
0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2945398, IEEE
Transactions on Vehicular Technology

1

A Machine Learning Based Defensive Alerting
System Against Reckless Driving in Vehicular

Networks
Lan Zhang, Li Yan, Yuguang Fang, IEEE Fellow, Xuming Fang, and Xiaoxia Huang

Abstract—Reckless driving severely threatens the safety of
innocent people, which accounts for around 33% of all fatalities
in major vehicle accidents. However, most existing efforts focus on
the detection and adjustment of a vehicle’s own driving behavior,
whose effectiveness is very limited. In this paper, we develop a
defensive alerting system to detect and notify the threats posed
by reckless vehicles. By integrating the computation capability
of a cloud server with that of vehicles nowadays, we propose
a cooperative driving performance rating (CDPR) mechanism
to automatically and intelligently detect reckless vehicles based
on machine learning algorithms. To support such a defensive
alerting system, a three-tier system architecture is developed from
existing vehicular networks, which consists of vehicles, road-side
units (RSU) and a cloud server. Moreover, given the fact that
most vehicles can be trusted to drive safely, to further reduce
the transmission load of the CDPR mechanism, we design our
scheme in such a way that every vehicle only uploads the data
of driving maneuvers with reckless potential to RSUs. Based
on the aggregated data, the cloud server globally rates every
vehicle’s driving performance by using support vector machine
(SVM) and decision-tree machine learning models. We finally
implement the proposed CDPR mechanism into a popular traffic
simulator, Simulation of Urban MObility (SUMO), for evaluation.
Simulation results illustrate that our defensive alerting system
can accurately detect reckless vehicles and effectively provide
timely alerts.

Index Terms—Cooperative driving behavior rating, Defensive
reckless driving alert, SUMO simulation, Machine learning.

I. INTRODUCTION

Driving safety is no doubt the most critical concern behind
the wheel. According to the statistics from the National Safety
Council (NSC) of United States (U.S.), more than 40,000
roadway fatalities happened in 2017 [1]. A major reason leads
to these road tragedies is the human factor, where reckless
driving is the most considerable one [2], [3]. According to the
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Department of Motor Vehicles (DMV) in U.S., any driving
behavior disregarding the safety of other individuals can result
in a charge of reckless driving. Even with corresponding law
enforcements, reckless driving still accounts for around 33% of
all fatalities in major car accidents [4]. Therefore, in addition
to the law enforcement, how to proactively detect and avoid the
safety threats from reckless driving becomes a vital concern.

One effective mechanism is to monitor and regulate every
vehicle’s own driving performance, which has been intensively
studied. According to several survey papers [5]–[8], a vehicle
can collect the driving information of itself through its own
sensing devices, such as the electroencephalograph (ECG)
sensor embedded in the steering wheel, the dome camera, the
inertial measurement unit, and even the smartphone, etc. By
analyzing the collected sensing data, either a vehicle’s driving
performance or a driver’s state of mind that may reflect the
driving performance is evaluated. For example, the biological
measure such as the ECG signal can be used to evaluate
the attentiveness of a driver [6]; the driving state such as
the velocity and acceleration can be used to determine the
driving performance [5]; and the external contexts such as
the traffic and weather conditions can be combined with the
internal contexts, such as the velocity of the vehicle and the
level of alcohol in the driver’s blood, to detect the abnormal
driving behavior [9]. Based on the detection results, the system
may provide either passively or actively corrective feedback
to the driver, where the audio or video advisories are regarded
as passive feedbacks and the direct interventions such as
modifying the pedal force are regarded as active feedbacks
[5]–[7]. However, even with accurate detection, the feedback
suitability as well as the effectiveness are still inadequate.
Besides, a driver, no matter whether he/she is a reckless driver
or not, will not voluntarily share his/her behavior information
with others. Thus, a reckless driving behavior detection should
use other drivers’ observation to draw a conclusion. Moreover,
we unfortunately cannot change the driving behavior of others.
Given the fact that the human reaction time in vehicular
accidents is around 1.5 seconds [10], it is difficult to avoid a
sudden crash caused by a reckless driving vehicle within such
a short time. Therefore, a reckless driving defensive alerting
system is imperative to help a driver to proactively avoid the
safety threats from the approaching reckless vehicle.

Apparently, the aforementioned self-rated driving perfor-
mance [5]–[9] is not reliable nor trusted for others. In order
to provide accurate alerts of reckless vehicles, every vehicle’s
current driving performance needs to be objectively rated.
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Therefore, to develop a fair rating mechanism, a trustworthy
third party needs to be involved to monitor every vehicle’s
driving performance and provide the rating results. An in-
tuitive monitoring mechanism is to utilize the surveillance
cameras deployed along the road [11]–[13]. However, on the
one hand, there are not enough deployed camera devices
to seamlessly cover every corner, let alone the cost of the
massive installation and maintenance. On the other hand,
the technologies of vision-based vehicle monitoring have not
been well-developed yet [11], [12], [14]. Even the vehicle
tracking, the most fundamental task of vision-based driving
performance monitoring, is still challenging due to the abrupt
object motion, appearance pattern change, non-rigid object
structures, etc., especially in the large-volume traffic and
highly-dynamic driving environments [12], [14]. Based on
these observations, in the paper, we propose a cost-effective
monitoring mechanism, where a vehicle’s driving performance
is monitored by its neighbor vehicles. Similar idea on utilizing
the cooperation among vehicles has also been applied to design
a stable routing protocol in vehicular networks [15].

With the rapid development of automobile manufactur-
ing [5]–[8], vehicles nowadays exhibit the capability to mon-
itor their surrounding driving environments. For example, the
ultrasonic sensors are used to detect the surrounding obstacles
for parking assistance; the radar sensors are used to sense the
road ahead for partially automated driving through adaptive
cruise control (ACC); the inexpensive low-range and low-
resolution versions of lidar sensors are used for forward
collision prevention [8], [16]. Based on these equipped sensor
devices, we can reasonably assume that a vehicle can locally
monitor the driving performance of its neighbor vehicles.
However, due to the highly-dynamic driving environments as
well as the complicated external factors, such as the influence
from other reckless vehicles, a vehicle cannot acquire adequate
sensing data of a neighbor vehicle and thus cannot provide
an accurate rating result. Therefore, we propose to acquire
the driving performance data of a vehicle by aggregating
the monitored data from its previous and current neighbor
vehicles. Recently, machine learning algorithms have been
widely utilized in networking areas, such as network traffic
control, due to its efficiency and effectiveness to cope with
the dynamic, large-volume and complicated data in a more
intelligent and autonomous fashion [16]–[21]. In this paper,
based on the aggregated multi-modal monitored data, we
utilize machine learning algorithms to more accurately and
efficiently rate the driving performance of a vehicle and
detect the reckless driving behavior. To support such sensing,
aggregating and rating functions, we design a three-tier system
architecture based on existing vehicular networks. To the
best of our knowledge, none of existing works establishes a
reckless driving defensive alerting system by integrating the
computation capabilities of neighbor vehicles with that of the
cloud server.

Our main contributions are summarized as follows:
• To better understand the consequences of reckless driv-

ing, we first theoretically evaluate the crash probability
of a typical reckless driving maneuver, i.e., reckless
lane changing. Our analytical result indicates a long

enough distance is required to against reckless driving,
which motivates us to devise a defensive alerting system
to proactively enlarge the driving distance gap towards
reckless vehicles.

• We propose a reckless driving defensive alerting system
to proactively detect and notify the approaching of reck-
less vehicles. By integrating the computation capabilities
of the cloud server and vehicles nowadays, we propose
a cooperative driving performance rating (CDPR) mech-
anism to automatically and intelligently detect reckless
vehicles. To facilitate such a defensive alerting system,
a three-tier system architecture is developed from exist-
ing vehicular networks, where neighbor vehicles of any
vehicle monitor its driving performance and then upload
their monitored data to a local road-side unit (RSU) to
be forwarded to the cloud server if needed. Given the
fact that most vehicles can be trusted to drive safely, we
further reduce the transmission load by only uploading
the driving performance data with reckless potential.

• We devise the machine learning based driving perfor-
mance rating algorithms in the cloud server to achieve
accurate detection based on more comprehensive aggre-
gated driving data. To evaluate the performance of the
proposed alerting system, we implement our design into
a popular trafc simulator, Simulation of Urban MObility
(SUMO). Experimental results demonstrate the effective-
ness of our defensive alerting system, where the accuracy
of reckless vehicle detection and the timeliness of reck-
less vehicle alerting are comprehensively evaluated.

The rest of this paper is organized as follows. In Section II,
we describe reckless driving behavior and theoretically analyze
the consequence of a typical reckless driving maneuver, i.e.,
reckless lane changing, which further motivates our analysis.
In Section III, we design the reckless driving defensive alerting
system, where the CDPR mechanism, system architecture
and signaling process are presented. The machine learning
based driving performance rating models are analyzed in
Section IV. In Section V, we evaluate the performance of
our defensive alerting system through simulations. Section VI
finally concludes this paper.

II. RECKLESS DRIVING

To better understand the consequences of reckless driving,
we first describe the characteristics of reckless driving, and
then theoretically analyze its consequences through a case
study.

A. Reckless Driving Performance

Although more advanced safety mechanisms are utilized in
modern automobiles nowadays than ever, the number of driv-
ing fatalities is still alarming high. In fact, any driving behavior
disregarding the safety of other individuals can be regarded as
reckless driving. Although the charge of reckless driving may
vary in different states in USA based on their corresponding
law enforcement [4], there is still general consensus of reckless
driving, where several driving maneuvers can be regarded as



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2945398, IEEE
Transactions on Vehicular Technology

3

Fig. 1: A typical scenario of reckless lane changing maneuver
and its corresponding cellular automata model.

“reckless”. In the following, we list some of the most common
reckless driving maneuvers reported annually:
• Tailgating the leader vehicle, i.e., following too close;
• Intentionally failing to yield the right-of-way, such as

reckless lane changing;
• Excessive speeding at a considered dangerous velocity;
• Placing others in danger by running red lights/stop signs;
• Driving under the influence (DUI) or driving while intox-

icated (DWI), such as lane drifting under drunk driving;
• Distracted driving, such as texting while driving.

These driving maneuvers, each dangerous in its own right,
are responsible for the majority of reckless driving caused
accidents, which lead to serious injuries and medical costs for
innocent people. In this paper, we focus on how to proactively
detect and avoid the safety threats from the vehicles that
constantly exhibit reckless driving behavior and put themselves
and others in danger. To better understand the driving charac-
teristics of reckless vehicles, we utilize a theoretical model to
analyze its consequences. Due to the complexity of modeling
human driving behavior, we focus on a typical reckless driving
maneuver, i.e., reckless lane changing.

B. Case Study: Reckless Lane Changing

According to the beginner driver’s guide, a proper lane
changing should follow these procedures: turn on the blinker,
then check the rear view, side mirror and the blind spot, and
finally maintain the speed to smoothly and quickly move to
the desired lane. However, a reckless vehicle may aggressively
move to the other lane regardless of these proper procedures,
which may result in serious accidents [22]. As illustrated in
Fig.1, a crash happens when vehicle 0 (assumed as a reckless
vehicle) changes to the lane of the vehicle 1 without checking
the blind spot. Besides this scenario, the crash between vehicle
0 and 1 may also happen in the following scenarios: without
using the right blinker, vehicle 1 may accelerate and crash into
the suddenly drifting vehicle 0; vehicle 0 may mis-estimate the
distance gap or relative velocity towards vehicle 1 and fail to
yield to vehicle 1; vehicle 0 may decelerate during its lane
changing or slowly drift to the target lane; etc.

To theoretically analyze the aforementioned scenarios, we
utilize a symmetric two-lane cellular automata (CA) model for
highway scenario, where each lane is divided into multiple
cells [23]. As illustrated in Fig. 1, each cell is either empty or

occupied by a vehicle. The status of a cell is updated at each
discrete time step t ∈ {1, 2, 3, ...}. During the time t→ t+ 1,
a vehicle located at x(t) with velocity vt will move to

x(t+ 1)→ x(t) + vt, (1)

where vt is the value of horizontal velocity along the road at
time step t.

Without loss of generality, in our lane changing scenario, we
assume the reckless vehicle 0 located at x0(t) with velocity
vt0 starts changing to the lane of vehicle 1 at time step t,
where vehicle 1 is the following vehicle located at x1(t) with
velocity vt1, i.e., x0(t) > x1(t). Note that the scenario that
vehicle 1 is the ahead vehicle of the target lane can be similarly
analyzed. Since the lane changing process is finished within
1 time slot [23], a crash happens when vehicle 0 is not ahead
of vehicle 1 at time step t + 1, i.e., x0(t + 1) ≤ x1(t + 1).
Therefore, according to (1), a crash happens when the distance
gap d = x0(t)− x1(t) satisfies the following condition:

d ≤ vt1 − vt0. (2)

Under the symmetric lane changing setting [23], we do
not distinguish fast and slow lane, and thus vt0 and vt1 are
assumed to be independent random variables. Denote fvt(v)
as the probability density function (PDF) of vt. At time step
t, given the value of vt−1, we assume the mean value of the
random variable vt is the given value of vt−1, which matches
the fact that a vehicle’s current velocity is closely related to
its velocity at previous time step. The probability that a crash
happens between vehicle 0 and vehicle 1 can be given by

PC = Pr
{
d ≤ vt1 − vt0

}
=

∫ +∞

d

∫ +∞

−∞
fvt1 (v1 + v0) fvt0 (v0) dv1dv0

=

∫ +∞

d

fvt0 (v) ∗ f−vt1 (v)dv.

(3)

Given the PDF of vt0 and vt1, we have the PDF of vt0−vt1, i.e.,
fvt0−vt1(v) = fvt0 (v) ∗ f−vt1 (v). Thus, according to (3), the
crash probability PC decreases with the increasing of distance
gap d, which reveals that vehicle 1 should keep distance to
vehicle 0 to reduce their crash probability. Thus, the utility
function of safety can be given by Usafe(d) = α(1− PC(d)),
where α is the weighting factor. However, on the other
hand, the increased distance gap d reduces the transportation
efficiency, which cannot be ignored especially in crowded
scenarios such as in rush hours. Define the utility function of
road efficiency by Ueff(d) = β/d, where β is the weighting
factor. Thus, the total utility of a lane changing maneuver by
a reckless driver is composed of Usafety(d) and Ueff(d).

On the other hand, for the normal driving vehicles based
on the aforementioned proper lane changing procedures, we
assume the crash probability is small enough to be ignored.
Therefore, the utility function of a lane changing maneuver
can be given by

Ui(d) =

{
α(1− PC(d)) + β/d, i = reckless driving
β/d, i = normal driving.

(4)
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According to the utility function in (4), it is noticeable
that the optimal distance gap d∗ is different for reckless
and normal lane changing maneuvers. Specifically, the d∗ in
reckless driving is larger than that in normal driving due to
the safety threat by reckless vehicles, i.e., the safety utility
Usafe increases with d. When a reckless vehicle is correctly
identified, a larger distance gap is absolutely preferred, which
can be realized by a proactive reckless vehicle alert. However,
in contrast, when a normal vehicle is mis-classified as reckless,
a larger distance gap will lead to a smaller utility as well
as less transportation efficiency. Therefore, the defensive alert
of reckless driving is imperatively necessary, and meanwhile
an accurate alarm is expected to improve the overall system
performance, which motivates our further analysis.

III. RECKLESS DRIVING DEFENSIVE ALARMING SYSTEM

Given the severe consequences of reckless driving, we
propose a machine learning based defensive alarming system
to proactively detect and alert reckless vehicles. Specifically,
we design a cooperative driving performance rating (CDPR)
mechanism to automatically detect reckless vehicles, whose
detection results are sent to the drivers nearby. These functions
are supported by a three-tier system architecture. In the follow-
ing, we first introduce the CDPR mechanism, and then present
our system architecture followed by the signaling process.

A. The CDPR Mechanism

As a complementary safety monitoring mechanism besides
the traffic polices and video surveillance, the CDPR mech-
anism utilizes the monitoring capability of vehicles. On the
one hand, more and more sensor devices are installed on
vehicles, such as inertial sensors, ultra-sonic, radar, lidar,
infrared sensors, vision sensors, etc., which can be utilized
to acquire the information of driving performance of neighbor
vehicles and provide a way for neighbor vehicles to monitor
themselves, such as the distance gap to neighbor vehicles
[8]. On the other hand, supported by vehicular networks,
vehicles can communicate with each other as well as with
the infrastructures, i.e., road-side units (RSU). Thus, in this
paper, it is reasonable to assume that a vehicle is capable of
independently sensing and reporting the driving performance
of its neighbor vehicles. In addition, considering the limited
local sensing data as well as the complicated external factors,
such as the influence by nearby reckless vehicles, a vehicle can
hardly provide accurate rating results. Therefore, we propose
the CDPR mechanism to aggregate a vehicle’s monitoring data
from its current and previous neighbor vehicles. In addition,
given the fact that most vehicles can be trusted to drive safely,
to reduce the data volume of uploading, only the monitored
information of vehicles with reckless potentials, i.e., reckless
maneuvers, are uploaded. Since a reckless vehicle with con-
stant reckless driving behavior can be continuously reported by
multiple neighbor vehicles, our scheme can intuitively realize
a timely detection.

Since the CDPR mechanism is based on the cooperation
among neighbor vehicles, every vehicle is encouraged to
participate into our defensive alerting system. Within this

system, every participant is responsible for reporting the
driving behavior of neighbor vehicles. As a return, these
participants can acquire the valuable alerts of reckless vehicles.
Besides, other incentives might be considered to attract a
large-scale participation for a safer driving environment in
future smart cities [24], [25]. For example, some quota of
vehicular communication services can be granted to a vehicle
based on its participation. Considering the privacy of partic-
ipants, instead of the personal information of a driver, only
the vehicle description is involved in an alert, such as the
position, heading direction, current velocity, color, body style
and makes, etc. Note that a vehicles dynamic description, such
as the position and heading direction, can be derived by its
periodic message exchanges in the vehicular communication
system (detailed in Section III.C). A vehicles static description,
such as the color and body style, is recorded by the system
during its registration, which can be easily extracted based on
that vehicles communication ID1. To avoid the interference
of unrelated alerts, a vehicle can only receive the alert of
approaching neighbor reckless vehicles. By combining the
received alert with its own location, a vehicle can clearly
recognize the approaching reckless vehicle, which is informed
to the driver through audio or video advisory, similarly as
the audio alarm of a fire. Given the effectiveness of proactive
reckless driving alerts as well as the proper incentives, it is
reasonable to believe that each vehicle would like to take part
in the CDPR mechanism, where the more participants, the
more accurate rating results are. To clearly present our design,
we assume that every vehicle is enrolled in the following
analysis. Besides sending the alert to neighbor vehicles, the
transportation department may be informed simultaneously to
timely check the detected reckless vehicles. Based on the
CDPR mechanism, a harmonic driving environment can be
finally realized.

B. System Architecture

To support such a defensive alerting system, we develop
a three-tier system architecture from existing vehicular net-
works. As illustrated in Fig.2, our system architecture consists
of vehicle monitoring tier, local aggregation tier and global
management tier. In the following, we describe the functions
of these three tiers, receptively.
• Vehicle monitoring tier is composed of vehicles mov-

ing on the road. The functions of this tier include the
driving environmental sensing, reckless driving maneuver
detection and report uploading, and the reckless driving
alert reception. Specifically, every moving vehicle uses
its equipped sensing devices to acquire the information
of surrounding driving environment. These multi-modal
sensing information including the distance gap towards a
neighbor vehicle, the relative velocity and acceleration,
etc., is used to reveal the driving behavior of neighbor
vehicles. By using a light-weight algorithm, a vehicle
can quickly filter the normal driving maneuvers and

1A vehicle’s communication ID is uniquely assigned by the cloud server,
like the subscriber identification module (SIM) ID used by smartphones in
cellular system, to identify the vehicle entity in vehicular communications.
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Fig. 2: The three-tier system architecture and the correspond-
ing functions of each tier.

coarsely detect the reckless ones. To derive a more
accurate rating result in the upper tier, the data of driving
performance during the duration of a reckless maneuver
will be collected and uploaded to the second tier, i.e.,
local aggregation tier. The communication between a
vehicle and the second tier is based on dedicated short
range communication (DSRC) technology [26], [27]. To
guarantee the timeliness of monitoring, the driving per-
formance data with reckless potentials will be uploaded
within time Tth since its generation. In addition, each
vehicle will listen to the broadcasted reckless driving
alerts, and provide audio or video advisory to inform
the connected drivers. The detail operation procedures of
each participating vehicle are presented in Algorithm 1.

• Local aggregation tier is composed of road side units
(RSU)2, which are the communication infrastructures
in vehicular networks. This tier connects the first and
the third tier, respectively, through wireless and wired
links. The functions of this tier are to aggregate and
forward the uploaded driving behavioral data, to locally
detect reckless vehicles, and to broadcast reckless driving
alert. For the local reckless vehicle detection, we should
provide timely alert in some emergency scenarios, such as
the identification of a hogged drunk driving. Nevertheless,
in reality, a reckless driver may perform normally in
most time, such as when waiting at a traffic light or
driving along with very few neighbor vehicles. Thus,
the number of detected reckless driving maneuvers in
a single road segment will be limited, and instead the
driving performance can be accurately rated in the third
tier by aggregating more comprehensive data. However,
the global alert needs longer detection time, which is

2The local aggregation tier can be composed by any local entities, which
exhibits both communication and computation abilities. We utilize RSUs as
an example.

Algorithm 1 Procedures at participating vehicles

1: when a vehicle is started;
2: build up connection with system through a nearby RSU;
3: repeat
4: report its current location to its service RSU;
5: monitor the surrounding driving environment;
6: if a reckless driving maneuver is detected then
7: report the corresponding data to its service RSU;
8: end if
9: listen the alerting channel;

10: if an alert is received then
11: alert the driver through audio advisory;
12: end if
13: until its engine stop;

not suitable for some emergency scenarios, and thus
we introduce the local detection function in the second
tier. Only when the percentage of a vehicle’s reckless
maneuvers exceeds an empirical threshold, the local alert
is broadcasted. To achieve an accurate detection, this alert
is meanwhile reported to the third tier, and the updated
detection result will be sent back to support or correct
the current alert in the second tier.

• Global management tier is the cloud center with strong
computation and storage capabilities. The functions of
this tier include globally rating a vehicle’s driving perfor-
mance and sending the detected alert to the corresponding
RSUs. Specifically, the cloud center aggregates data of
reckless driving maneuvers from all RSUs through the
wired connections, and analyzes these data by using
machine learning algorithms. The machine learning based
driving performance rating models are trained by histor-
ical data with reckless or normal labels, which can be
periodically updated by the newly arrived data. The label
of a reckless vehicle can be derived by the record from the
transportation department, where reckless vehicles are the
ones intercepted and charged by traffic polices. Once a
reckless vehicle is detected, it will be tracked based on the
previous connections with the system. Note that a vehicle
will periodically communicate with the system, which
will be explained in details in the following signaling
process, and thus the system can acquire its position and
heading direction. The global alert is finally sent to the
RSUs based on the tracking results. Meanwhile, the data
center may contact the transportation department to fur-
ther check or intercept the detected reckless vehicles. The
detail operation procedures are illustrated in Algorithm 2.

C. Signaling Processes

To realize the communications among the aforementioned
three tiers, we describe their signaling processes. In our
defensive alerting system, each tier only connects with its
neighbor tiers. Specifically, two upper tiers are wire connected,
and two lower tiers are wireless connected based on vehicular
networks, i.e., DSRC technology [26]. According to DSRC
standard, the on-board unit (OBU) equipped in a vehicle can
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Algorithm 2 Procedures at the cloud server

1: Initialization: register participating vehicles with their
corresponding vehicle and driver information;

2: repeat
3: periodically update the vehicle/driver information;
4: for each vehicle currently driving on the road:
5: record its driving location;
6: record/accumulate its reckless driving maneuvers;
7: if meet the detection requirement then
8: execute the global driving rating algorithm;
9: if it is a reckless vehicle then

10: track its current location;
11: announce alert to the corresponding RSU;
12: announce alert to the traffic office;
13: end if
14: end if
15: until the system is shut down;

communicate with an RSU through 5.9 GHz frequency bands.
As illustrated in Fig.3, the signaling processes are described
as follows.

When a vehicle starts engine, it automatically sends a
request to log in the defensive alerting system in signaling 1©.
After the authentication due to privacy and security protection,
data center sends back a response with a temporary identity in
signaling 2©. Meanwhile, the data center records the participa-
tion of this vehicle to accumulate its incentive, such as service
quota. Notice that the temporary identity corresponds to a
vehicle’s real identity, including the plate number and the title
information, which is recorded in the cloud center. A vehicle
periodically communicates with its serving RSU through sig-
naling 3© to maintain the connection, and an acknowledgement
(ACK) will be sent back in signaling 4© for each signaling 3©.
The signaling 3© carries the temporary identity of a vehicle,
its current position, velocity and heading direction, which
can also be utilized in other vehicular services, such as the
driver assistant services like cruise control and navigation
[8]. Meanwhile, signaling 3© is broadcasted to its neighbor
vehicles to distinguish the identity of different neighbors and
thus mark their corresponding driving performance. Once
a reckless driving maneuver is detected, the corresponding
information is immediately reported in signaling 5©, including
the identity of the monitored vehicle, the maneuver duration,
and during this duration the monitored distance gaps and
relative velocities, etc. These data is recorded in both the
RSU and data center, and an ACK is sent back in signaling
6©. Once a reckless vehicle is locally detected by an RSU,

the local alert is broadcasted in signaling 7© and meanwhile
reported to data center in signaling 8©. The ACKs are sent
back in signaling 9© and 10©, respectively. Once a reckless
vehicle is detected in the cloud center, a global alert is sent
to its serving RSU in signaling 11© to alert the vehicles in that
road segment. An ACK will be sent back from the listened
vehicles in signaling 12©. Both the local and global alert do
not include personal information but the temporary identity
and the description of the reckless driving vehicle. When the

Fig. 3: The signaling process of CDPR service for a vehicle.

time without the updated signaling 3© exceeds the timeout
threshold, a logoff message will be sent to cloud center in
signaling 13©, and an ACK is sent back in 14©. When none of
the RSUs updates signaling 3© of a vehicle, the vehicle is
considered to be logged off the system.

IV. MACHINE LEARNING BASED DRIVING PERFORMANCE
RATING MODEL

In order to provide accurate reckless driving alert, this
section focuses on analyzing the driving behavior rating model
based on machine learning algorithms. In the following,
we first overview the driving performance dataset, and then
present the driving performance rating model.

A. Driving Performance Dataset

Due to the difficulty of collecting adequate dataset of driv-
ing performance, we implement a popular traffic simulation
toolkit, Simulation of Urban MObility (SUMO) for data gen-
eration [28]. The simulator based dataset can be our first step
to test the availability of our defensive alerting system, which
can be extended to real-world data in our future analysis. As
an open-source microscopic traffic simulator, SUMO enables
repeatable controlled experiments at a per-vehicle level based
on real-world traffic topologies. To reproduce mobility patterns
close to reality, we utilize Luxembourg SUMO Traffic (LuST)
scenario based on the City of Luxembourg, whose traffic
patterns are verified to be consistent with that of Google
Map over 24 hours of simulation [29]. In LuST scenario, we
consider different types of vehicles, which are distinguished
by different parameter settings, including color, size, length,
shape, maximum speed, acceleration, deceleration, minimum
distance gap, etc. In addition to the 6 normal vehicle types
provided in LuST scenario, we insert reckless vehicle types in
our simulation. Based on the characteristics of reckless driving
mentioned in section II that are continuously aggressively
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TABLE I: Parameter setting for different vehicle types.

vType accel deccel minGap maxSpeed shape
Nv1 2.6 4.5 1.5 70 sedan
Nv2 3.0 4.5 1.5 50 hatchback
Nv3 2.8 4.5 1.0 50 hatchback
Nv4 2.7 4.5 1.5 70 wagon
Nv5 2.4 4.5 1.5 30 van
Nv6 2.3 4.5 2.0 30 delivery
Rv1 8.0 8.0 0.5 140 sedan
Rv2 9.0 9.0 0.5 110 hatchback
Rv3 9.0 9.0 0.3 100 hatchback
Rv4 8.0 8.0 0.2 105 wagon
Rv5 9.5 9.5 0.7 130 van
Rv6 10.0 10.0 0.8 120 delivery

disregarding safety of other individuals, we modify the vehicle
parameter settings to generate 6 reckless vehicle types as
illustrated in Table I, where ’Nv’ and ’Rv’ represent normal
and reckless vehicle type, respectively. Similar parameter
setting has been used in [30] to define aggressive driving.

According to the CDPR mechanism, the data of driving per-
formance is collected by aggregating that of reckless driving
maneuvers, which are detected by the detection function of
vehicles mentioned in Section II.B. To realize this function, we
utilize the surrogate safety measure (SSM) devices provided
in SUMO. An SSM device exhibits the ability of sensing
and computing, which can be equipped on a vehicle. The
function of an SSM device is to detect conflict encounters,
i.e., reckless driving maneuvers, and meanwhile log their
corresponding SSM values. Several SSMs are considered
including time to collision (TTC), deceleration rate to avoid
a crash (DRAC), post encroachment time (PET), brake rate
(BR), etc., whose exact definition can be found in [31]. Once
the value of an SSM exceeds the corresponding threshold,
the current encounter is regarded as a conflict encounter,
where different conflict encounters may last for different time
duration. Conflict encounters include crossing, merging, tail-
gating situations, etc., where different calculation procedures
of SSMs may be implemented. Note that different conflict
encounters correspond to different reckless driving events.

In the output file of an SSM device, the driving data of
each conflict encounter is recorded, including its duration,
encounter situation, velocities of the ego and the conflict
neighbor during this duration, positions of the ego and the
conflict neighbor during this duration, minimum TTC, maxi-
mum DARC and PET. Due to the complexity of analyzing the
impact of different conflict encounters, we exclude the features
affected by different conflict encounter types and derive the
following features to characterize the driving performance:

• the time duration of a conflict encounter,
• the distance gap over this duration based on the position

of the ego and conflict neighbor vehicle,
• the relative velocity over this duration based on the

velocity of the ego and conflict neighbor vehicle.

In addition, to utilize these features in our rating model, we
preprocess the data with normalization, which is necessary
for distance-metric based machine learning algorithms, such
as support vector machine (SVM).

B. Training the Driving Performance Rating Models

Based on the aforementioned dataset, we train the driving
performance rating model by using machine learning algo-
rithms [32]–[35]. We utilize two machine learning algorithms
[32]–[34], SVM and decision-tree, which are typically used
in classification problems that make them appropriate for
classifying normal vehicles versus reckless vehicles. For SVM
model, among several useful theoretical and practical char-
acteristics, the following two reasons motivate our selection:
1) Since the training of SVM involves a convex optimization
problem, the optimal solution is a global optimum; 2) The
upper bound of the generalization error is independent of
problem dimensionality. For decision-tree model [32], [33],
[35], the nonparametric nature and easy interpretation make
it popular in a variety of application fields. Its advantage
over many other models is the effectiveness to construct
classifications through segmenting a data set into smaller and
more homogeneous groups.

To rate a vehicle’s driving performance, the input data
of SVM and decision-tree models is in the form of 〈21-
dimensional features, label 〉. Specifically, the 21-dimensional
features are obtained from the normalized driving behavior
features, including the time duration (1 dimension), the per-
centage of the distance gap (dividing the overall range into 10
dimensions) and the percentage of the relative velocity (divid-
ing the overall range into 10 dimensions). In the following,
the SVM and decision-tree models are presented, respectively.

1) SVM model [32]–[34]: In general, the SVM model maps
the points of two categories in the n−dimensional space into
a target m−dimensional space, where a hyperplane in the new
space can better separate two categories of points. Specifically,
define our training set by {xi, yi} with N training samples i =
1, ..., N , where xi = (x1

i , x
2
i , ..., x

21
i ) is the aforementioned

21-dimensional features, and yi ∈ {−1,+1} is the label of
normal and reckless vehicle. In SVM models, the mapping is
based on a kernel function, which has multiple types as the
inner product between the mapped pairs of points in the feature
space. Since kernel selection is essential to obtain satisfactory
classification results, we consider the following well-known
kernel functions in our design:
• Linear kernel:

K(xi,xj) = xTi xj , (5)

where xTi is the transposition of matrix xi.
• Polynomial kernel:

K(xi,xj) = (γxTi xj + 1)d, γ > 0, (6)

where γ is an empirical parameter, and d is the degree
of the polynomial.

• Gaussian radial basis function (RBF) kernel:

K(xi,xj) = exp
(
−γ ‖xi − xj‖2

)
, (7)

where γ is an empirical parameter, and ‖xi − xj‖ is the
norm of the point differences, representing the distance
between vector xi and xj in the corresponding Hilbert
space.
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In the target space mapped by a kernel function, SVM
classifies data by finding the best hyperplane that separates
all data points of the two classes. The best hyperplane is the
one with the largest margin between the two classes, which is
trained with solving the following optimization problem:

max
θ

C(θ) =
N∑
i=1

θi −
1

2

N,N∑
i=1,j=1

θiθjyiyjK(xi,xj)

s.t.
N∑
i=1

θiyi = 0, θi ≥ 0.

(8)

By utilizing the optimal θ, when a test sample with feature
vector z arrives for rating, this sample is rated by the following
decision function [33]:

D(z) = sgn

[
N∑
i=1

θiyiK(z,xi) +B

]
, (9)

where B is the bias term.

2) Decision-tree model [32], [33], [35]: A decision tree is
a flow-chart-like tree structure, which derives a classification
decision through a sequence of tests along a path of nodes.
The root node contains the entire dataset X = {x1,x,..,xN}.
The tree grows through splitting data at the nodes, where the
outgoing branches of a node correspond to the partitioned data
subsets. When the data of a node cannot be splitted any further,
it becomes a terminal node indicating a classification decision,
i.e., the normal or reckless rating decision of a vehicle. In
our decision-tree model based classifier, we consider three
popular selection algorithms to find the best split predictor:
standard classification and regression tree (CART), curvature
test, and interaction test [35]–[37]. The standard CART selects
the split predictor that maximizes the split-criterion gain over
all possible splits of all predictors; the curvature test selects
the split predictor that minimizes the p-value of Chi-square
tests of independence between predictors and the response;
and similarly interaction test based on the calculation criterion
of curvature test considers the interaction between each pair of
predictor and response. We evaluate the performance of these
three algorithms in our evaluation part. To present a concrete
introduction, we utilize the standard CART algorithm as the
selection algorithm to describe the decision-tree model training
in the subsequent development.

The principle of tree growing step is to recursively partition
target variables so that the data in the descendant nodes are
always purer than that in the parent node. When a training
data enters the root node, a test is performed to search for all
possible splits based on a splitting criterion that measures the
splitting quality. In CART, the Gini-index splitting criterion is
applied. According to the definition of Gini-index, the impurity
of node n is given by

I(n) = 1−
∑
j

p2
j (n), (10)

where pj(n) is the probability that a sample in subset Xn

belongs to class j. pj(n) can be easily estimated by N j
n/Nn,

where N j
n is the number of vectors in subset Xn belongs to

class j and Nn is the total number of vectors in Xn. The
decrease of node impurity ∆I(n) is given by

∆I(n) = I(n)−
2∑
j=1

pj(nj)I(nj), (11)

where nj is the jth descendant node of node n. By ex-
haustively searching for all possible splits, the one with the
maximum impurity decrease is selected. When the probability
pj(l) is more than the threshold P0, node l is regarded
as a terminal node with the classification decision j∗ =
arg maxj∈{1,2} pj(l).

In the tree pruning step, the established decision tree is
pruned to avoid overfitting the training data due to its large
size. We apply the most common pruning rule, minimal cost-
complexity pruning, due to its computation efficiency. The
cost-complexity of decision tree T measures its misclassifi-
cation rate and complexity (the number of terminal nodes),
which is given by

Rα(T ) = R(T ) + α|T̃ |, (12)

where R(T ) is the corresponding misclassification rate, which
is defined as the percentage of misclassified vehicles by this
decision tree; α is the complexity factor; T̃ is the set of all
terminal nodes in T and |T̃ | is the size of T̃ . The pruning starts
from the terminal nodes to examine each node and subtree.
When the replacement of a subtree by a terminal node can
give a lower cost-complexity, the subtree is pruned.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the effectiveness of our defen-
sive alerting system, where the dataset preparation is firstly
described, followed by the performance evaluation involving
two critical aspects. Specifically, we first evaluate the accuracy
of our driving performance rating, as well as the performance
comparison between our machine learning based method and
the conventional statistical based method. Then, we compre-
hensively investigate the timeliness of our reckless vehicle
alerting, involving the delay of the whole alerting process.

A. Dataset Preparation

Based on our defensive alerting system design in Section
III and IV, we implement the CDPR mechanism in SUMO
platform to collect the dataset of driving performance. In LuST
scenario, we consider the 12 vehicle types as illustrated in
Table I, and the percentage of reckless vehicles is set to be
10%. Our simulation involves 15,000 vehicles equipped with
SSM devices, whose total arrival time is 50 minutes between
8:00 AM and 8:50 AM. The number of our samples, i.e., the
number of vehicles with reported conflict encounters, is 6977.

Based on the output file of SSM devices, we collect the
21-dimensional driving features mentioned in Section IV.B,
including the time duration of conflict encounters (1 dimen-
sion), the percentage of the distance gap (dividing the overall
range into 10 dimensions) and the percentage of the relative
velocity (dividing the overall range into 10 dimensions). To
avoid the effect due to irrelevant features, we further test
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(a) SVM models under different kernel functions.

(b) Decision-tree models under different predictor
models.

Fig. 4: The receiver operating characteristic (ROC) curves of
different models for driving behavior rating.

feature combinations and finally delete some features that are
constant values, i.e., close to 0 for most training samples, such
as the percentage of the last segment in relative velocity range
(the relative velocity segment [28.98, 32.60] to the overall
relative velocity range [0, 32.60]). Therefore, the size of our
final dataset is 6977×10. In our driving behavior rating model,
we utilize 70% samples as the training data and the remaining
30% samples as the testing data.

B. Overall Performance

Based on the prepared dataset, we first evaluate the per-
formance of the machine learning based driving performance
rating models. According to Section IV.B, we explore the per-
formance of the SVM models under different kernel functions,
i.e., RBF, linear and polynomial kernel, as well as that of
the decision-tree models under different predictor selection
algorithms, i.e., standard CART, curvature test and interaction
test. As illustrated in Fig. 4, we illustrate the receiver operating
characteristic (ROC) curves of the above models, respectively.
A ROC curve presents the true positive rate (TPR) against
the false positive rate (FPR) under various threshold settings,
whose analysis is a direct and natural way to select possibly
optimal models and to discard suboptimal ones. A good

TABLE II: Accuracy Evaluation.

rating model accuracy(%) precision(%) recall(%) F1(%)
SVM 92.73 89.53 97.05 93.14

decision-tree 93.29 89.61 99.98 93.61
statistical method 47.95 49.32 1.5 16.53

prediction model yields the points in the upper left corner
of the ROC space, i.e., coordinate (0,1), which represents no
false negatives (FN) and no false positives (FP). In contrast,
the points of a random guess are along the diagonal line from
the left bottom to the top right corners. Thus, according to
our experiment results illustrated in Fig. 4, the ROC curve of
SVM model with RBF kernel apparently outperforms that of
the other two, while the ROC curves of the three decision-tree
models have very close performance. To clarify the difference
of the ROC curves in decision-tree models, the ROC curves
with y-axis ranging from 0.75 to 1 is presented in the main
figure, where the whole curves with y-axis ranging from 0 to
1 is illustrated on the bottom right. Based on our simulation
results, we apply the SVM model with RBF kernel and the
decision-tree model with standard CART algorithm as our
driving performance rating models in the following.

Before we further analyze the accuracy and the impact of
parameters for the two selected machine learning based rating
models, we take the conventional statistical rating method into
account. In the following, we evaluate the accuracy of the three
rating methods, i.e., SVM, decision-tree and statistical driving
performance rating methods. In the CDPR mechanism, we
utilize multiple sensing devices to fully characterize different
reckless driving maneuvers, where the machine learning based
driving performance rating models are introduced due to the
difficulty of analyzing the multi-modal sensing data. Since
the consequence of a crash comes from the geographically
proximity between vehicles, a reckless vehicle with high
crash probability intuitively drives closer to neighbor vehicles.
Therefore, instead of the multi-modal sensing features, we
should evaluate the availability of a single feature, i.e., the
distance gap, to rate a vehicle’s ”reckless” level. By using the
single distance gap feature, the conventional statistical method
can measure a vehicle’s driving performance through compar-
ing the vehicle’s statistical distance gap, i.e., mean distance
gap, with the empirical threshold derived from previously
detected reckless vehicles with low computation complexity.
Based on the definition of True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN), we examine
the following metrics in the comparison:

• Accuracy: the probability that the classification of a
vehicle’s driving performance is the same as the ground
truth.

• Precision: the probability that the classification for reck-
less driving is exactly a reckless vehicle in ground truth.

• Recall: the probability that all reckless vehicles in ground
truth are classified correctly as reckless driving.

• F1 score: a measure of rating accuracy that is the har-
monic average of the precision and recall, i.e., F1 =
2/(recall−1 + precision−1).
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To conduct a fair comparison, the dataset of the statistical
method is the same as our machine learning based methods,
and the testing results are illustrated in TABLE II. We can
observe that the machine learning based methods apparently
outperforms the statistical one, which verifies that a vehicle’s
driving behavior cannot be simply measured by only using the
distance gap feature. Thus, due to the highly dynamic nature
of driving environments, the machine learning based driving
performance rating models by using multi-modal sensing data
are imperatively necessary. By comparing the four metrics,
we can observe that the precision and recall metrics are with
the lowest and the highest values, respectively. According to
their corresponding definitions, their evaluation results verify
that although a few false alarms exist in the system, nearly
all reckless vehicles can be identified, which can be accepted
for the safety consideration in our defensive alerting system.
In addition, to fully utilize our dataset for a more accurate
comparison, we conduct a 10-fold cross-validation for our
two machine learning based rating models, where the loss of
the SVM and decision-tree models are 0.0708 and 0.0606,
respectively. Therefore, these two machine learning based
rating models can provide accurate rating to detect reckless
vehicles, and the decision-tree model performs better in most
conditions.

C. Timeliness of Reckless Vehicle Alert

Since the delay requirement of defensive alerting system is
stringent, our design aims at providing accurate detection and
reducing alerting delay at the same time. However, as an alert-
ing system, there are inevitable delay for alerting procedures,
such as the hazard warning and driver’s reaction. Thus, our
design makes efforts on reducing the delay from the vehicle
sensing, data transmission, and data processing in the cloud.
Specifically, each vehicle on road keeps monitoring the driving
performance of neighbor vehicles, and immediately reports
the detected reckless driving maneuvers to reduce the sensing
delay. The sensing delay can be further reduced with more
advanced sensing technologies embedded on vehicles, which
is out of the scope of our analysis. For the data transmission
delay, instead of reporting all sensing data, vehicles in our
design only report the data with reckless potential to fasten
data transmissions, and meanwhile to avoid possible trans-
mission congestion. Besides, we utilize the RSUs to forward
the sensing data, which provides fast uploading by shortening
the transmission distances between vehicles and RSUs. The
collected sensing data will be forwarded from RSUs to the
cloud server through fast and reliable wired connections.
For the data processing delay in the cloud, our design only
collects the sensing data with reckless potentials to reduce the
processing data amount. Meanwhile, instead of massive image
or video processing, the cloud server uses simple machine
learning algorithms, such as SVM and decision tree, to quickly
process the low-dimensional sensing data. By conducting an
Intel i7-2600 CPU with 16GB memory, our rating models,
i.e., using SVM and decision-tree algorithms, with the same
setting of TABLE II can rate the driving performance of
more than 900 vehicles per second. With much more powerful

Fig. 5: The detection accuracy as a function of the number of
monitored reckless driving events.

computation capability, the data processing delay in the could
server will be further reduced.

In fact, the most significant delay in our design comes from
the sensing data accumulation, i.e., accumulating the reckless
driving maneuvers. Since the driving environment is highly
dynamic and complicated, a vehicles driving performance can
be hardly judged by a short time observation. For example, a
vehicle with a single or a few reckless driving maneuvers may
be a normal vehicle, whose abnormal reckless maneuvers are
affected by other environmental factors, such as its reckless
neighbor vehicles. Therefore, a certain observation time is
required to accumulate enough sensing data, and there is a
trade-off between the accuracy and the timeliness. As illus-
trated in Fig.5, the accuracy is formulated as a function of the
number of monitored reckless driving maneuvers respectively
with the SVM and decision-tree rating models. Since the
dataset of driving performance comes from the accumulation
of reckless driving maneuvers reports, the more accumulated
maneuvers means the longer monitoring time. Thus, we utilize
the number of reported reckless driving maneuvers to measure
the length of the monitoring time. We can observe that
both the two machine learning based rating models perform
better under a larger number of maneuvers, which means the
longer monitoring time the more accurate rating results are.
In addition, within a short monitoring time, i.e., only a few
reported reckless driving maneuvers, the accuracy of our rating
is around 85%, which will be improved to around 90% when
the number of the monitored reckless driving events is more
than 5. Thus, a quick rating will sacrifice some accuracy,
but still with a high accuracy level. For some areas with
historically high crash probability, such as the bar area, a
reckless driving alert may be sent in advance within a few
reported data to improve the local driving safety. In addition,
due to the increase of accuracy with more reported reckless
driving maneuvers, the rating results should be timely updated
to terminate the false alarm and identify the real reckless
vehicles.
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VI. CONCLUSION

Observing the severity of reckless driving on the road
nowadays, we proposed a defensive alerting system to proac-
tively detect and notify the threats from approaching reckless
vehicles. To better understand the consequence of reckless
driving, we first theoretically evaluated the crash probability
of a typical reckless driving maneuver, i.e., reckless lane
changing. Based on the verified the need for defensive reckless
driving alerts, we further developed a machine learning based
cooperative driving performance rating (CDPR) mechanism by
integrating the computation capabilities of neighbor vehicles
and a cloud server. By utilizing the monitored information
from neighbor vehicles, the CDPR mechanism automatically
and intelligently detects reckless vehicles. To support such
a defensive alerting system, a three-tier system architecture
was developed from existing vehicular networks. Moreover,
we devised a transmission load reduction scheme by only
uploading the data of driving maneuvers with reckless po-
tential. Based on the aggregated monitoring data, the cloud
server globally rates every vehicle’s driving performance by
using SVM and decision-tree machine learning algorithms.
We finally implemented the proposed CDPR mechanism into
SUMO simulator. Extensive simulation results illustrated that
our defensive alerting system can accurately detect reckless
vehicles and provide timely alerts.
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