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Abstract—Application services based on cloud computing infrastructure are proliferating over the Internet. In this paper, we investigate

the problem of how to minimize cloud resource rental cost associated with hosting such cloud-based application services, while meeting

the projected service demand. This problem arises when applications generate high volume of data that incurs significant cost on

storage and transfer. As a result, an Application Service Provider (ASP) needs to carefully evaluate various resource rental options

before finalizing the application deployment. We choose Amazon EC2 marketplace as a case of study, and analyze the economical

trade-off for on-demand resource rental strategies. Given fixed resource pricing, we first develop a deterministic model, using a mixed

integer linear program, to facilitate resource rental decision making. Evaluation results show that our planning optimization model

reduces resource rental cost by as much as 50% compared with a baseline strategy. Next, we further investigate planning solutions to

resource market featuring time-varying pricing (Amazon Spot Instance Market). We perform time-series analysis over the spot price

trace and examine its predictability using Auto-Regressive Integrated Moving-Average (ARIMA). We also develop a stochastic planning

model based on multistage recourse. By comparing these two approaches, we discover that spot price forecasting does not provide

our planning model with a crystal ball due to the weak correlation of past and future price, and the stochastic planning model better

hedges against resource pricing uncertainty than resource rental planning using forecast prices.

Index Terms—Cloud Computing, Amazon EC2, Resource Rental Planning, Linear Programming, Stochastic Optimization

✦

1 INTRODUCTION

With the rapid progress of computing, storage, and net-
working technologies, distributed computing paradigms
have undergone profound changes in the past decade. In
particular, the emerging cloud computing model, with
its virtually infinite resources and elasticity, liberates
organizations from the expensive infrastructure invest-
ment. As a result, more and more Application Service
Providers (ASPs) recognize the separation between the
actual application and the infrastructure necessary to run
it, and begin to deploy applications on resources rented
from infrastructure providers. For example, Foursquare
uses Amazon EC2 to perform analytics across more than
5 million daily checkins, and saves 53% in costs while
maintaining scalability needs [1]. According to a recent
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forecast by Gartner, Software-as-a-Service and Cloud-
based business application services will grow from $13.4
billion in 2011 to $32.2 billion in 2016 [2].

By adopting cloud computing, a major issue faced
by the ASPs is how to minimize the resource rental
cost while meeting their application service demand.
Significant research efforts have been directed to-
ward developing optimal resource provisioning schemes
to meet service requirements (avoid the cost due
to over-provisioning and the penalty due to under-
provisioning) [3]–[5]. These works, although offer ef-
fective resource provisioning controls in response with
varying workload, are still coarse-grained in terms of
exploring application elasticity with regard to different
resource pricing options. We believe that a fine-grained
resource rental planning scheme is needed to further
reduce ASPs’ operational cost. Specifically, this paper
proposes a fine-grained control scheme to regulate the
rental activities on a time-slotted basis, exploring hourly
charging rate of various types of resources, in order
to meet the projected service demand and minimize
resource rental cost at the same time. Complementary
to prior resource scaling solutions, this work opens
up tremendous new research opportunities, coined as
application scaling, aimed to develop the most economic
resource rental plan without compromising the service-
level agreement.

Yet another obstacle lies in the uncertainty of com-
putational resource pricing. This challenge is encoun-
tered in the spot resource market emerged in recent
years. On a spot resource market, depending on the
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resource supply and demand level, the unit price of a
computational instance is fluctuating all the time. For
example, in December 2009, Amazon launched its spot
instance service and implemented an auction mechanism
to determine instance pricing, as auctions are effective
mechanisms to achieve economically efficient resource
allocations and the maximized revenue of the cloud
provider [6]–[8]. Since spot instances leverage idle cy-
cles from the regular on-demand server pool, they are
auctioned off at a price much lower than that of the
regular on-demand instance most of the time. As a result,
this real-time bidding market has attracted many ASPs
who wish to increase server capacity at low cost, and
there is a growing research interest in utilizing spot
instance service. However, modeling and analyzing spot
instance pricing is largely neglected due to the lack
of information. We believe that our study is helpful
to understand spot pricing, and more importantly, to
improve resource utilization under spot pricing.

In this paper, we first develop a fine-grained optimal
resource rental planning model for elastic application
scaling in a cloud resource market. In particular, given
a forecasted demand schedule, the ASP needs to peri-
odically review the running progress of the deployed
service and make optimal job allocation as well as re-
source rental decisions so as not to waste money on
excessive computation, storage or data transfer. Our
first contribution is the formulation of a deterministic
planning model that approximates resource rental deci-
sion making process over certain planning horizon. The
solution to this model serves as a guide to make cost-
efficient resource rental decisions in real time. We show
that our planning model is especially useful for high-
cost Virtual Machine (VM) classes. This is because cost
saving from our model primarily comes from eliminat-
ing unnecessary job running by decreasing VM rental
frequency. From this perspective, our model formulation
is aligned with the dynamic lot-sizing model commonly
encountered in the field of production planning.

The second contribution of this paper is that we
analyze and solve the fine-grained cloud resource rental
planning problem under the pricing uncertainty chal-
lenge. In particular, two possible solutions are jointly
explored in this paper. We systematically analyze the
predictability of Amazon EC2 spot pricing and show that
prediction cannot provide adequate approximation to be
used in deterministic planning model. For the purpose of
comparison, we propose a multistage resource model for
stochastic resource rental planning. This model decom-
poses the stochastic process of decision making under
varying price into sequential decision making processes
with the aid of price distribution at various stages. As
such, the stochastic optimization problem is transformed
into a large-scale deterministic optimization problem.
We further present a polynomial-time solution to the
problem. Through simulations, we have shown that the
stochastic planning approach is more cost-efficient than
predictive planning.

In summary, the key contributions of this paper are
listed as follows:

• A fine-grained planning approach for cost-efficient
resource rental in cloud resource market.

• A MILP formulation for determining the optimal
resource rental over a fixed planning horizon.

• A systematic time-series analysis of the predictabil-
ity of spot pricing using real price traces of Ama-
zon’s spot instance service.

• A stochastic optimization solution to deal with spot
price uncertainty in resource rental planning.

The rest of the paper is organized as follows. Section 2
surveys the related work. In Section 3, we present the
system model, provide a deterministic planning model
for the problem, give out an optimal solution, and
evaluate the performance of the deterministic pricing
resource planning approach. In Section 4, we analyze the
predictability of Amazon EC2 spot pricing using time-
series analysis techniques, propose a stochastic optimiza-
tion model to solve the rental planning problem, and
perform simulations to evaluate the performance of our
solution. We highlight some interesting issues for further
discussion in Section 5 and finally, conclude this paper
in Section 6.

2 RELATED WORK

Nowadays, a wide variety of computational and data in-
tensive applications utilize cloud to their benefit. There-
fore, it becomes imperative to understand the cost-
benefit of running resource-demanding applications in
cloud in order to make cost-efficient resource rental
decisions. Compared with running applications on con-
ventional platforms such as grid, cloud eliminates up-
front setup and operational cost for distributed re-
sources. However, moving and storing large data set in
cloud incur significant cost comparable to the computing
cost [9]. Tremendous research efforts have been made to
mitigate such cost in cloud. In this paper, we present a
planning model that optimizes resource usage for elastic
applications with comprehensive cost considerations.

Finding an optimal resource utilization strategy is
challenging for both cloud infrastructure providers and
application service providers. Many studies [10]–[12]
attempted to reduce the operational cost and maxi-
mize leasing revenue from the perspective of the cloud
infrastructure provider. However, the general problem
of minimizing resource allocation cost while meeting
job demand is NP-hard [13]. This paper approaches
cost optimization from the angle of application service
providers and proposes solutions to take most advantage
of the infrastructure resources by planning ahead.

As computational resources become tradable in cloud,
recent works [14]–[16] were geared towards developing
novel trading strategies based on information acquired
from the market. Amongst all the emerging cloud re-
source markets, Amazon EC2 is the most representative
example which attracts significant research attentions.
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For instance, researchers have proposed ideas to allocate
resources via brokerage services [17], or take advantage
of the low price offered by reserved instances to save
cost [18], [19]. With regard to the spot instance market,
many works [20]–[22] proposed solutions to achieve
resource availability guarantee using statistical analy-
sis. Notably, Ben-Yehuda et al. [21] reverse engineered
spot prices by constructing a spare capacity pricing
model based on existing price traces. Javadi et al. [22]
conducted a comprehensive analysis of spot instances
based on one year price history in EC2, and proposed
a statistical model to capture the dynamics for price
variation in hour-in-day and day-of-week. This paper
focuses on analysis of on-demand and spot resource
market. The proposed solution targets at the general
cloud market and takes EC2 as a case of study. Our
work takes one step further from the prior art by pre-
senting a fine-grained planning control model based
on the forecast demand. The optimization models take
full consideration of various resource types and their
associated costs within a cloud resource market, and
investigate the optimal tradeoff point in resource rental
allocation.

In this paper, the cost optimization model applies to
some cloud market where price is market-driven and
users bid according to their true valuations (simple-
minded assumption). The most relevant works to this
paper are presented in [23] and [24]. In [23], the authors
presented an optimal VM placement algorithm that min-
imizes the cost of resource provisioning in a multiple
cloud providers environment, and in [24], the authors
proposed a profit-aware dynamic bidding algorithm to
optimize ASP’s profits in EC2 spot market. Our work’s
application scenario is different from [23], and we de-
velop our model based on realistic application and price
traces. Comparing with [24], our approach presents a
different model that takes storage and network transfer
cost into account in addition to computational instance
bidding. Finally, in a recent study conducted by Xu and
Li [25], the authors investigated Amazon EC2 pricing,
and developed a revenue management framework to
maximize revenue for the cloud provider. Compared
to their work, this paper targets at maximizing cost
effectiveness for the ASPs and has different problem
formulation.

3 FINE-GRAINED RESOURCE RENTAL PLAN-
NING FOR ON-DEMAND RESOURCE MARKET

Resource rental planning entails the acquisition and
allocation of computational and storage resources to
applications so as to satisfy demand over a specified
time horizon. A fine-grained control scheme is proposed
to optimize rental decision on a time slotted basis. In
this section, we present the system model, formulate the
fine-grained rental planning problem in the context of
this model, and examine solutions to solve the problem.

3.1 System Model

We consider the scenario where an ASP offers some
computational and data intensive application services
(example services are data visualization, data analytics,
data indexing, etc...) to customers over a network. In-
stead of using local resources, the tasks of computa-
tion and data storage are completely outsourced to a
shared resource pool operated by some Infrastructure-
as-a-Service (IaaS) provider(s), as shown in Figure 1.
The depicted system model resembles a broad range
of practical examples in today’s cloud-based service
market. For instance, the ASP could be mapped to some
Software-as-a-Service provider who offers routine data
analytics to its customer firms, or some academic insti-
tution who provides scientific data visualization services
to the general public.

Customer

Service 
Broker

IaaS
Provider

VM VM VM

Cloud 
Storage

Cloud 
Storage

Cloud 
Storage

Network 

Transfer-in Cost

Local Data
Server Network 

Transfer-out Cost

Storage

Cost

Computational

Cost

Rent

Lease

Service

Cloud Resource

Market

I/O Cost

Fig. 1. System model for cloud-based resource rental planning
problem

As illustrated in Figure 1, resource usage incurs mone-
tary cost to the ASP in various forms. Rental activities are
charged throughout the life cycle of the deployed service
as follows. First, input data necessary to run the program
is imported into the cloud from the local storage media,
introducing network transfer-in cost. Next, a number of
VM instances are launched to perform data processing
tasks. Each of them costs certain amount of money
depending on both VM unit price and rental duration.
After the computational jobs are completed, results and
logs are saved to cloud storage, and may be dumped
into local persistent storage later. Many often the data
size is large (e.g., images or videos) and incurs signifi-
cant storage and network transfer-out cost for the ASP.
The storage cost may also apply to input data already
fetched into the cloud but not processed yet. Finally, high
performance applications often feature tremendous I/O
requirements and some resource provider will charge for
I/O activities. When performing resource rental plan-
ning, an ASP needs to consider all costs described above
in order to understand the cost-benefit ratio of possible
choices.
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3.2 Motivation for Fine-Grained Resource Rental

Planning

Resource management in cloud entails multiple levels
of scheduling. At a higher level, the ASP needs to
decide how many resources to allocate to meet service
demand (auto scaling). Essentially, auto resource scaling
approaches are grouped into two categories, proactive
and reactive. Proactive scaling, due to its preventive na-
ture, gains popularity for tight QoS control. As a predic-
tive resource scaling schedule is established, what’s often
overlooked is that the ASP can reorganize the usage
profile of various types of resources in the predictive
horizon to save costs associated with resource rental ac-
tivities. Such fine-grained resource rental planning stems
from the observation that certain types of applications
can leverage multiple types of cloud resources to provide
services. For example, some image recognition services
need to serve user requests in real time, but can lever-
age pre-processed image processing results fetched from
cloud storage to meet current or future service requests.

In this paper, we assume the forecasted demand
schedule is established and attempt to build a cost
model to analyze the optimal strategy of resource rental
activities in a time slotted fashion. Once the ASP creates
a clear rental plan over the planning horizon at this fine-
grained level, the schedule of jobs1 is adjusted (through
job addition, replication, migration or removal) to line
up with the resource rental plan. Suppose we already
know the number of computational instances needed at
each decision point by solving the higher level schedul-
ing problem, for each instance, we further investigate
if we can leverage other types of cloud resources to
bring down the rental cost. Therefore, we build our cost
optimization model at per-VM level, rather than at the
whole resource group level. A motivating example is
demonstrated in Figure 2. We plot an example demand
forecast for a single VM instance. The top dash line
represents the VM’s maximum load handling capacity.
If the VM strictly follows a job processing schedule
in accordance with the forecast workload pattern (red
steps), computing cycles are wasted. For example, the
ASP pays full rent for the VM between 2pm and 3pm,
but does not fully utilize the server’s computing ca-
pability shown in the shaded area. In this paper, we
propose to let the ASP “consolidate” future computing
jobs in current rental slot, given that transfer and stor-
age cost less. Our approach introduces operational and
management science techniques into cloud computing
and achieves better cost-effectiveness compared to on-
demand resource provisioning.

3.3 Optimization Planning Model for Deterministic
Instance Pricing

The first resource rental planning model targets at an on-
demand resource market where each VM costs a fixed

1. Here “job” refers to the general concept of computational tasks.
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Fig. 2. Example forecasted demand schedule for a VM in-
stance.

amount of money. Each VM belongs to a specific VM
type specifying the hardware configuration. We assume
the applications are elastic and composed of jobs easy to
scale gracefully and automatically. For example, appli-
cations processing Bags-of-Tasks (no job dependencies).
Similar to [26], we are interested in self-aware solutions
that can plan resource usage of cloud applications under
various pricing. The planning horizon T is divided into
fixed time slots t = 1, ..., T . We refer to the start of each
time slot as a decision point. At each decision point, a
rental operation is performed to access the most cost-
effective resource available for the application.

Let T be the set of decision points. The goal of
resource rental planning is to minimize the total rental
cost associated with processing the forecast workload
over the planning horizon T . In order to accomplish this
goal, three sets of variables are introduced to represent
the rental decisions to be made at each decision point.
The first set of variables, αi,t, denotes the amount of data
to be processed by the application during time slot t
on a type-i VM. Next, at the end of slot t, we use βi,t

to represent the desired storage space for holding the
data. Finally, let binary decision variables χt denote if
powering on a type-i VM is needed at time slot t. αi,t

and χi,t specify how to make use of the computational
resources to control the application progress, while βi,t

determines the amount of storage resources to reserve in
a cloud market. If all these variables are determined, a
control policy is formed to guide the rental activities in
the cloud market for optimal resource utilization.

A number of cost parameters are associated with our
resource rental optimization problem. Specifically, the
rental cost (processing cost) for type-i VM in time slot t
is Cp(i, t), and the storage rental cost per data unit for
slot t is Cs(t). As presented earlier in Section 3.1, many
IaaS providers charge nontrivial cost for data transfer
across the cloud boundary. For each time slot t, let Cio(t)
be the I/O cost for data transfer from and to the cloud
storage, and let C+

f (t) and C−
f be the cost for transferring

into and out of the cloud, respectively. In this paper, we
assume a real-time service model that demand needs
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to be satisfied before the end of each decision point.
We represent the customer’s demand function as D(·),
where D(i, t) denotes the forecast workload demand
profile (in this paper defined as the output data amount
sent to customers) for a type-i VM in slot t.

For readers’ reference, we summarize the notation
used throughout the paper in Table 1.

TABLE 1
Notation Box

Variables

αi,t
output data size generated by one

type-i VM in time slot t

βi,t
storage space for data produced by
one type-i VM at the end of slot t

χi,t
binary decision variable representing rental decision

of one type-i VM in time slot t

Parameters

T Set of time slots
I Set of VM types

Cp(i, t) VM rental cost (per type-i VM · slot duration)
Cs(t) Storage cost (per data unit · slot duration)
Cio(t) I/O operation cost (per data unit · slot duration)

C
+

f
(t) Network transfer-in cost (per data unit · slot duration)

C
−

f
(t) Network transfer-out cost (per data unit · slot duration)

D(i, t)
Demand to be satisfied for one type-i

VM at the end of slot t

P(i)
Average bottleneck resource consumption rate (per data unit

generated) for one type-i VM

Q(i, t)
Bottleneck resource available for one type-i

VM in time slot t

Φi
Average output-to-input ratio for one

type-i VM (application specific)

With all the prerequisites, we formulate the rental
payment function following a linear cost model. More
specifically, the rental cost is linearly proportional to the
consumed resource amount as well as to the duration
of the rental period. Naturally, our objective function
aims at minimizing the rental cost for each type-i VM
over the entire planning horizon T (we minimize the
cost at per-VM level, as explained in Section 3.2). At
each decision point, a fixed rental cost Cp(i, t) is charged
if the ASP decides to rent one type-i VM (χi,t = 1).
Now, given the presence of this computational resource
cost, the ASP may choose to make full use of the VM
capacity so as to meet the forecast workload demand
over a number of future time slots. However, doing so
will increase the storage and I/O cost as more workload
is processed earlier in time. As such, the planning prob-
lem arises as the ASP needs to carefully trade off the
computational rental cost versus storage and data mi-
gration costs. In production planning, similar problems
are recognized as the dynamic lot-sizing problem. The
solution to the dynamic lot-sizing problem determines
the optimal frequency of setups so as to minimize the
total cost within the resource and demand constraints.
In the context of cloud computing, we formulate the
planning problem under fixed resource pricing as the
Deterministic Resource Rental Planning (DRRP) prob-
lem. DRRP models cloud resource rental on a per-VM
basis, forming a fine-grained control policy for rental
planning. The complete model formulation is described
in function (1) to (7).

Note that the objective function does not take I/O and
storage cost for input data into account. This is because
we assume that input data is brought into cloud on the
fly to complete the computational jobs. Another option
is to copy all input data once and store them in cloud
throughout the entire planning horizon. The decision on
which option is better depends on the data access pattern
and the duration of planning horizon. In this paper, we
simply assume that input data is “transfer-on-demand”
to simplify the presentation. In addition, the formulation
roughly models the expected average performance of
each VM type. In reality, the performance heterogeneity
exists within the same VM type [27], [28]. However, we
focus on cost analysis in this paper and will not include
this factor into our formulation.

min
∑

t∈T

(C+
f (t) · Φi · αi,t + (Cs(t) + Cio(t))

· βi,t + C−
f (t) ·D(i, t) + Cp(i, t) · χi,t) (1)

s.t.

βi,t−1 + αi,t − βi,t = D(i, t), i ∈ I, t ∈ T (2)

P(i) · αi,t ≤ Q(i, t), i ∈ I, t ∈ T (3)

αi,t ≤ B · χi,t, i ∈ I, t ∈ T (4)

βi,0 = ε, i ∈ I (5)

αi,t, βi,t ∈ R+, i ∈ I, t ∈ T (6)

χi,t ∈ {0, 1}, i ∈ I, t ∈ T (7)

Constraint (2) is analogous to the inventory balance
constraint in the dynamic lot-sizing problem. It simply
specifies that workload demand should be met at any
time slot. At slot t, the data stored at the previous
time slot βi,t−1, and the data generated in the current
slot αi,t, are combined together to serve the forecasted
demand profile emerged in the current time slot, i.e.,
βi,t−1 + αi,t ≥ D(i, t). The overprovisioning amount
becomes the storage amount βi,t at the end of t. The
initial storage space is set to be some constant ε in
constraint (5), depending on the specific planning sce-
nario. Next, let P(i) be the average bottleneck resource
consumption rate for one type-i VM, and let Q(i, t)
denote the bottleneck resource available for one type-
i VM in t, constraint (3) ensures that the workload
processing rate does not saturate the available bottleneck
resource.

Constraint (4) is often referred to as the forcing con-
straint. It states that there will be no data generated in t if
no rental decision is made (χi,t = 0). B is set to be a very
large constant that exceeds the maximum possible value
of αi,t. Finally, constraints (6) and (7) specify domains
of the variables. Note that each VM might not be fully
utilized during a time slot, as VM boot-up time is non-
trivial according to some recent study [29]. According
to the DRRP formulation, this could affect the setup
of Q(i, t). Moreover, depending on the effective length
of t, the optimal solution is subject to change given
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the fixed service demand constraint (Constraint (2)). For
simplicity, we assume boot-up time is not counted for
defining an effective charging period.

3.4 Solution to Deterministic Pricing Resource

Rental Planning

In this section, we briefly demonstrate the techniques
which find an optimal plan for objective function (1) sub-
ject to constraints (2) to (7). The formulation is a Mixed
Integer Linear Program (MILP) that is NP-complete in
general. When considering only the production variable
αi,t and the inventory variable βi,t, the problem can
be solved by translating the original problem to the
minimum cost flow problem [30]. We show the trans-
formation to flow network in Figure 3.
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Fig. 3. Flow network of the deterministic pricing resource rental
planning problem

As shown in Figure 3, the network has T +1 vertices.
Vertex 0 is the “source” of all data generation, and is
hereafter referred to as the source node. The t-th vertex
(t = 1, ..., T ) represents the t-th planning time slot. These
vertices are referred to as sink nodes. Directed edges are
categorized into two types. Those connecting the source
node with sink nodes are labeled as the production
arcs, and those connecting two successive sink nodes are
labelled as the inventory carry arcs. We also assign the
supply value of

∑T
t=1 D(i, t) to the source node, and the

demand value of −D(i, t) to each sink node t = 1, ..., T .
By establishing this flow network, the inventory balance
constraint (2) is translated to the flow balance constraint
in the minimum cost flow problem. The resource con-
straint (3) is enforced by imposing capacities on the
production and inventory carry arcs in each period.

When the binary variable χi,t and the forcing con-
straint (4) are included, we can solve the proposed MILP
with standard techniques such as the Branch-and-Bound
algorithm. We will briefly demonstrate how to use the
general Branch-and-Bound technique to solve DRRP as
follows.

The first step of the algorithm is to replace the con-
straint that χi,t must be 0 or 1 by a weaker constraint,
i.e., 0 < χi,t < 1 for t = 1...T . The formulation result is a
linear relaxation of the original DRRP program, labeled
as DRRP-LR. Let Z(P ) be the optimal value of some
linear program P . Apparently, the objective value of any
feasible solution found, referred to as Z ′, defines the
upper bound of the solution. Therefore, we have,

Z(DRRP-LR) <= Z(DRRP) <= Z ′.

The Branch-and-Bound algorithm uses divide-and-
conquer principle and construct a search tree over the
feasible solution space. Since DRRP-LR is a linear pro-
gram without integer constraints, we can easily solve it
with standard techniques. If it returns a feasible solution,
we will use it to initialize the lower bound of Z(DRRP).
Without loss of generality, we assume that the solution
to DRRP-LR is bounded, otherwise the corresponding
DRRP is either unbounded or infeasible. We also initial-
ize the current best solution to DRRP to this value.

If χi,t for all t = 1...T are integers, we obtain the
best solution already. Otherwise, for χi,t has a fractional
value, create two new subprograms (branching step),
one in which χi,t = 1 and the other in which χi,t = 0.
Now compute the optimal solution for each subprogram.
This process is recursive, as the computation will be
conducted on two disjoint sets created by new branching
variables. When a new solution is calculated, we com-
pare it with the current best solution. If it’s greater, the
solution is either upper bounded by the best solution so
far or infeasible, therefore no further branching is needed
(bounding step), otherwise the value overwrites the
current best solution and remove the founded solution
from the variable domain. The process terminates when
the remaining variable set becomes empty.

3.5 Evaluation of Deterministic Pricing Resource

Rental Planning

We consider three VM classes I = {c1.medium,m1.
large,m1.xlarge}, and perform simulations to evaluate
the solution to DRRP based on realistic pricing and
application-usage scenarios. The rental planning deci-
sions are made hourly to align with Amazon’s charging
intervals, spanning over a daily planning horizon (24
hours). Each hour corresponds to one time slot in DRRP.
The MILP formulation is solved using the CPLEXTM [31]
solver integrated in AIMMS 3.11 [32]. We sample the
hourly data processing demand from a normal distribu-
tion N (0.4, 0.2) (expressed in the unit of Gigabyte). It is
assumed that the software required by the application
services has been configured on VM instances rented
from the cloud market. Therefore, we do not take the
initial environment preparation into account.

The cost parameters used in model formulations are
set according to Amazon’s EC2 on-demand pricing pol-
icy2. Specifically, the hourly on-demand VM rental costs
are {$0.2, $0.4, $0.8} for the three VM classes. Among
the three VM classes, c1.medium is compute-optimized
while m1.large and m1.xlarge are general-purpose in-
stance classes. We choose them as representative VM
classes to evaluate due to the following reasons: (1) to

2. Amazon has declared lower pricing for EC2 when we prepared
this manuscript. Since our simulation is based on [33], the study
presented here is by no means up-to-date, but serves as a representative
case of study.
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evaluate VM instances that differ in hardware capability;
and (2) to evaluate if compute-optimized instance class
has an impact to the cost structure breakdown. Using
Elastic Block Store (EBS), the storage cost is $0.1 per
GB/month, and 0.1 per million I/O operations. The
inbound and outbound transfer cost is $0.1 and $0.17
per GB. In order to provide realistic parameter estimates
in our proposed models, we refer to a recent paper [33]
studying the cost and performance of running scien-
tific workflow applications on Amazon EC2. Based on
the 3-year cost of a mosaic service (generated by an
astronomical application Montage, see [34] for details)
hosted on EC2, we normalize the I/O cost to $0.2 per
GB, and set Φi to 0.5 for all i ∈ I. According to
the data provided in [33] (runtime, input and output
volume, etc.), the VM instances are able to offer sufficient
resources for serving the randomly generated demand.
Therefore, constraint (3) in DRRP is omitted.

We first show the cost-saving advantage of our pro-
posed solution over resource rental without planning.
The results are shown at the upper side of Figure 4.
In our simulation, per-VM costs over daily planning
horizon for both schemes are compared. From the re-
sults, we can observe that cost derived from solving
DRRP is significantly lower than that of the no-planning
solution. As VM becomes more powerful, the cost re-
duction becomes more significant. Especially, the cost
reduction for VM of class m1.xlarge achieves nearly
50% drop off. This is because compared to the no-
planning solution, the cost reduction primarily comes
from the saving of computational cost (VMs are turned
off in cloud when demand is forecasted and satisfied
by previously rented computational cycles). Therefore,
more saving is expected for high-cost VM classes. The
cost structure for each VM class is presented in the lower
side of Figure 4. We observe that more money is spent
on I/O and storage as VM becomes more powerful.
This is because more powerful VM incurs higher VM
rental cost each time the rental decision is made. As a
result, an ASP tends to rent VM less frequently to serve
the customer demand. Another interesting observation
is that c1.medium has similar compute cost percentage
with m1.xlarge. Although c1.medium is cheaper and in
general less powerful than m1.large, it has better compu-
tational resources (5 Compute Units VS. 4 in m1.large).
It is a clear evidence that for compute-optimized VM
instances, allocating more time for computation yields
more cost saving in general. Therefore, the relative capa-
bility of the hardware components does have a positive
impact to the optimal cost saving model.

Next, we investigate cost saving with regard to differ-
ent planning horizons, and plot the results in Figure 5.
In the first set of evaluations, we use the same demand
data and calculate the total cost for DRRP with the step
increment of four hours. The results are then compared
against the cost without planning, and are summarized
with labels “vm-class-24h” corresponding to the bottom
x axis in Figure 5. Note that cost saving varies because it
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Fig. 4. Cost comparison for DRRP and resource rental
without planning

is correlated with the demand input, therefore, we can-
not draw the conclusion on the optimal planning horizon
from this set of evaluations. However, we do know that
given the same demand input across the planning hori-
zon, the effectiveness of DRRP is independent of specific
VM classes as they exhibit the same trend across time. In
the second set of evaluations, we generate demand with
a new distribution, and create a “cyclic” input pattern
for every 12 hours, i.e., the same input is used for every
12 hours. The cost saving percentage is plotted with
label “m1.xlarge-72h” corresponding to the top x axis
in Figure 5. It might be tempting to increase planning
horizon for better cost efficiency. However, doing so
will not give ASPs a lot of gains, because we observe
the cost saving is relatively stable across time. On the
other side, increased planning horizon results in more
inaccuracy due to more variables in larger prediction
window and increased computational overhead. ASPs
should select the optimal planning horizon based on
the most confident prediction window within acceptable
computational overhead (for solving DRRP).

Finally, we conduct a sensitivity analysis to the solu-
tion for DRRP and plot the results in Figure 6. We define
cost ratio as the cost of rental planning based on DRRP
to the cost of resource rental without planning. The base
ratio (67%) is set to the cost ratio of VM class m1.large
calculated in the last simulation. From this base ratio,
we first vary the weights of I/O and computational cost
gradually. In one direction, we keep the I/O cost fixed
and increase the computational cost with a fixed step
of 0.1, and then we increase the I/O cost in the other
direction similarly. The result showed in the left part
of Figure 6 clearly demonstrate that the cost reduction
achieved by solving DRRP becomes more salient for
expensive computational resources. This conclusion con-
firms the analysis we previously provided. The impact
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of demand is investigated in the right part of Figure 6. In
particular, we alter the mean of the demand distribution
from 0.2 to 1.6 GB/hour. As more demand is generated
for services, the computational resources tend to be kept
busy all the time because the current storage cannot meet
the demand. As a result, cost reduction is not noticeable
for heavy service demand.
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4 DEALING WITH SPOT PRICING UNCER-
TAINTY IN CLOUD

In this section, we extend the resource rental planning
model by including cost uncertainty. Such uncertainty is
introduced by many IaaS providers who offer spot pric-
ing option for idle computational resources. The price
fluctuation of spot resources over time creates time series
data for analysis. Using Amazon’s spot market as a case
of study, we take two routes to attack the resource rental
planning problem with spot pricing uncertainty. First,
we apply time series forecasting to spot price history
crawled from [35]. The prediction results are fed into
our deterministic planning model (hereafter labelled as
predictive planing). Next, we propose an alternative ap-
proach that leverages the price distribution information

(hereafter labelled as stochastic planning). A dynamic
programming algorithm is also presented to solve the
stochastic optimization problem. We compare the two
approaches in the end of this section, and conclude that
the stochastic planning approach saves more cost than
the predictive planning approach.

Before we proceed, a few assumptions need to be
clarified. First, we assume that ASPs will bid truthfully
in the spot resource acquisition process. This assumption
is in line with the assumption made in [20]. With this
assumption, an ASP will not bid strategically. In fact,
whether strategic bidding is helpful to achieve some de-
sired level of resource availability is controversial. On the
one hand, by exploiting prior price history, it is viable to
optimize bidding using probabilistic models for a single
bidder [36]. On the other hand, one should also consider
bidding strategies of other bidders before making deci-
sions. From a game theoretic perspective, intentionally
overbidding or underbidding is not a dominant strategy
(e.g., if every bidder overbids, the spot price increases,
only benefiting the IaaS provider). Second, an out-of-bid
event occurs when an ASP’s bid price is lower than the
spot price. If such an event happens, the ASP needs to
rent the desired number of VMs from the regular on-
demand resource market in order to meet the demand
requirement.

4.1 Predictive Planning in Amazon Spot Market

4.1.1 Background

In this paper, we use Amazon’s spot instance market as a
case of study for price prediction and cost optimization.
Launched on December 2009, Amazon’s spot instance
market offers a new way to purchase EC2 instances in
a discount rate. It allows cloud customers to bid on
unused server capacity and use them as long as the
bid exceeds the current spot price, which is updated
periodically based on supply and demand. Payment in
spot instance auction is uniform, i.e., all winners in the
auction will pay a per-unit price equal to the lowest
winning bid (a.k.a the spot price). While running spot
instances saves huge cost (typically over 60% according
to [37]), it also introduces significant uncertainty for
resource availability. As a result, previous resource rental
planning model based on deterministic resource pricing
does not apply.

If one is able to forecast spot prices with relatively
high accuracy, then these predictions can be used to
instantiate the DRRP model presented in Section 3.3
to obtain a near-optimal solution. However, performing
forecasting is challenging for customers because they
do not possess the global information of supply and
demand as Amazon does. In [14], the authors attempted
to predict customer demand from the view of an IaaS
provider. They proposed a simple auto-regression model
for prediction but no prediction results were reported
due to the lack of realistic demand information. Another
study on the predictability of Amazon’s spot instance
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price was presented in [20]. Their work focused on
achieving availability guarantee with spot instances, and
used a quantile function of the approximate normal dis-
tribution to predict when the autocorrelation of current
and past price is weak. When the autocorrelation is
strong, a simple linear regression prediction model was
adopted. However, we found that such an approxima-
tion is inaccurate in some test cases that cannot be taken
as a generic approach. In this section, we will assess the
predictability of spot instance price based on a statistical
approach (ARIMA), and estimate the prediction errors
using empirical data set.

4.1.2 Methodology

We have collected the historical data (published on [35])
for spot price variation from February 1, 2010 to June 22,
2011. The data source represents spot price variations
for Linux instances in us-east-1 region. The data size
is approximately 100K records. In this paper, we only
briefly describe the methodology we used to evaluate
the predictability of spot pricing. More details can be
found in our prior work [38]

First, we trim out the outliers in the data set and plot
the daily price update frequency for VM of class linux-
c1-medium in Figure 7. Because the derived data set is
unequally spaced with inconsistent sampling intervals,
we further convert the data into equally spaced time
series data with a regular update frequency of 24 times
per day. At the start of each hour, the spot price is set
to be the most recent updated price in the last hour.
If no update appears in the last hour, the spot price is
unchanged.

0 100 200 300 400 500

0
5

10
15

20
25

days

nu
m

be
r 

of
 u

pd
at

es

Fig. 7. Variation of daily spot price update frequency for

VM class linux-c1-medium

We have performed various experiments on this con-
verted data set, each with different time scale of pre-
diction (both short-term and long-term). In Figure 8, we
plot the histogram and density of the selected data. We
also randomly generate the same number of points from
a normal distribution characterized by the three main
measures in quantitative statistics (mean, variance and
standard deviation), and plot the curve in Figure 8 for
comparison. Examination of the Shapiro-Wilk test result
(omitted here) verifies that the pricing data does not fit
the normal distribution.
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Fig. 8. Histogram plot for the selected spot price history

(linux-c1-medium). Black line depicts the density, and
the red line depicts the approximate normal distribution

sampled from the same mean and variance of the series.

In order to identify patterns in the selected series
and perform prediction, we use the ARIMA approach
developed by Box and Jenkins [39], which retains great
flexibility in recognizing data patterns and is relatively
lightweight compared to machine learning techniques
such as artificial neural networks or support vector
machines. The decomposition of the selected series is
presented in Figure 9, where the original time series
is decomposed into three parts: trend, seasonal, and
random noise. We can see that the target series does not
exhibit clear trend, but advertises certain cyclic pattern
as shown in the seasonal decomposition. For that rea-
son, we revise our prediction approach by employing
a Seasonal ARIMA (SARIMA) model which takes the
seasonal component into account. It can be expressed
as SARIMA, (p, d, q) × (P,D,Q)24, which includes the
seasonal parameters for price prediction.

0.
05

7
0.

06
0

0.
06

3

da
ta

−
4e

−
04

2e
−

04

se
as

on
al

0.
05

90
0.

06
00

tr
en

d

−
0.

00
4

0.
00

0
0.

00
4

0 10 20 30 40 50 60

re
m

ai
nd

er

time

Fig. 9. Data decomposition for the selected data series

The next step for identifying the SARIMA model
parameters is to plot the correlograms for autocorrela-
tion function (ACF) and partial autocorrelation function
(PACF), as displayed in Figure 10. Note that the x-axis
is normalized by frequency so that 1.0 corresponds to
lag = 24. From the graphs we can observe that, the
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selected series has certain degree of correlation with its
past at certain lag value, e.g., lag = 3, because these
values exceed the 95% confidence limit. However, such
a correlation is not strong enough since its value is still
far from from 1.0 (perfect correlation).
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Fig. 10. ACF and PACF for the selected series

Finally, the identification of the most appropriate
model parameters is achieved by the forecast package
developed in R [40]. The prediction result for the selected
series is shown in Figure 11. The blue solid points
and the red hollow points represent the predicted and
the actual prices on February 1st, 2011. The black lines
represent spot price variation in the past 48 hours. We
observe that the predicted prices are mostly hanging
over the average price line. While this model returns
the least prediction error compared to other models, its
mean squared prediction error (MSPE) is only slightly
better than the simple prediction using the expected
mean value.

0 10 20 30 40 50 60 70

0.
05

7
0.

05
9

0.
06

1
0.

06
3

hour

sp
ot

 p
ric

e

Fig. 11. Day-ahead prediction for the selected series:

black line shows the past 48-hour price variation, red solid
and blue hollow points represent predict and real prices

respectively, purple dashed line denotes the average
price in the selected data series.

4.2 Stochastic Planning for Spot Pricing Market

4.2.1 Solution Overview

In addition to the predictive planning approach, we
propose an alternative approach that takes the stochastic
nature of the spot pricing into account. We model the
fluctuation of the spot instance rental cost Cp(i, t) as a
stochastic process Cp with state space S. Cp is a collection

of S-valued random variables on a probability space
Ω indexed by the time slot set T , i.e., Cp for class-
i instance is a collection: {Cp(i, t) : t ∈ T }. The true
valuations of the spot prices over the planning horizon

are represented by set: {Ĉp(i, t) : t ∈ T }. The goal of
the stochastic resource rental planning is to optimize
the expected overall cost over the complete state and
probability space. In particular, the objective function (1)
in DRRP can be reformulated as follows:

δexp = ECp
{
∑

t∈T

(C+
f (t) · Φi · αi,t + (Cs(t) + Cio(t))

· βi,t + C−
f (t) ·D(i, t) + Cp(i, t) · χi,t},

(8)

where δexp is the expected total cost. The optimization
model now becomes to minimize (8), subject to con-
straints (2), (3), (4), (5), (6), and (7). We summarize our
solution to stochastic resource planning as follows.

1) Generate bid prices Ĉp(i, t) for the class-i VM at
every t ∈ T , based on the true valuations.

2) Calculate the base probability distribution according
to the pricing history.

3) Derive new probability distributions at all t ∈ T
according to the base distribution and the bid price.

4) Reformulate using a multistage recourse approach,
based on the newly generated distributions.

5) Solve the deterministic equivalent reformulation.

If the bid price is not sufficient, the planner has to wait
until the next auction starts (in this paper we assume
that the auction is held regularly at the start of each
planning period). Due to the possibility of losing the
auction, the actual realizations of spot prices are possibly
different at multiple decision points. Step 1), 2) and 3)
summarize our solution to this challenge. We call our
proposed approach bid-dependent dynamic sampling.
After calculating the distributions, a multistage resource
model is used to optimize the expected total cost.

4.2.2 Bid-Dependent Dynamic Sampling

Let Si be the finite state space for the spot price of a class-
i VM. A base probability distribution is the summarized
discrete probability distribution over a selected historical
price series: Pr(Cp(i, t) = si), si ∈ Si. This distribution
cannot be used in our stochastic optimization model
because it does not include the risk of out-of-bid. There-
fore, we propose to use the following approach to dy-
namically generate the probability distribution at every
decision point t. The values in the finite state space Si is
sorted in the ascending order (no equivalent values are
present in Si). Suppose the fixed on-demand cost is λi.
At each decision point, we keep all the probability dis-
tributions for those prices in the base distribution whose

values are less than the bid prices, i.e., si ≤ Ĉp(i, t). The
rest of the distributions is substituted by the following
probability representing the likelihood of the out-of-bid
event.
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Pr(Cp(i, t) = λi) = 1−
∑

si≤Ĉp(i,t)

Pr(Cp(i, t) = si) (9)

Note that it is impossible to generate the precise
distribution at each decision point because we do not
know the actual realization of the spot price in advance.
Therefore, the dynamically generated distribution based
on the ASP’s bid price is an approximation to the actual
spot price distribution. However, stochastic planning
using this approximated distribution outperforms deter-
ministic planning using fixed cost parameters. We will
illustrate this point as well as the impact of approxima-
tion precision to stochastic planning in the later part of
this section.

4.2.3 Transforming Stochastic Planning Using Multi-

stage Recourse

We formulate the problem of Stochastic Resource Rental
Planning (SRRP) as a stochastic optimization problem,
and build a multistage recourse model to solve this prob-
lem. The multistage recourse model allows the applica-
tion planner to adopt a decision policy that can respond
to random events as they unfold. Initially, decisions are
made given present resources. As time evolves, possible
adjustments (recourse actions) become available to the
application planner. As to SRRP, rental planning deci-
sions at various decision points are recourse variables.

The dynamic stochastic spot prices are represented
in a multistage scenario tree, G = (V , E), presented in
Figure 12. A scenario tree has T + 1 stages. The first
stage represents the current state of the world, and all
subsequent stages correspond to the future time slots
when new information is available to the application
planner. A vertex v in stage t ∈ T stands for the state
of the system that can be distinguished by information
available up to stage t. Each vertex v ∈ V , except the
root vertex (indexed as v = 0), has a unique parent
vertex π(v). The probability associated with the state
represented by vertex v is pv. Let τ(v) denote the time
stage of vertex v in the tree, we have:

∑
τ(v)=t pv = 1.

Each non-leaf vertex v is the root of the subtree: G(v) =
(V ′ ⊆ V , E ′ ⊆ E) containing all descendants of vertex v.
The complete tree is represented by G = G(0).

Let the set of leaf vertices of G(0) be L, and let the
set of vertices on the path from the root to vertex v be
P(v). If v ∈ L, then P(v) represents a scenario of the
problem describing a joint realization of the stochastic
parameters over all stages. Otherwise, P(v) denotes a
partial realization of the problem up to the stage τ(v).
With the notations defined above, a decision variable
Xi,t defined in the deterministic problem is replaced by
a set of scenario-dependent decision variables (recourse
variables) presented below.

Xi,t ⇒ {Xi,v|τ(v) = t}, t ∈ T (10)

t = 0 t = 1 t = 2 t = T

Fig. 12. An example of the multistage scenario tree:

each leaf vertex represents a scenario, and each non-

leaf vertex represents an intermediate state within the
planning horizon. A probability is associated with each

branch that represents the likelihood of state transition.

The multistage scenario tree is perfectly balanced be-
cause each path from root to leaf vertex has the same
length T . However, the numbers of possible states ap-
peared in each stage are not necessarily equal because
of the bid-based dynamic sampling process presented in
Section 4.2.2. Given a scenario tree with a scenario set
S, the ASP wishes to set a policy that makes different
resource rental decisions under different scenarios. For a
scenario Sj ∈ S, decisions made at stage t if encountered
by scenario Sj is a vector:

{αi,v, βi,v, χi,v}, v ∈ Sj (11)

The solution must conform to the flow of available
information (non-anticipativity). It guaranties that deci-
sions do not rely on information that is not yet available.

4.2.4 Deterministic Reformulation of SRRP

Having built the multistage recourse model, we derive
a deterministic equivalent formulation of SRRP. In the
reformulation, the time-dependent decision variables are
eliminated. The new formulation introduces a set of new
variables that are indexed by the vertices presented in
G(0). Each variable indexed by vertex v is associated
with a probability pv. As such, the goal of resource rental
planning is to solve MILP with regard to the scenario
tree. The complete deterministic equivalent formulation
of SRRP is given below:

min
∑

v∈V

pv · (C
+
f (τ(v)) · Φi · αi,v + (Cs(τ(v))+

Cio(τ(v))) · βi,v + C−
f (τ(v)) ·D(i, τ(v))+

Cp(i, τ(v)) · χi,v) (12)
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s.t.

βi,π(v) + αi,v − βi,v = D(i, τ(v)), i ∈ I, v ∈ V (13)

P(i) · αi,v ≤ Q(i, v), i ∈ I, v ∈ V (14)

αi,v ≤ B · χi,v, i ∈ I, v ∈ V (15)

βi,0 = ε, i ∈ I (16)

αi,v, βi,v ∈ R+, i ∈ I, v ∈ V (17)

χi,v ∈ {0, 1}, i ∈ I, v ∈ V (18)

4.2.5 Polynomial-Time Algorithms for Stochastic Pricing
Resource Rental Planning

Since variables at each t ∈ T are associated with a
number of possible realizations, solving SRRP is equiv-
alent to solving a large-scale MILP. There exists a num-
ber of standard techniques to solve this problem, for
example, using Benders decomposition [41]. However,
due to the huge search space for optimization, they are
only suitable for performing short-term resource rental
decisions. For example, we used CPLEX to solve SRRP
for a 6-hour planning horizon on a machine with Intel
Core i5-650 (4M Cache, 3.20GHz) and 4GB memory.
It took a few minutes to generate the solution. When
more scenarios were incorporated, the computational
time became unbearable for practical use.

Fortunately, a number of polynomial algorithms
were proposed to solve the stochastic lot-sizing prob-
lem (SLSP) in manufacturing and operations research.
Among them, the most notable solutions are a branch-
and-cut algorithm developed by Guan et al. [42], a
cubic-time dynamic programming algorithm developed
by Huang and Küçükyavuz [43], and later improved to
quadratic time by Jiang and Guan [44]. All of them are
polynomial-time algorithms with respect to the num-
ber of nodes on the scenario tree. In this section, we
demonstrate a polynomial time algorithm [44] using the
dynamic programming technique to solve the stochastic
pricing resource rental planning problem.

In order to develop a polynomial-time algorithm for
SRRP, we need to take care of a few things. First, the
general formulation of SLSP includes multiple stochastic
variables, e.g., demand, production and inventory cost,
and order lead time. In our case, the service demand is
known, and the order lead time represents the latency
from finishing the boot-up of the computational instance
to running of the application. Therefore, our formula-
tion can be treated as a special instance of SLSP with
deterministic demand and zero lead time. This greatly
simplify the calculation. Second, given a positive initial
storage (constraint 16), we can construct an equivalent
problem without initial inventory by using ε to satisfy
the demands emerged in the 1st, 2nd, ..., and n-th stages
until it is depleted. Finally, note that DRRP is a special
case of SRPP with leaf node number equal to one. A
relaxation of the Wagner-Within property [45], called
the semi-Wagner-Within property, becomes the key to
develop polynomial-time algorithm for SRRP. The semi-
Wagner-Within property is stated as follows.

Proposition 1 (Semi-Wagner-Within Property [43]).
There exists an optimal solution (α′, β′, χ′) of SRRP such
that if α′

i,v > 0 for v ∈ V , then

β′
i,π(v) + α′

i,v = D(i, τ(m)) −D(i, τ(π(v)))

for some m ∈ G(v).

Based on this proposition, we define an optimal valu-
ation function f(v, w) for each node v ∈ V , such that the
total computations completed in nodes from root to v
equal to the service demand from root to w. We use g(v)
to represent the feasible set of w for f(v, w). Before we
establish the backward formula for dynamic program-
ming, we also need to establish a few sets for notational
brevity. In particular, let Γ(v) be the set of v’s child, and
H(v) be the set of nodes whose service demands can
be satisfied by computations conducted in v, and finally,
we define Υ(v) such that Υ(v) = H(v) \ ∪x∈Γ(v)H(x).
Moreover, we use ̺(v) to represent the path from root
to v, and D0,v =

∑
i∈̺(v) Di to represent the cumulative

service demands from the root node to each node in the
scenario tree.

The binary variable, χi,v , gives us two choices for each
v ∈ V . Therefore, If we use f0(v, w) to represent the
valuation function when bid fails, and use f1(v, w) to
represent the case when bid succeeds, we can derive
f(v, w) as follows.

f(v, w) = min{f0(v, w), f1(v, w)}

If bid fails, the value function f0(v, w) includes: (1)
storage and network transfer costs incurred to nodes
in Υ(v) triggered associated with prior computation
activities, and (2) costs for v’s descendants.

f0(v, w) =
∑

k∈Υ(v)

(Cs(τ(k)) + Cio(τ(k)) · (D0,w −D0,k)

+
∑

k∈Γ(v)

f(k, w)

Similarly, when bid succeeds, the value function
f1(v, w) includes three components: (1) computational
costs on node v, (2) storage and network transfer costs
incurred to nodes in Υ(v) associated with prior compu-
tation activities, (3) costs for v’s descendants.

f1(v, w) =Cp(i, τ(v)) + min
i∈H(v):i>w

{C+
f (τ(v)) · Φi

· (D0,j −D0,w) +
∑

k∈Υ(v)

(Cs(τ(k))

+ Cio(τ(k)) · (D0,j −D0,k) +
∑

k∈Γ(v)

f(k, j)}

Given the backward recursion formulation for SRRP,
we briefly demonstrate a dynamic programming algo-
rithm runs in O(N2) time [44].

Initialization Phase
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1) For each node, construct sets Γ(v), H(v) and Υ(v)
following breadth-first order.

2) For each node v, set η(v, j) = 1 if j ∈ H(v), j > w,
and 0 otherwise.

3) Initialize
∑

k∈Γ(v) f(k, j) for each pair of v and j, if
η(v, j) = 1, initialize to 0. Otherwise set to +∞.

4) Initialize
∑

k∈Υ(v)(Cs(τ(k))+Cio(τ(k))·(D0,j−D0,k)
for each pair of v and j similarly to step 3).

Backward Induction Phase

1) For each node w in the scenario tree, calculate and
store f0(v, w). When the calculation is done for every
k ∈ Γ(v), we obtain the result for

∑
k∈Γ(v) f(k, w) for

each w.
2) For each node w in the scenario tree, calculate

and store f1(v, w). Again, this is achieved through
backward induction bottom-up.

3) Calculate and store f(v, w) for every pair of v and
w.

The optimal solution is given by the result of the val-
uation function of the root node. For the computational
effectiveness, readers can also refer to [42] for a detailed
computational experiments that comparing the branch-
and-cut algorithm with the default CPLEX MILP solver.

4.2.6 Evaluation of Stochastic Pricing Resource Rental

Planning

In this section, we perform simulations to evaluate the
solution to SRRP model. The simulation setting is based
on realistic spot pricing history and application-usage
scenario presented in Section 3.5. First, imagine an oracle
who knows all the future realizations of spot prices in
advance, and takes them as inputs to the DRRP model.
We denote the cost generated by this method as the ideal
case cost for fine-grained resource rental planning. We
then compute the overpay percentages against the ideal
case cost for all other approaches. The price distribution
is drawn from the same representative data set described
in Section 4.1.2, paragraph 3. The results are plotted in
Figure 13. Here, we use the prediction values obtained
from the approach described in Section 4.1 as the bid
prices, because they are the best approximation values
we can obtain using statistical analysis of past price
history. The cost derived by solving SRRP using forecast
prices is labelled as “stochastic planning”, and the cost
of solving its DRRP counterpart and the cost of using
on-demand VMs are labelled as “predictive planning”
and “on-demand-deterministic”, respectively. It is not
surprising to see that the deterministic planning scheme
using on-demand virtual instances yields the most over-
pay. In addition, stochastic planning is more cost efficient
than predictive planning for all three VM types. This is
because planning using price distributions is more adap-
tive to the uncertain availability of spot resources than
deterministic planning, and the approximation errors
introduced by bidding are “diluted” by fine-grained sce-
nario division at each decision point. When considering
the price distribution at every decision point, stochastic

planning better hedges against the risk of the unexpected
out-of-bid event compared to rental planning based on
forecasting values in predictive planning. We also mimic
a common bid strategy that ASPs bid a fixed price equal
to the expected mean price of the historical data, and
compare its cost derived by stochastic and predictive
planning. The results shown on Figure 13 demonstrate
that stochastic planning has slightly better advantage in
terms of cost saving. In addition, compared to fixed price
bidding, another advantage of the stochastic planning
approach lies in reliability with regard to probability
information generated by the multistage scenario tree.
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planning

Next, we investigate the impact of bid price approx-
imation precision to the stochastic planning approach
with regard to cost reduction for VM type c1.medium.
This evaluation is necessary because according to Sec-
tion 4.2.1, the solution quality of stochastic planning

is closely related to the true valuation Ĉp(i, t), which
is inaccurate in nature with respect to the actual spot
price. Taking the cost derived by actual realization of
spot price as the baseline cost, we create artificial bid
prices that are +/ − 2% to 10%1 deviated from the
actual price realizations, and measure the cost deviation
from the baseline cost introduced by the approximation
errors. The results converted to percent errors against
the baseline cost are plotted in Figure 14. Clearly, the
errors increase as approximation becomes less accurate.
We use the mean squared prediction error (MSPE) to
measure the approximation errors. The MSPE of our best
approximation achieved falls between that of 2% and
4% deviation of the model. However, the actual percent
error using our approximation is −12% from the baseline
cost. A possible explanation is that our approximations
present a mixture of over- and under-estimations of
the actual price realizations, thus are different from
the pattern of the artificial approximated bid prices we
created in the simulation. In conclusion, if one bids
according to the best approximation result in practice,

1. prices that are more than +/−10% from the actual prices are out
of the actual price range
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the percentage error introduced by approximation is
generally acceptable.
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5 FURTHER DISCUSSION

Both the deterministic and the stochastic models provide
good estimates of how resources shall be utilized over
time for cloud ASPs. However, they come with non-
trivial costs. As presented in Section 4.2.5, solving the
optimization problem represented by the scenario tree
is heavy-weight and takes up tremendous amount of
computing resources. For DRRP, although calculating the
relaxed form at each step can be done in polynomial time
using the Branch-and-Bound technique, the total number
of nodes to be evaluated can become exponential to the
number of integer variables. For SRRP, we described an
O(N2) algorithm where N is the number of nodes on
the scenario tree. Since each decision point branches out
multiple future realizations with certain probabilities, the
number of nodes grow exponentially as time progresses.
In order to make real-time scheduling decisions, it is
critical to offload the computation to a separate schedul-
ing module so as to avoid the interference with the cost
model. In addition, one can parallelize the searching over
the optimization domain using heterogeneous comput-
ing units [46], and employ an approximation algorithm
to speed up the computation [47].

Another interesting issue is to extend SRRP with other
stochastic variables, e.g., the service demand from end
users. In practice, the demand often follows some form
of distribution which can be summarized over time. This
paper presented a simplified model that focused on the
resource access uncertainties in the cloud market. How-
ever, an optimization model with multiple stochastic
variables is more accurate to model realistic scheduling
scenario where the optimal solution is driven by multiple
factors.

6 CONCLUSION

In this paper, we investigated the problem of fine-
grained resource rental planning in a cloud environment,

and developed solutions for both deterministic and
stochastic resource pricing settings. Our optimization
models were based on a thorough rental cost analy-
sis of elastic application deployment in cloud. When
resource pricing is fixed, we observed that the cost
tradeoff between computing and storage emerges in
time-slotted resource provision scheduling. Based on this
observation, we formulated a deterministic optimization
model that effectively minimizes rental cost of VMs
while covering customer demand over certain planning
horizon. In addition, we took one step further to an-
alyze the predictability of spot resource prices using
Amazon’s spot instance price trace, and proposed an
alternative stochastic optimization model that seeks to
minimize the expected resource rental cost given the
presence of spot price uncertainty. Simulations based on
realistic settings clearly demonstrated the advantage of
the stochastic optimization approach over the predictive
approach in rental cost reduction. We also studied the
impact of various parameter settings on the performance
of both models. We believe the proposed fined-grained
approaches offer effective means for resource rental plan-
ning in practice.
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