theorem 2.2,

and the proof is complete.

The above results can be applied to the stability of interval matrices. Let

L = (lij), U = (uij), and M = (mij) be real matrices, and let L ≤ M ≤ U hold

elementwise.
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Define

K = {M | L≤M ≤U} = {(mij
) | lij ≤mij ≤uij

}
,

V = {M |mij = lij or mij =uij
}
,

(2.14)

that is, V is the set of vertex matrices of K. Then, the following result follows

from Theorem 2.2.

Corollary 2.10. If there exists a matrix measure µ such that µ(M) < 0 for

any M ∈ V , then K is stable.

The criteria developed in this paper may seem restricted because the matrix

measure is only an upper bound of the real parts of the eigenvalues of a matrix.

The next theorem will establish a relationship between the real parts of the

eigenvalues and the matrix measure, showing that if the matrix measure is

properly chosen, then it will be possible to obtain stability criteria which are

equivalent to testing the real parts of the eigenvalues for negativity.

Theorem 2.11. Let � be the set of all vector norms on Cn; for any ρ ∈�, the

corresponding matrix measure is denoted by µρ ; then for any matrix in Cn×n,

we have

max
1≤j≤n

Reλj(M)= inf
ρ∈�

µρ(M). (2.15)

Proof. Let J be the Jordan form of M , then from Jordan’s theorem, there

exists a nonsingular matrix N such that J = NMN−1 = D+U , where D is di-

agonal and U is a matrix whose diagonal elements are zeros and off-diagonal

elements are the same as J.

Let Λ= diag{1,σ−1,σ−2, . . . ,σ−(n−1)} for any positive real σ , then

ΛJΛ−1 =D+σU. (2.16)

Define a new norm of Cn by |x| = |ΛNx|2. Then the corresponding matrix

norm of I + γM , where I denotes the identity matrix and γ is any positive

number, is

‖I+γM‖ =max
|x|=1

∣∣(I+γM)x∣∣= max
|ΛNx|2=1

∣∣ΛN(I+γM)x∣∣2. (2.17)

Note that if we let z =ΛNx, then we have

ΛN(I+γM)x =ΛN(I+γM)N−1Λ−1z = I+γ(D+σU)z; (2.18)
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so the corresponding matrix measure of M is

µ(M)= lim
γ→0

‖I+γM‖−1
γ

= lim
γ→0

max|z|2=1

∣∣z+γ(D+σU)z∣∣2−1

γ

≤ lim
γ→0

max|z|2=1
(∣∣(I+γD)z∣∣2+σγ|Uz|2

)−1

γ
= µ2(D)+σ |U|2

≤max
j

Reλj(M)+σ.

(2.19)

Therefore, for any positive real σ , there exists a norm ρ such that

µρ(M) < max
1≤j≤n

Reλj(M)+σ, (2.20)

and the proof is thus complete.

The above theorem suggests that in order to obtain the tightest stability

bounds, the norm in Theorem 2.2 must be chosen properly. One possible

choice is the class given by the norms |x|N = |Nx|2 for any nonsingular ma-

trix N. The induced matrix measure is µN(M) = µ2(NMN−1). This relates to

the representation problem for the matrixM . For the stability of interval poly-

nomials, it is interesting to note that the stability of the system depends on

finding a suitable state space realization so that the results of Theorem 2.2

can be applied. Now, we state an obvious corollary of Theorem 2.11.

Corollary 2.12. The matrix M is stable if and only if there exists a matrix

measure µ such that µ(M) < 0.

Of special interest is the stability of time-invariant linear systems with pa-

rameter variations for unmodeled dynamics. Using the concept of the matrix

measure, we can obtain the following result.

Theorem 2.13. Suppose that the dynamical system is described by

ẋ(t)= (M+∆M)x(t), (2.21)

where ∆M represents the unmodeled dynamics, then the system is stable if the

unmodeled dynamics satisfies the conditions

µ(∆M) <−µ(M), (2.22)

where µ is a certain matrix measure.

The proof follows directly from the property µ(A+B)≤ µ(A)+µ(B).
The next corollary shows that our results can be used to test stability of a

convex hull of triangular vertex matrices.
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Corollary 2.14. If the vertex matrices can be simultaneously transformed

by a similarity transformation to upper (or lower) triangular form, then a nec-

essary and sufficient condition for C to be stable is that the vertex matrices are

stable.

Proof. Without loss of generality, we assume that all vertex matrices M1,
M2, . . . ,Mr are upper triangular. Let Mk = (mk

ij) (k = 1,2, . . . ,r ) and D =
diag{d1,d2, . . . ,dn}. Let µ denote the matrix measure induced by the vector

norm ‖D−1x‖∞. Since

D−1MkD =




mk
11

(
d2/d1

)
mk

12 ··· (
dn/d1

)
mk

1n

mk
22 ··· (

dn/d2
)
mk

2n

. . .
...

mk
nn



, k= 1,2, . . . ,r ,

(2.23)

we obtain from Lemma 2.1(c) and (d)

µ
(
Mk
)= µ∞(D−1MkD

)=max
j

[
Re

(
mk
ii+

∑
j>i

(dj
di

)∣∣mk
ij
∣∣)]. (2.24)

Letdj = σj (j = 0,1, . . . ,n−1), whereσ is a sufficiently small number. Define

S =max1≤k≤r maxi,j |mk
ij|. Then we have

µ
(
Mk
)≤max

j

[
Re

(
mk
ii+S

∑
j>i

dj
di

)]
≤max

i

[
mk
ii
]+nSσ. (2.25)

Therefore, ifMk is stable, then we can choose σ > 0 sufficiently small so that

µ(Mk) < 0 for any k = 1,2, . . . ,r . It follows from Theorem 2.2 that C is stable.

The necessary part of the theorem is trivial.

Corollary 2.15. If the vertex matrices commute, then C is stable if and

only if the vertex matrices are stable.

Proof. By [6, Theorem 2.3.3], if a family of matrices commute, then they

can be simultaneously transformed to upper triangular form. Then, Corollary

2.14 leads to the desired result.

We end up with the following corollary, whose proof is straightforward.

Corollary 2.16. If the vertex matrices can be simultaneously transformed

to Jordan form, then C is stable if and only if the vertex matrices are stable.
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3. Examples

Example 3.1. Let

M1 =
(

0 1

−2 −3

)
, M2 =

(−12 −3

4 5

)
, N =

(
2 1

−1 −1

)
. (3.1)

Then,

NM1N−1 =
(−1 0

0 −2

)
, NM2N−1 =

(−9 2

0 −8

)
. (3.2)

Define the vector norm |x| = |Nx|2. Then the induced matrix measure is

µ(M)= µ2(NMN−1). Thus µ(M1)=−1< 0 and µ(M2)=−7.382< 0, and from

Theorem 2.2, we conclude that C is stable.

Remark 3.2. Since µ2(M1) = 0.081 > 0, we cannot use Jiang’s results [8].

Note also that for D = diag{d1,d2}, µD(M)= µ∞(D−1MD), which is the matrix

measure induced by the vector norm ‖D−1‖∞. Then for any positive numbers

d1 and d2,

µD
(
M2
)= µ∞(D−1M2D

)= 4
(
d1/d2

)+5> 0. (3.3)

Hence, Heinen’s results [5] fail the stability test.

Example 3.3. Consider the interval dynamical system

ẋ(t)=Mx(t), (3.4)

where

M ∈M1 =

[−5,−3] [1,2]

[4,5] [−6,−4]


 . (3.5)

From the observation that

µ2

((−3 2

7 −4

))
= 1

2

(−7+
√

82
)
> 0, (3.6)

it follows that the criterion which uses the 2-norm measure developed in [8]

cannot be used to study the stability of MI .

Choose D = diag{1,0.5}. Then

DMID−1 =
(
[−5,−3] [2,4]
[2,2.5] [−6,−4]

)
. (3.7)

Let

L=
(−5 2

2 −6

)
, U =

(−3 4

2.5 −4

)
, V = {M |mij = lijuij

}
. (3.8)
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For all M ∈ V , the characteristic polynomial of MT +M is

λ2−2
(
m11+m22

)
λ+4m11m22−

(
m12+m21

)2. (3.9)

Since m11 < 0 and m22 < 0, it follows that

µD(M) < 0⇐⇒M+MT stable ⇐⇒ 4m11m22−
(
m12+m21

)2 > 0. (3.10)

For all M ∈ V ,

4m11m22−
(
m12+m21

)2

≥ 4(−3)(−4)−(4+2.5) > 0⇐⇒ µD(M) < 0⇐⇒MI is stable.
(3.11)

Therefore, our criterion is applicable where that of [8] fails.

Example 3.4. Consider

�=
{
∆M |∆M =

r∑
j=1

αjMj,
∣∣αj∣∣≤ βj, j = 1,2, . . . ,r

}
, (3.12)

where the matricesMi, which represent the uncertain structure, are given skew

matrices, that is, MT
j =−Mj (j = 1,2, . . . ,r ). The problem is to find conditions

such thatM+∆M is asymptotically stable for any ∆M ∈� (in this case, we say

that M+� is stable), where M satisfies M+MT is negative definite. The above

formulation can be viewed as the representation of a dissipative system with

energy-conserving perturbation. If we choose the 2-norm, the induced matrix

measure is µ2, which satisfies µ2(M+∆M)= (1/2)λmax(M+MT) < 0; so under

the above assumption, we conclude that M +� is stable with a convergence

rate at least −µ2(M).

4. Conclusion. In this paper, we have obtained a very general sufficient con-

dition for the stability of a convex hull of matrices and a positive cone of ma-

trices. For a certain class of vertex matrices, the sufficient condition becomes

also necessary. Another sufficient condition for the stability of an interval dy-

namical system is given, and the relationship between the real parts of the

eigenvalues of a matrix and its matrix measure is derived. Using the matrix

measure, we have also found a result for the stability of time-invariant linear

systems with parameter variations representing the unmodeled dynamics.
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