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Abstract—Traditional systems for monitoring and diagnosing
patients’ health conditions often require either dedicated medical
devices or complicated system deployment, which incurs high
cost. The networking research community has recently taken
a different technical approach of building health-monitoring
systems at relatively low cost based on wireless signals. However,
the RF signals carry various types of noise and have time-
varying properties that often defy the existing methods in more
demanding conditions with other body movements, which makes
it difficult to model and analyze the signals mathematically. In
this paper, we design a novel wireless system using commercial
off-the-shelf RFID readers and tags to provide a general and
effective means of measuring bodily oscillation rates, such as
the hand tremor rate of a patient with Parkinson’s disease.
Our system includes a series of noise-removal steps, targeting
at noise from different sources. More importantly, it introduces
two sliding window-based methods to deal with time-varying
signal properties from channel dynamics and irregular body
movement. The proposed system can measure bodily oscillation
rates of multiple persons simultaneously. Extensive experiments
show that our system can produce accurate measurement results
with errors less than 0.4 oscillations per second when it is applied
to monitor hand tremor, even when the individuals are moving.

I. INTRODUCTION

The proliferation of radio frequency technologies has helped
drive new healthcare products in recent years [1]–[7], as
people become more and more health conscious, asking for
better health and life-style management. The classical hospital-
centered healthcare is shifting from diagnosis and treatment
practice towards preventive care [8]–[11], with more and
more people committing to disease prevention and early risk
detection [12]–[14]. A key in preventive care is continuous
monitoring, outside of clinics and in daily lives, which prefers
non-intrusive and low-cost medical devices. Traditional health-
monitoring systems require either dedicated medical devices or
complicated system deployment [12], [15], [16], which limits
the locations of monitoring and incurs high cost. The network-
ing research community recently takes a different approach of
building health-monitoring systems based on wireless signals
at relatively low cost [4], [7], [17], [18]. Adopting such an
approach, this paper studies how to use RFID tags to accu-
rately measure patients’ hand tremor rates in a relaxed setting
(e.g., at home) where patients can move around. Measuring
the hand tremor rate helps monitor the conditions of a patient
with Parkinson’s Disease (PD) [12], [19]. Together with the
frequency and the pattern of occurrence, the rate measurement
provides physical evidence for progression of the disease or
for effectiveness of ongoing treatment with medicine, therapy
or exercise routines. Continuous monitoring in daily lives is
preferred, particularly because hand tremor happens intermit-
tently. While we use hand tremor as an application example,
our approach can also measure the oscillation rate of other

body part, for example, by attaching a tag to the chest of a
patient’s shirt for respiration rate measurement.

Radio frequency (RF) based technologies for monitoring
human activities [2]–[7] have drawn much attention from the
research community recently, thanks to their low cost and
easy deployment. For example, F. Adib et al. [2] leverage
Frequency Modulated Continuous Wave (FMCW) radar and
Universal Software Radio Peripheral (USRP) to detect the
oscillation of human chest caused by respiration, through
which they obtain the breathing rate of that person. However,
this system is not feasible in practice since it is hard to
deploy and requires specialized devices of high complexity.
Patwari et al. [3] extract the coarse-grained Received Signal
Strength (RSS) from the wireless sensor nodes to estimate
the human respiration rate. This approach requires deployment
of multiple (more than 12) dedicated sensor nodes, which is
cumbersome and resource costly. UbiBreathe [6] estimates the
human respiration rate by measuring the RSS of WiFi signals.
It can produce more accurate measurement results than the
above sensor-based system. However, it requires a user to
lay down and place a mobile device on the chest, which is
much inconvenient; otherwise, if the device is placed by the
side of the person, the accuracy of the measurement results
significantly degrades. The system designed by Liu et al. [4]
provides a device-free solution for tracking vital signs during
sleep. It extracts the fine-grained Channel State Information
(CSI) [20] using WiFi devices to track the breathing rate
and the heart-beat rate of a person in bed. Again, the person
has to stay still in order to avoid introducing disturbance to
WiFi signals. Therefore, the system cannot support continuous
monitoring in day time when the person may move around,
which is a condition assumed in this paper for hand tremor
monitoring as hand tremor can come and go and may happen
at any time. Another limitation is that it can simultaneously
monitor two persons at most. The designs of the above systems
are mostly geared towards measuring respiration rates under
static, restrained settings, not for tremor rates, which are much
faster at multiple ticks per second and are measured under
dynamic settings allowing free movement.

Also related is Tagbeat [21], which is designed to measure
the high-frequency vibration induced by machines (e.g., engine
and centrifuge) or the fundamental frequency of physical
objects (e.g., buildings). Its method based on compressive
sensing assumes that the vibration signals can be mathe-
matically modelled as near-perfect periodic curves with a
small number of stable parameters in the spectrum domain.
This assumption does not hold for human-body oscillations
which, unlike machines, carry significant irregularity both in
oscillations themselves (such as hand tremor) and in other
bodily itself have many time-varying wireless properties from
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both channel dynamics and irregular body movement. Our
experiments will clearly show that the resulting signal curves
cannot be modeled as perfect periodic curves for the methods
in [21] to apply. Additional related work on wearable sensors
[17], [22], [23], electromyography [16], and polysomnography
[15] will be discussed shortly.

To address the limitation of the prior systems, we propose
and build an RFID-based easily deployable wireless system for
measuring hand tremor rate (or other bodily oscillation rate)
in dynamic settings where wireless signals are not perfectly
periodic. RFID technologies have gained popularity in recent
years. Numerous applications have been developed, including
inventory control, supply chain management, product tracking,
and indoor localization [18], [24]–[32]. A typical RFID system
consists of a reader and many tags, forming a simple reader-
tag wireless network. Tags are very cheap and convenient to
deploy, which helps promote their widespread use. With this
advantage, the proposed system is unique with its capability
of accurately measuring hand tremor rates of multiple persons,
even when they are moving around. While this paper focuses
on hand tremor rate, we will show experimentally that our
system can be used to measure other bodily oscillation rate as
well by attaching an RFID tag to body part under measurement
or the immediate clothing to that body part. Because an RFID
reader can easily distinguish the backscatter signals from mul-
tiple tags, our system is able of simultaneously measuring the
oscillation rates of different tags attached to multiple persons
or different places on the same person. Using only commercial
off-the-shelf RFID readers/tags, the system is designed to work
in either hospital/clinic settings where multiple patients can be
monitored simultaneously or home settings where patients may
borrow mobile readers from hospitals to perform continuous
monitoring with the comfort at home. Tags cost as little as
a dime a piece. They can be tossed away after being used,
which is desirable in medical context.

Our system measures the phase values of RF signals in tag-
reader communication and estimates oscillation rate based on
the periods in phase change. An RFID reader can measure two
important properties of the RF signals: RSS values and phase
values. The RSS values of weak RFID signals do not work
well for our purpose due to the following reasons: On the one
hand, oscillation on human body is a small movement, which
produces very small changes in RSS. On the other hand, the
measurement of RSS by a commercial reader is noisy and
coarse, with a resolution of 0.5 dB [33], so that the small
bodily movement will not even affect the reported RSS values.
In contrast, the phase resolution by a commercial reader is
high, reaching 0.0015 rad [33], which translates to a spatial
resolution of 0.04 centimeters. Such a fine spatial resolution
enables us to catch slight oscillations such as hand tremor.

There are several technical challenges in the design of our
system: First, the phase values measured by a reader are not
well-shaped due to environmental noise, device imperfection,
and measurement errors. Second and more importantly, unlike
machine-produced vibrations, human’s bodily oscillation is
time-variant. The irregularity in oscillation makes it difficult
to model precisely or analyze mathematically. Third, for hand
tremor that can come and go and may happen at any time, it is

helpful to support monitoring over a longer period of time in
a relaxed setting where patients can move around. However,
such moving introduces unpredictable changes in the measured
phase values. We develop a series of methods to handle the
above challenges by removing noises from various sources and
by introducing two sliding window-based methods to process
time-varying phase data, from which we reveal the oscillation
pattern and derive the oscillation rate accurately.

We have built a prototype system for performance evalu-
ation, which shows that the proposed system can accurately
estimate hand tremor rate under a variety of settings: when
measuring the hand tremor rate of a single person who sits,
the average error is 0.11 tick per second (tps); when simulta-
neously measuring the hand tremor rates of four persons who
sit, the average error is just 0.14 tps; when simultaneously
measuring the hand tremor rates of four moving persons, the
average error is 0.26 tps.

The rest of this paper is organized as follows. Section II
provides a review of related work. Section III presents the
architecture and an overview of our system. The technical
details are elaborated in Section IV and the experiment setup
is described in Section V. In Section VI, we evaluate the
performance of our system and discuss the experimental
results. Finally, we discuss some limitations of our system
in Section VII and conclude our work in Section VIII.

II. RELATED WORK

Research in patient activity monitoring can be classified
into three categories: dedicated sensor based, smart phone and
wearable device based, and RF signal based.

Traditional methods for activity monitoring use dedicated
sensors. For example, Patel, et al. [12] leverage wearable
sensors to monitor Parkinson’s disease (PD) with the col-
lected data relayed to a remote clinical site via a web-
based application. Albani et al. [16] use Electromyography
(EMG) to study tremor in PD, detect basic body postures,
and study gait in PD patients. Polysomnography (PSG) [15]
attaches multiple sensors to a patient to monitor human health
conditions including respiration rate, heart beat rate, eye move-
ments and muscle activity. This kind of technique requires
specialized devices, which can make people uncomfortable in
use. Besides, additional network infrastructure is needed for
collecting and processing the data.

Recent research exploits embedded functions of smart
phones and wearable devices such as accelerometers and GPS
to monitor patient activities [17], [22], [23]. For example,
Hao et al. [17] use the microphone of a smart phone to
measure sleep quality, with detection of sleep events such as
body movement, couch and snore. But it cannot quantitatively
measure the bodily oscillation rate of human bodies such
as hand tremor rate. PERFORM [23] proposes an intelligent
close-loop system which integrates four wearable sensors to
monitor activities of the PD patients. These sensors are more
costly and less comfortable to wear than RFID tags, which are
small, thin, flexible and easily attachable to body or cloth.

Most related to our work is the RF signal based approach for
human activity monitoring. Some systems use Doppler radars
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[34], ultra-wideband (UWB) radars [35], [36], or frequency
modulated carrier waves (FMCW) radars [5]; others rely
on measurement of received signal strength (RSS) [3], [6],
channel state information (CSI) [4], [7], or phase values
[18], [21]. Specifically, the systems [3], [5], [35], [36] that
require specialized devices such as Doppler radars, UWB
radars or wireless sensors incur high cost, and they require
trained personnel to deploy. While UbiBreathe [6] improves
accuracy over [3] in estimating respiration rate based on RSS
measurements, it achieves its best accuracy with an error
smaller than 1 breath per minute (bpm) when it places a mobile
device on a patient’s chest. Under the device-free mode, it
has an error greater than 1.5 bpm, and this mode imposes
that the patient being monitored has to stay in the line of
sight between a wireless transmitter and a receiver. Liu et al.
[4] propose a system utilizing fine-grained CSI for measuring
a patient’s breathing rate and heart rate. Their method is
device-free but relies on relative positions of the patient and
WiFi devices used. In addition, the system cannot be applied
to more than two persons simultaneously. Wang et al. [7]
propose another WiFi-based breathe monitoring system that
improves over [4], [6]. This system uses WiFi Fresnel Zone to
monitor human respiration. It can accurately measure human
respiration rate under arbitrary body orientation and posture.
It also can only monitor two persons at once. TagBreathe [18]
uses the phase values of RFID tags to monitor respiration
rate and can support multiple users. Like [4], [7], it does
not consider dynamic settings that allow patients to move
around for continuously monitoring in daily-life activities.
The design of the above systems heavily relies on positioning
of devices and patients. Also related is Tagbeat [21], which
measures the rotation period of a centrifuge machine. Its
method is applicable to measuring wind speed, monitoring
centrifugation, and troubleshooting engine [21]. It requires
static and steady conditions where the mechanical vibration
of an object produces near-perfect periodic cures in wireless
signals, which are time-invariant in the spectrum domain. This
is a condition that does not hold for oscillations in human body
such as hand tremor that carries inherent irregularity in both
frequency and magnitude.

III. SYSTEM OVERVIEW

The goal of our system is to measure the bodily oscil-
lation rate, using hand tremor as a study case. The system
deployment is simple: an RFID tag is attached to the hand
(or other body part) under monitoring. An RFID reader is
deployed in the room to continuously measure the phase values
of the wireless signals backscattered from the tag. The patient
is allowed to move within the coverage area of the reader.
Multiple tagged patients can be monitored simultaneously.

The basic idea behind our approach is that when a hand at-
tached with an RFID tag shakes, this oscillation will introduce
a periodic component in the reported phase values. Therefore,
we can analyze the collected phase values and extract this
periodic pattern. Once the oscillation pattern is captured, the
hand tremor rate can be estimated. The challenge is that bodily
oscillations have many time-varying properties, which make it
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Fig. 1: Our system architecture.

much more difficult to handle than the machine-produced near
perfect oscillations that can be precisely modelled mathemat-
ically. We introduce two sliding window-based approaches to
deal with the time-varying properties. The accuracy of our
system is confirmed through experimental studies. Moreover,
since RFID tags will report their unique IDs, we can easily
differentiate the phase values of one person from those of
others using the reported tag IDs. Thus, the solution for
estimating the hand tremor rate of a single human can be
extended to the multi-person case.

Our system in Fig. 1 consists of six modules: Data Col-
lection, Data Classification, Data Calibration, Noise Removal,
Time-varying DC Removal and Time-varying Rate Measure-
ment. All these modules can be implemented on a laptop
connected to an RFID reader. Assume we have n people to be
monitored, each of which is attached with a tag on his hand
(or chest). Our system first collects the phase values of the
tags by an RFID reader. The collected data is then processed
by the Data Classification module, which classifies the data
into different groups based on the reported tag IDs. After
Data Classification, the data of each group will be processed
separately by the Data Calibration module, the Noise Removal
module, the Time-varying DC Removal module, and the
Time-varying Rate Measurement module, which outputs the
oscillation rate. The details of these modules will be elaborated
in Section IV.

IV. SYSTEM DESIGN

In this section, we present the functional details of our
system on how the phase values are processed step by step to
produce an estimated oscillation rate. While we will discuss
the measurement of respiration rate at the end of this section,
most of our presentation concentrates on measuring the hand
tremor rate of any person based on the set of phase samples
from the tag of that person. In the sequel, we use the terms,
“tremor” and “tremble”, exclusively for hands, and the terms,
“static”, “moving”, and “movement”, for other larger bodily
movement such as moving an arm or walking. For example,
when we say “hand tremor rate of one static person”, the
word “static” means that the person does not have any other



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2892000, IEEE Internet of
Things Journal

base location

g

f 

readerd

osicallating direction

R(t)

Fig. 2: Hand tremor model.

bodily movement except that one of his hands trembles. With
“hand tremor rate of one moving person”, we mean that the
person may be waving his arm or walking when one of his
hands trembles. For the cases of measuring hand tremor rates
of multiple persons, we allow the individuals to move as they
wish.

A. Time-varying Properties

Before we elaborate the design of our system, we first
mathematically analyze the time-varying properties of a tag’s
phase values when it is attached to a trembling hand. We begin
by examining the ideal motion in [18] where a tag oscillates
in perfect harmonic motion along the direction of the double
arrow in Fig. 2. The middle point of the double arrow is called
the base location of oscillation. Let d be the distance between
the base location and the reader’s antenna, φ the acute angle
between the line of oscillation and the line from the reader to
the base location, r the rate of oscillation, and g the magnitude
of oscillation.

Consider harmonic motion in which the distance from the
tag to the base location can be modeled as g sin(2πrt). From
the figure, it is easy to see that the tag-reader distance R(t) is

R(t) =
√

(d− g sin(2πrt) cosφ)2 + (g sin(2πrt) sinφ)2,
(1)

which has a period of 1
r . As the tag-reader distance changes

over time, it creates a phase shift in the backscattered signal
received by the reader. Today’s reader can typically produce
around 40 phase samples per second at random times based
on an arbitration protocol that resolves collision when multiple
tags are present [37]. Each sample includes the tag ID, the time
when the sample is taken, and the phase. For an oscillation
characterized by (1), the phase θ(t) can be modeled as

θ(t) = θ0 + 2π
2R(t)

λ
mod 2π (2)

where an offset θ0 is introduced by the hardware, λ is the
wavelength of the RF waves, and the total distance travelled
by the waves from the reader to the tag and back to the reader
is 2R(t).

Clearly, θ(t) is a periodic curve, with a period of 1
r . It

has been shown in [21] that a periodic phase curve can
be approximately recovered from discrete random samples
(produced by the reader) using the method of compressive
sensing. The assumption is that the curve has nearly perfect
periods where the phase repeats the same values in each
period, as is the case of machine-induced vibrations studied in
[21] and also is the case in the ideal model of (1)-(2) above.
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Fig. 3: Phase samples when four people move with their hands
trembling.

However, this paper studies the oscillations produced by
human body, which have time-varying properties that break the
above assumption. For example, consider that a tagged hand
trembles. The oscillation rate r may change over time. The
tremor magnitude g may also change over time. The person
may walk around, and therefore d and φ change over time. In
this situation, θ(t) is no longer a periodic curve in the math-
ematical sense. It can be a complex, non-repeating curve that
shows oscillation but defies the use of compressive sensing and
other methods that assume mathematically periodic curves. To
reflect the time-varying properties, the model of (1)-(2) has to
be rewritten as

R(t) =
√

(d(t)− g(t) sin(2πr(t)t) cosφ(t))2

+(g(t) sin(2πr(t)t) sinφ(t))2

θ(t) = θ0 + 2π
2R(t)

λ
+ ε mod 2π

(3)

where ε is an error caused by environmental noise. Such
a model is hard to analyze using the traditional methods.
Therefore, new ways must be invented to find the oscillation
rate not based on model analysis but based directly on the
time-varying phase samples. Before explaining the details of
our approaches, we first describe how we collect data from
users.

B. Data Collection and Classification

Suppose we have n users, each of which is attached with
an RFID tag to a finger and each tag has a unique ID. The
reader continuously interrogates the tags, which respond by
backscattering the RF signals from the reader. The reader
performs a collision-resolving arbitration protocol [37] that
allows it to communicate with the tags in turn, collecting
the individual tag IDs and the associated physical-layer signal
properties such as phase shift and received signal strength.

Fig. 3 shows an example of the collected phase values from
four moving people when their hands (tags) are trembling.
In this figure, each point represents a phase sample we have
collected. Since the four tags’ phase values are randomly
sampled and mixed together in the data, we cannot observe any
periodic pattern. Fortunately, the phase samples are collected
together with tag IDs, which allows us to easily separate the
data into four groups, one for each tag. We can then process
each group of data at a time to obtain the hand tremor rate of
one person. In the following, we will focus on the data from
one person.
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(a) phase samples when a person stays still without hand
tremor.
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(b) phase samples when a person has one hand trembling.
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(c) phase samples after data calibration.

Fig. 4: Phase samples produced by a reader for a tagged
person.

C. Data Calibration and Noise Removal

Consider the set of phase samples produced by an RFID
reader for a specific tag. These samples are inherently noisy
due to environment interference and product properties [33].
Fig. 4a shows the phase samples recorded by the reader from
one tagged person whose hand stays still; refer to Section V for
details of the testbed. Note that we connect the adjacent phase
values in the figure to show a phase curve with spikes whose
tips are where the phase samples locate. The phase curve stays
largely a constant with small random noise fluctuations.

Fig. 4b shows the phase samples when the person emulates
hand tremor by shaking one hand while sitting by a desk
without other bodily movement. The curve in the figure is
noisy. The time-varying noise is caused by various factors,
including device properties and fluctuations in the distance
between the reader and the base location of the tag, in the
oscillation rate, and in the oscillation magnitude. Simply
applying a low pass filter will not work well. Although it
can remove high-frequency noise (such as white noise from
the environment), as we will show, much of the noise in our
measurement is not of high frequency, which makes the low
pass filter ineffective.
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Fig. 5: Phase values from a single static person after spikes
are removed.

Our first observation is that, when the tag moves to a
location where the true phase value is close to a multiple of
2π’s, as the noise pushes it back and forth around this multiple,
the modulo operation in (2) may cause 2π jumps up or down
in the reported phase samples.

Such large errors are evident in Fig. 4b between 8 sec to
10 sec. To calibrate the phase samples, we enforce continuity
in phase changes. If there is a sudden change of about 2π
between two consecutive phase values, we know that it is
caused by the modulo operation. In this case, we need to
remove the sudden 2π change to ensure the continuity between
the two phase values. After data calibration, the phase curve
becomes Fig. 4c.

Second, not all noise in the phase curve is caused by
modulo operation. Tags are very cheap hardware, and there is
device imperfection [33], with isolated π shift in some reported
phase values, as we have observed in our experiments using
different tags. For example, in Fig. 4c, as the basic shape of
the phase curve fluctuates between 0 and π, there are spikes of
magnitude π into the range of [π, 2π). In this experiment, the
operating frequency is 920 MHz, which means a wavelength of
about 32.6 cm. The sampling rate for phase values is around 40
samples per second. The magnitude of hand tremor is smaller
than half of a wavelength, which means it is not possible
for two consecutive phase-value samples to be apart by π.
Therefore, as another noise removal operation, whenever we
see a phase jump of more than π between two consecutive
phase values, we will reduce the second value by π. After
noise removal, the phase curve becomes Fig. 5.

Third, after removing the noise caused by modulo operation
and device imperfection, we observe that there is still unde-
sired noise in the data. The remaining noise comes from the
environmental interference and can degrade the performance
of our method for measuring the oscillation rate based on the
number of peaks (or valleys) in the phase curve. As we zoom
in to see the details in Fig. 5, there are some small unexpected
peaks (called false peaks) in the curve that will interfere with
our measurement.

Thus we adapt a wavelet based denoising algorithm [38] in
our context to remove noise in the phase curve. Traditional
methods that use a low (or band) pass filter with cut-off
frequency cannot effectively deal with this problem, because
the noise may be in the band of the signals, for example, when
it is created due to the tagged person’s other movement (such
as waving arms).
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The wavelet transform was originally introduced to over-
come the limitation of Fourier Transform for time-frequency
analysis of signals. We decompose the oscillation phase θ(t)
using discrete wavelet transform (DWT) as

θ(t) =
∑
k

A(l0, k)φl0,k(t) +
∑
l=l0

∑
k

D(l, k)ψl,k(t), (4)

where l0 is the initial resolution, φl0,k(t) is the discrete scaling
function, and ψl,k(t) is the discrete wavelet function, with the
two functions orthogonal to each other. A(l0, k) and D(l, k)
are the approximation and detail coefficients at each level,
which are filtered in the denoising process. These coefficients
are defined as

A(l, k) = 〈θ(t), φl,k(t)〉

= 2−l/2
∫ −∞

+∞
θ(t)φl,k(2−lt− k)dt,

(5)

D(l, k) = 〈θ(t), ψl,k(t)〉

= 2−l/2
∫ −∞

+∞
θ(t)ψl,k(2−lt− k)dt,

(6)

After decomposing the phase curve, we set a threshold λM
for the noise level and remove the noisy coefficients from
the original curve θ(t). In this paper, we choose the Minimax
threshold algorithm [39] for threshold selection. The Minimax
threshold algorithm is an optimization problem in which an
optimal threshold is selected to minimize the maximum mean
square error and obtain the worst risk function against an ideal
process. The optimal threshold we want is defined as

λM = σλ∗n, (7)

where λ∗n refers to the value of λ, which is obtained by
optimizing the object function as follows

Λ∗n := inf
λ

sup
d

Rλ(d)

n−1 +Rideal(d)
(8)

where d is one of the total n coefficients we obtain through
DWT and the risk is calculated as Rλ(d) = E(δλ(d) − d)2.
Rideal is the ideal risk, which states whether or not to keep
an empirical wavelet coefficient and is given by

Rideal(d) := min(d2, 1), (9)

Finally, we choose the approximation and detail coefficients
based on the threshold λM and use them to reconstruct the
signal without noise. We denote the set of phase samples after
the above noise removal as Θ∗.

D. Time-varying DC Removal

There exists a time-varying Direct Current (DC) component
in the curve, which is partially resulted from the instability of
hand when it trembles: Suppose trembling is a cyclic motion
around the base location of a hand. Even for a static person
without large bodily movement of walking or arm waving,
the base location of the hand may still shift slightly over
time. If the person actually moves around, the time-varying
DC component will be more significant. Fig. 6a shows the
phase samples measured in an experiment where a person
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(a) phase samples when a person moves without hand tremor.
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(b) phase samples when a person moves with one hand
trembling.
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(c) phase samples after noise is removed.
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(d) phase samples after time-varying DC is removed.

Fig. 6: Sliding window-based approach for removal of time-
varying DC.

walks at a speed around 0.3 m/s with a tag attached to
his hand. As the person moves without his hand trembling,
the phase value changes steadily, in addition to small high-
frequency fluctuations due to environmental noise. When the
curve reaches 2π, it will drop to zero due to the modulo
operation. Fig.6b shows the phase samples taken when the
person walks at a speed around 0.3 m/s, with his hand
trembling. The phase shift is caused by a combination of hand
tremor and the person’s moving. In addition, at the boundary
of 2π or zero, instability in phase measurement due to hand
tremor may cause 2π swings in the module operation, which
is evident between 1.5 to 2 seconds in the plot. Fig. 6c shows
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the phase values after data calibration (spike removal) and
noise removal. Comparing this plot with Fig. 4b, we can see
that a person’s movement introduces a much greater, time-
varying DC component in the phase curve. More significantly,
alongside the DC component, there are false peaks (between
2 to 4 seconds) that are not eliminated by the noise removal
module, possibly because this noise’s frequency is too close
to the rate under measurement. Fortunately, we find that by
removing the time-vary DC component, we can also remove
this noise.

We model the phase sample θ(t) ∈ Θ∗ after noise removal
as

θ(t) = a+M(t) + θ̂(t), (10)

where a is a constant DC component which is dependent on
the initial distance between the tag and the reader’s antenna,
as well as hardware properties, M(t) is a time-varying DC
component due to the shift of the hand’s base location, and
θ̂(t) is the oscillating component caused by the hand trembling
around the base location. We want to approximately remove
a+M(t) from the samples θ(t) to find the values of θ̂(t). If
trembling is steady as a harmonic motion, θ̂(t) can be modeled
by (3). But in real life, a hand may tremble with time-varying
magnitude and rate.

A naive approach of removing DC is to subtract θ(t) by
the global mean of the phase samples. However, this approach
does not work well since it will only transpose the phase curve
along the vertical axis. We propose a sliding window-based
approach that computes a local mean within a sliding window
for DC removal. The local mean l(t) at time t within window
[t− W

2 , t+ W
2 ) is defined as

l(t) =
1

W

∫ t+ W
2

t−W
2

θ(t′)dt′

=
1

W

∫ t+ W
2

t−W
2

[a+M(t′) + θ̂(t′)]dt′,

(11)

where W is the size of the window. Within a small time
window, we assume M(t′) is approximately a linear function
and θ(t′) is approximately a periodic function. For example,
consider a patient walks around indoor with a hand trembling.
Within a time frame of a few seconds, the patient is likely to
be moving along a line. Even though the patient will make
turns, as long as the assumption is roughly satisfied for most
such time windows, our approach will work well overall. With
the above approximations, we have

l(t) ≈ a+M(t) +
1

W

∫ t+ W
2

t−W
2

θ̂(t′)dt′, (12)

Note that M(t) is the mean of M(t′) in the window t′ ∈
[t − W

2 , t + W
2 ). By definition, θ̂(t′) is the oscillating curve

after the DC component is removed. Hence, its integral over
each period is zero. When W is much larger than the period
length, the value of 1

W

∫ t+ W
2

t−W
2

θ̂(t′)dt′ becomes insignificant

when comparing with the magnitude of the θ̂(t′) curve. Hence,
we have

l(t) ≈ a+M(t), (13)

which is exactly what we want to remove as the time-varying
DC component. We can approximately compute the value of
l(t) — thus the value of a+M(t) — from (11) based on the
phase samples taken in the time window [t− W

2 , t+ W
2 ). Let

S(t) ⊂ Θ∗ be the subset of phase samples in this window.
For each sample θ(t′) taken at a specific time t′, let ∆(t′)
be the time interval from this sample to the next sample.
We approximate the integral in (11) with discrete samples as
follows:

l(t) =
1

W

∑
θ(t′)∈S(t)

θ(t′)×∆(t′), (14)

where S(t) and ∆(t′), ∀θ(t′) ∈ S(t), can be easily found from
the full set Θ∗ of phase samples.

The exact value of W should be determined based on the
application context. It should be small enough such that M(t)
is likely to be linear within a time window, and it should
be significantly larger than the oscillation period. To measure
the hand trembling rate of a patient indoor, a few seconds
should be appropriate. After the local mean l(t) is computed,
we subtract it from θ(t) as follows

ˆθ(t) = θ(t)− l(t), ∀θ(t) ∈ Θ∗. (15)

The set of resulting phase values is denoted as Θ̂. For
mathematical rigor, we point out that additional phase samples
should be taken during a period of max{W,Ŵ}

2 preceding the
first sample in Θ∗ and a period of the same length after the
last sample in Θ∗, where Ŵ is the width of another sliding
window introduced later.

By applying a sliding window step by step over the whole
curve, we are able to remove the time-varying DC, as shown
in Fig. 6d, which characterizes the phase shift due to hand
tremor alone.

E. Time-varying Oscillation Rate

Unlike a machine that can produce a perfectly periodic
phase curve, the oscillation from a human body (such as hand
tremor) may be time-varying. Not only may the magnitude
be time-varying, but the oscillation rate (or equivalently the
tremor period) can also change over time. Moreover, the
phase curve produced by connecting the samples in Θ̂ is
a distorted representation of the oscillation movement. The
shape of the curve is dependent on the time instances when
the phase samples are taken, which are random according to
the operation of an RFID reader.

To compute time-varying oscillation rate, we again resort to
a sliding window-based approach. We compute the oscillation
rate r(t) at time t from the phase samples in the time window
[t − Ŵ

2 , t + Ŵ
2 ), where Ŵ is the window size, which is

application-dependent. For example, when measuring hand
tremor, a period of a few seconds should be appropriate as
the rate is likely to remain similar in such a short period of
time. We first identify the peaks (or valleys) within the window
on the phase curve. We then use the peak-to-peak distances to
estimate the tremor period and compute the oscillation rate.

Let Ŝ(t) be the subset of phase samples from Θ̂ in the
window of [t− Ŵ

2 , t+
Ŵ
2 ). A simple algorithm for identifying
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peaks is to compare each phase sample in Ŝ(t) with its
preceding sample and its successive sample.1 If the phase
sample is greater than both its predecessor and successor, we
treat it as a peak. In Section IV-C, we use the DWT method to
remove the false peaks caused by the environmental noise. It
can indeed remove the majority, but not all, of the false peaks,
as we observe in our experiments. Below we will temporarily
leave this problem and come back to address it shortly.

After we identify all the peaks on the window, we obtain
an estimation p(t) of the tremor period using the least-
squares method. We denote the peak-to-peak intervals as
{v1, v2, ..., vi, ..., vm}. The least-squares estimation is given
as

argmin
p(t)

m∑
i=1

(p(t)− vi)2. (16)

The oscillation rate r(t) at time t, as estimated within the
window of [t− Ŵ

2 , t+ Ŵ
2 ), is

r(t) =
1

p(t)
. (17)

We now go back to address the problem of remaining false
peaks. Our observation is that the inter-peak interval is expect-
ed to be around p. If two peaks are too close to each other
and their inter-peak interval is below a threshold, e.g., half
of p(t) in our experiments, we remove the peak with smaller
magnitude of the two. If two peaks are too far away from
each other and their inter-peak interval is above a threshold,
e.g., twice of p(t) in our experiments, we add another peak in
the middle with the average magnitude of the two. After all
such peak removal and addition, we compute (16) again for
a new estimation of p(t) and a new oscillation rate r(t). The
above process repeats until there is no further peak removal
or addition.

The average oscillation rate over the whole measurement
period, denoted as r̂, is defined as follows:

r̂ =
1

(tn − t1)

∫ tn

t1

r(t)dt, (18)

where t1 is the starting time of the measurement and tn is the
ending time of the measurement. We only have discrete phase
samples. Suppose there are n samples in Θ̂. We approximately
compute r̂ as

r̂ =

∑
θ̂(t)∈Θ̂ r(t)×∆(t)∑

θ̂(t)∈Θ̂ ∆(t)
, (19)

where ∆(t) is the time interval from sample θ̂(t) to the next
sample.

A similar procedure for period and rate estimations can be
easily derived based on valleys.

F. Respiration Rate

Respiration rate is another important measurement of human
health conditions. As mentioned earlier, the measurement

1Note that even though the phase curve is shown in our figures as a
continuous line, it is in fact constructed by connecting the sequence of sampled
phases.
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(a) phase samples when a person breathes.
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(c) phase samples after noise removal.

Fig. 7: Phase samples produced by a reader when a person
breathes.

scope of our system is not limited to hand tremor only. While
the oscillation of human hands can be captured by the phase
values of RFID tags, the oscillation of human chest, resulted
from the action of breathing, can also be measured with the
help of a tag. In this section, we leverage our system for
estimating the respiration rate. To measure the respiration
rate of a person, we attach a tag to the chest of the person.
The reported phase values of the tag can reflect the person’s
chest movement, including the breathing rate. Again, the phase
data suffers from noises caused by the RFID tags/reader and
environment interference.

1) Respiration Rate of Static Person: We first measure
the respiration rate of one static person. Fig. 7a shows the
phase samples when a person breathes without any other
bodily movement. The curve appears noisier than the tremor
curve since the amplitude of breath is much smaller than
hand tremor.We adopt similar data processing techniques as
in Section IV-C to remove the noise. To extract the oscillation
pattern of human breathing, we perform extra analysis on
the curve in frequency domain using Fast Fourier Transform
(FFT). Fig. 7b shows the spectrum of the breathing curve in
frequency domain and we can see there exists a frequency that
dominates the phase curve. We then apply an FFT-based low
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(a) phase samples when a walking person breathes.
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(b) phase samples after noise removal.

Fig. 8: Phase samples produced by a reader when a walking
person breathes.

pass filter to filter out high frequency components and apply
an inverse FFT to the remaining coefficients to reconstruct the
breathing signal. Fig. 7c shows the extracted breathing signal
from the collected phase curve and a clear periodic pattern is
extracted for period identification. Finally, we adopt the data
processing techniques in Section IV-E for period identification.
For multi-person cases, we attach a tag to each person, use the
reported tag IDs to separate the phase values from different
tags, and then process the phase values collected from each
tag (person) separately to estimate the respiration rate of each
person.

2) Respiration Rate of Moving Person: We then measure
the respiration rate of a moving person. Fig. 8a shows the
phase samples of breathing when a person walks at a speed
of 0.1 m/s. Fig. 8a shows some periodic patterns, but they are
caused by the module operation instead of respiration. Fig. 8b
shows the phases samples after noise is removed. Compared
to hand tremor, the oscillation introduced by respiration has
smaller rate and magnitude, and its time-varying DC may
dominate phase changes introduced by respiration, which can
seriously degrade the measurement accuracy. For example, our
experimental evaluation will show that the average measure-
ment error is just 0.19 bpm (breath per minute) for a static
patient, while the average error becomes 1.56 bpm when the
patient walks (has other bodily movement) at a low speed of
0.1 m/s, which is still useable, considering that the normal
breathing rate is in the range of 12-24 bpm and that abnormal
health conditions monitored based on respiration rate are likely
to cause deviation far greater than 1.56 bpm from the normal.
However, we observe that the measurement error will increase
drastically as we further increase the moving speed beyond 0.1
m/s.

Although our system does not support respiration measure-

walking speed (m/s) std
0 0.13

0.1 3.27
0.3 8.49
0.5 13.15

TABLE I: Standard deviation of phase samples after noise/DC
removal under different walking speeds.

ment in fast moving cases, it remains useful in practice. First,
although 0.1m/s movement is restrictive, it is still welcome
because a patient does not have to be pinned to bed now,
but instead can sit in a chair with normal body movements
allowed, or even walk slowly. Second, as is explained above,
an error of 1.56 bpm can be acceptable in health monitoring
applications where deviation in respiration rate under abnormal
conditions is expected to be much larger, for example, in short
breath caused by heart or lung conditions. Third, we introduce
a movement detection module for respiration measurement,
which is able to detect the three cases below.

• Case 1: the patient is static. Our measurement is very
accurate with a very small, negligible error.

• Case 2: the patient moves slowly (e.g., 0.1m/s or lower).
The average error is up to 1.56 bpm at 0.1 m/s measured
from our experiments in Section VI.

• Case 3: the patient moves at a faster speed (e.g., higher
than 0.1m/s). The average error grows rapidly with the
moving speed.

With the movement detection module, we know which case
each measurement falls into. If the module indicates that a
measurement is Case 1, we know that it is accurate. If the
module indicates that a measurement is Case 2, we know that
the error is much larger (up to 1.56 average) but still useable in
certain applications. If it indicates that a measurement is Case
3, we know that the error may be too large for the measurement
to be used.

Given that movements such as walking can introduce a large
variance into the oscillation signal as we can observe in Fig.
7c and 8b, our movement detection module uses the standard
deviation among the set of collected phase samples (after noise
removal) to help determine which of the above three cases a
person’s movement belongs to. The idea is that the faster a
patient moves, the more the noise will remain in the phase
curve after noise/DC removal, which means a larger standard
deviation. That is indeed what we observe in our experiments
as shown in Table I, where the measured standard deviation
for Case 1 is 0.13 when the patient does not move, that for
Case 2 is 3.27 when the patient moves at an average speed of
0.1m/s, and it increases steadily for Case 3 when the moving
speed is beyond 0.1m/s. Thanks to the large gap between these
values, in our experimental evaluation (which will be reported
in Section VI), we set two thresholds, 0.5 and 4, to empirically
separate the three cases. If the standard deviation is smaller
than 0.5, we classify it as Case 1, which always results in
very accurate rate measurement. If the standard deviation is
between 0.5 and 4, we classify it as Case 2, which results in
an average error of up to 1.56 bpm in our experiments. If the
standard deviation is larger than 4, we classify it as Case 3. The
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(a) reader and antenna (b) RFID tag

Fig. 9: Experiment setup.

actual thresholds in practice should be set based on application
requirements. For example, if a monitoring application can
tolerate an error of 5 bpm, one can certainly move up the
threshold to allow more movement, which will be application-
specific.

V. IMPLEMENTATION

We have implemented a prototype of our system as shown
in Fig. 9. The system setup is given as follows.
RFID Reader: We use one commercial ImpinJ Speedway R420
reader [33] without any modifications on hardware or software.
The reader is a Chinese version and operates in a fixed
frequency within a range 920 ∼ 925 MHz, as specified by the
EPC C1G2 standard [37]. It provides four RP-TNC ports and
thus can support up to four antennas. A GPIO Adapter [33] can
be exploited to extend the number of connected antennas to 32,
which significantly expands the coverage area of the reader. In
our experiments, we set the reader in Max Throughtput mode
and use one Laird S9028PCLJ circular polarized antenna [40]
as shown in Fig. 9a, which is sufficient to cover our office
area where the experiments are performed.
RFID Tags: We adopt widely-used Alien Squiggle UHF RFID
tags [41] whose dimensions are 1.752′′×0.409′′. They have an
operation range up to 11 meters. Those passive tags harvest
energy from the RF signals emitted from the antenna. A tag
is attached to the proper place on a human body to measure
the oscillation rate of that part. Fig. 9b shows a tag attached
to a finger.
Computer: We use a Dell XPS8500 desktop with Intel Core
i7 CPU of 3.4 GHz to collect phase values from the reader
and all collected data are processed in Matlab.

VI. EVALUATION

We conduct experiments to evaluate the performance of our
system. The experiments are carried out in an office with a
dimension of 166×102 feet2. The office environment contains
furniture including desks, chairs, paper boxes, desktop and
small appliances. We invite four volunteers to emulate hand
tremor in our experiments. The volunteers tremble their hands
at different rates in the range of 2 tps to 6 tps, which covers
the typical tremor rate (4 ∼ 6 tps) of a PD patient [42].

number of people average error standard deviation
2 0.129 0.103
3 0.127 0.105
4 0.142 0.116

TABLE II: Measurement accuracy of hand tremor rates (in
tps) of multiple static persons

Each volunteer attaches one tag to one of his/her fingers for
hand tremor rate measurement. Experiments are performed
under different static/moving settings with a varying number
of participants. Each experiment is repeated for 80 times to
produce average results. The true oscillation rates are counted
visually by recording the oscillation processing in videos.
The estimated rates are compared with the true rates for
error measurement. No previous health-monitoring systems are
designed for measuring the hand tremor rate using RF signals.

To demonstrate that our system can be applied to other types
of body oscillations, we use it to measure respiration rate by
attaching a tag to the chest of each participant. We compare the
performance of our system with UbiBreathe [6], CSI [34] and
TagBreathe [18], which are designed for static setting where
the participants do not move around.

A. Hand Tremor Rate Measurement

1) Hand Tremor Rate of One Static Person: Our first set of
experiments use our system to measure the hand tremor rate
of a single person who sits still in the office. The measurement
results are given in Fig 10.

Fig. 10a compares the measured tremor rate and the true
tremor rate. Each point in the plot represents one experimental
measurement, where the x coordinate is the true tremor rate
and the y coordinate is the measured tremor rate. The equality
line, y = x, is presented for reference: A point closer to the
equality line is more accurate. We can see that most points
are clustered around the equality line, demonstrating a good
measurement accuracy of our system. Fig. 10b depicts the
standard deviation of the measurement results when the hand
tremor rate varies from 2 to 6 tps. All the points in Fig.
10a are placed in four bins, [2, 3), ..., [5, 6]. We compute the
average bias in each bin, which is represented by the distance
between the center bar in each bin and the equality line. The
distance between the top (bottom) bar and the center bar is the
standard deviation. Overall, the average measurement error our
system is about 0.11 tps, which is accurate enough for most
practical applications. Fig. 10c shows the cumulative density
function (CDF) of the measurement error of hand tremor rate.
For example, the 90 percentile of the measurement error is
less than 0.3 tps. In conclusion, our system can yield very
accurate measurement results of hand tremor rate for a single
static person.

2) Hand Tremor Rate of One Moving Person: The second
set of experiments use our system to measure the hand tremor
rate when the person under monitoring is moving around in
the office. We let our volunteer walk straight towards the
antenna at a speed around 0.3 m/s with his hand trembling. Fig.
11a presents the experimental results of measuring the hand
tremor rate of a moving person. Again, most points cluster
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Fig. 10: Measurement accuracy of hand tremor rate of a single static person.
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Fig. 11: Measurement accuracy of hand tremor rate of a single moving person.

number of people average error standard deviation
2 0.208 0.322
3 0.232 0.374
4 0.259 0.420

TABLE III: Measurement accuracy of hand tremor rates (in
tps) of multiple moving persons

close to the equality line, demonstrating good performance.
The measurement accuracy in terms of mean and standard
deviation is presented in Fig. 11b. The average measurement
error is 0.21 tps, which is slightly larger than that of the
static-person case in Section VI-A1. Besides, the CDF of
the estimation error is presented in Fig. 11c, where the 90
percentile of the error is less than 0.4 tps. These results
demonstrate that the proposed system can accurately measure
the hand tremor rate under the more challenging scenario
where the person is moving.

3) Hand Tremor Rates of Multiple Static Persons: The third
set of experiments use our system to measure the hand tremor
rates of multiple static persons. We conduct experiments with
2, 3, and 4 volunteers, respectively, each with a tag attached
to a finger.

Table II presents the mean errors and the standard devi-
ations. In the second column, the mean measurement errors
are 0.129, 0.127 and 0.142 tps for two, three and four
persons, respectively. It shows that the mean error is not
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Fig. 12: Error CDF for the measured hand-tremor rates of
multiple static persons

very sensitive to the number of persons under monitoring.
In the third column, the standard deviations are 0.103, 0.105
and 0.116, respectively; they are not very sensitive to the
number of persons, either. The reason is that the collision-
resolving arbitration protocol allows the reader to interrogate
each tag individually and record its phase values based on its
ID. Consequently, our system can measure the oscillation rate
on each tag without interference. Fig. 12 presents the CDF
of the measurement error. For example, the 90 percentile of
measurement error is less than 0.3 tps when four people are
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Fig. 13: Error CDF for the measured hand-tremor rates of
multiple moving persons
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Fig. 14: Mean error comparison on different distances between
the tag and the antenna.

monitored simultaneously.
4) Hand Tremor Rates of Multiple Moving Persons: The

fourth set of experiments evaluate the performance of our
system for measuring hand tremor rates of 2, 3, or 4 moving
persons simultaneously. We let our volunteers walk straight
towards the antenna at a speed around 0.1 m/s. The results
are shown in Table III, where the mean measurement errors
are 0.208, 0.232 and 0.259 tps (in the second column) for 2,
3 and 4 persons, respectively. They are only slightly larger
than the results in Table II for the static case. The standard
deviations of the error are presented in the third column; they
are all small. Fig. 13 shows the CDF of the measurement error.
The 90 percentile of measurement error is about 0.4 tps when
four people are monitored simultaneously.

5) Impact of Distance on One Static Person’s Hand Tremor
Rate: The fifth set of experiments use our system to evaluate
the impact of distances between the tag and the reader’s
antenna. In our experiments, we let the target person sit still
in the office trembling his hand and vary the distance between
the hand(tag) and the antenna from 0.1 m to 2 m.

Fig. 14 presents mean errors of measuring a single person’s
hand tremor rate with different relative distances between the
hand and the reader’s antenna. The mean measurement error is
the lowest (0.114) when the distance is 0.1 m. As the distance
increases, the mean measurement error slightly increases since
the system will suffer more environmental interferences. But it
still maintains a low level, smaller than 0.2 tps, which proves

walking Speed (m/s) average error standard deviation
0.1 0.160 0.138
0.3 0.211 0.186
0.5 0.373 0.324

TABLE IV: Measurement accuracy of hand tremor rates (in
tps) with different walking speed.
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Fig. 15: Mean error comparison on the measured respiration
rate of a single static person.

that our system can work scalably under different settings.
6) Impact of Walking Speed on One Person’s Hand Tremor

Rate: The sixth set of experiments use our system to evaluate
the impact of the person’s walking speed. In our experiments,
we let the target person walk in a speed of 0.1, 0.3 and 0.5 m/s
respectively, towards the antenna with his/her hand trembling.

Table IV presents mean errors and standard deviations of
measuring a single person’s hand tremor rate with different
walking speed. The mean measurement error is the lowest
(0.16) when the person walks slowly at a speed of 0.1
meter per second. As the walking speed increases, the mean
measurement error increases but still remains in an acceptable
range. The increase of measurement error is expected since
the performance of our time-varying DC removal algorithm
degrades as the moving speed increases.

B. Respiration Rate Measurement

Finally, we evaluate the performance of our system in
measuring another type of oscillation rate — chest oscillation
rate caused by respiration. We compare the performance of
our system with UbiBreathe [6], CSI [34] and TagBreathe [18],
which are designed specifically for this task. Some of the prior
works require restrictive settings and cannot measure multiple
persons simultaneously.

1) One Static Person Scenario: We first measure the respi-
ration rate of one person with a tag attached on his/her chest.
The collected samples are also used to calculate ind and to
test the false positive ratio of our movement detection module.
Fig. 15 compares the measurement results of different systems
when the person breaths at different rates. We observe that
all four systems have comparable performance in measuring
respiration rates. For example, when the person breathes at a
rate of 18 bpm, the mean measurement errors of our system,
TagBreathe, CSI and UbiBreathe are 0.19, 0.2, 0.2, and 0.25
bpm, respectively. Besides, the false positive ratio of our
movement detection module is 0. As we can see, our system
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Fig. 17: Mean error comparison on the respiration rates of two
persons measured simultaneously

achieves a comparable performance with the other systems,
which demonstrates that the design our system is generic in
measuring bodily oscillations.

2) One Moving Person Scenario: We then measure the
respiration rate of one moving person with a tag attached on
his/her chest. We let our volunteer walk at a speed of around
0.1 m/s. Similarly, we also use the collected samples to test
the false negative ratio of our movement detection module,
with the two thresholds that separate the three moving cases
as described in Section IV.F.2 being 0.5 and 4. Recall that the
detection module classify a measurement to be Case 1 (static
person) when the standard deviation in phase samples after
noise/DC removal is less than 0.5, Case 2 (slow movement
at 0.1m/s for example) when it is between 0.5 and 4, or
Case 3 (faster movement) when it is greater than 4. Fig. 16
shows the measurement CDF of our measurement result. The
average measurement error is 1.56 bpm, which is 8 times when
compared with static scenarios and the false positive ratio of
the movement detection module is 0. As we have explained
earlier, although the error is much larger than that in static
scenarios, we believe it is still useful in health-monitoring
applications that can tolerate such an error, considering the
normal breathing rate is much larger at 12-24 bpm. The benefit
that comes with the error is the improved comfort that a patient
can now enjoy, with no need to be pinned to a bed. When
the moving speed is 0.2 m/s and higher, the errors in our
experiments increase rapidly to be useable in practice.

3) Multiple Static Persons Scenario: The last set of ex-
periments use our system to measure the respiration rates of
multiple persons. Since UniBreathe and CSI are only able to
concurrently measure up to two persons, we only evaluate the
two-person case and the result is shown in Fig. 17, where
the mean errors of these four systems are 0.29, 0.30, 0.4, and
0.41 bpm, respectively. All four systems still have comparable
performance for measuring two persons’ respiration rates, but
the two RFID-based systems, our system and TagBreathe, per-
form better. This is benefitted from the design of commercial
RFID systems, where tags can respond to the reader without
interfering with each other’s communication, which cannot be
achieved by WiFi systems.

VII. REMARKS & LIMITATIONS

In this section, we discuss some limitations of our system.
Walking. Our time-varying DC removal algorithm is de-

signed to estimate and remove noise introduced for example
by a patient’s walking. When a patient walks at a speed
less than 0.5 m/s (normal low-pace indoor walking which
is expected from a PD patient who needs monitoring), our
experimental evaluation has demonstrated good performance.
In clinical settings, a patient, particularly an elderly PD patient,
is more likely to move slowly, and our system can work
well with hand tremor monitoring. However, when the person
moves too fast relative to the monitored bodily oscillation, our
noise removal method will not work well. This is evident in
the measurement of respiration rate. Breathing generates very
small chest movement, which translates into small magnitude
in the measured phase curve. The typical rate of breathing
(12-24 bpm) is much smaller than the typical tremor rate (4-6
tps), which means its phase curve has a much larger period.
The combined effect is that respiration rate measurement is
much more susceptible to the noise introduced by walking.
Our experiments show that the proposed system can produce
meaningful results only for slow walking scenarios, e.g., at a
speed of 0.1m/s, but the error will increase rapidly when the
speed increases.

Line of Sight. In general, RFID technology works with both
line-of-sight (LOS) and non line-of-sight scenarios. However,
our system tags human beings and cannot measure hand tremor
in Non-LOS scenarios, where RF signals are blocked by
human bodies. The fluid in human body absorbs and reflects
RF signals, preventing them from penetrating the body. The
signals omitted by RFID antennas is not strong enough and
the weak reflected RF signals in the environment do not offer
reliable readings in our experiment.

VIII. CONCLUSION

In this paper, we design a novel wireless health-monitoring
system using RFID tags. It provides a general and effective
way of measuring oscillation rates. More specifically, the
system uses the fine-grained phase values reported by an
off-the-shelf RFID reader to estimate the oscillation rate of
a human body with great accuracy. The design supports
the measurement of hand tremor rate of one person or the
measurement of multiple persons simultaneously, even when
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the individuals move around, which represents a significant
improvement over the previous systems. We have implemented
a prototype and performed extensive experiments. Our exper-
imental results demonstrate the effectiveness of our system
in providing accurate rate measurements under challenging
settings.
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