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Abstract—To support the demand of multi-Gbps sensory data
exchanges for enhancing (semi)-autonomous driving, millimeter-
wave bands (mmWave) vehicular-to-infrastructure (V2I) commu-
nications have attracted intensive attention. Unfortunately, the
vulnerability to blockages over mmWave bands poses significant
design challenges, which can be hardly addressed by manipu-
lating end transceivers, such as beamforming techniques. In this
paper, we propose to enhance mmWave V2I communications by
augmenting the transmission environments through reflection,
where highly-reflective cheap metallic plates are deployed as
tunable reflectors without damaging the aesthetic nature of the
environments. In this way, alternative indirect line-of-sight (LOS)
links are established by adjusting the angle of reflectors. Our
fundamental challenge is to adapt the time-consuming reflector
angle tuning to the highly dynamic vehicular environment. By
using deep reinforcement learning, we propose the Learning-
based Fast Reflection (LFR) algorithm, which autonomously
learns from the observable traffic pattern to select desirable
reflector angles in advance for probably blocked vehicles in
near future. Simulation results demonstrate our proposal could
effectively augment mmWave V2I transmission environments
with significant performance gain.

Index Terms—Blockages, learning-based, mmWave, tunable
Reflector, transmission environment augmentation, V2I.

I. INTRODUCTION

Hundreds of sensors are equipped to vehicles nowadays
for enhancing driving safety and convenience, generating a
large amount of sensing data [1]. Vehicular-to-infrastructure
(V2I) communications allow sharing these sensing data among
vehicles and roadside units (RSUs), which enable more ad-
vanced services, ranging from safety-related forward collision
warning to future automatic driving [2]. To support such
large volume data exchanges, millimeter wave (mmWave)
bands have attracted great attentions [1], [2]. However, in the
highly dynamic vehicular environments, the poor transmission
characteristics of mmWave bands, especially the vulnerability
to blockages, become more severe [2], [3]. Due to the poor
penetration and diffraction, as well as the nature of directional
transmission, an mmWave V2I link can be easily blocked by
obstacles as shown in Fig.1(a), which can not be solved by
increasing the transmit power or antenna gain.

Recently, alternative line-of-sight (LOS) links have been
considered to address the blocked mmWave transmissions [4]–
[8]. One intuitive scheme is to utilize mmWave relays either
on moving vehicles or statically deployed along the roadside.

Fig. 1. The illustration of blockages in mmWave V2I communications (a);
the system architecture for tunable reflector enabled transmission environment
augmentation (b).

However, on the one hand, due to the limited height of
a vehicle, the onboard relays usually have very short LOS
transmission range [3], [9]. Thus, a blocked V2I transmis-
sion needs to be recovered by cooperation among multiple
onboard relays, which introduces a large overhead in terms
of delay, energy and spectrum utilization, etc. Although a
roadside relay can be deployed at a relatively high position
with longer LOS transmissions, a large-scale deployment of
these expensive mmWave relays will seriously burden the
cost of mmWave V2I communications [9]. Instead of using
expensive mmWave relays, alternative LOS links established
through reflection have aroused great attention recently [4]–
[8]. Through bouncing off surrounding environments like wall
and floor, Xue et al. proposed to concurrently transmit multiple
reflected beams to one user [4]. However, the poor reflectance
of surrounding environments like concrete and wood usually
leads to severe signal loss [6]. Fortunately, the cheap metallic
plates with smooth surface can reflect nearly 100% signal
strength [10]. Using metallic ceiling, Zhou, et al. enabled
several machine pairs to simultaneously communicate through
mmWave bands in a data center, whose effectiveness is verified
through the testbed [5]. Unlike data centers used to store
machines, our previous work considered the functionality and
aesthetic nature of indoor human living environment, and pro-
posed to deploy small-piece reflectors to augment the transmis-



sion environments of mmWave wireless local area networks
(WLANs) [8]. Moreover, to deal with the limited augmentation
caused by the strict reflection requirements (identical incidence
and reflection angle), we proposed to utilize tunable reflectors,
i.e., highly reflective cheap metallic plates with adjustable
angles, to adaptively change the directions of the reflected
beams, whose effectiveness is theoretically verified [8]. Al-
though tunable reflectors can promisingly enhance mmWave
transmissions by introducing alternative LOS links in a cost-
effective way, our previous work designed for WLANs can be
hardly implemented to highly dynamic V2I communications.
To the best of our knowledge, none of existing analysis has
focused on this important design.

In this paper, we investigate how to implement tunable
reflectors to augment transmission environments for better
mmWave V2I communications. Without damaging the aes-
thetic and functionality nature of driving environments, the
small-piece tunable reflectors can be deployed on the top of
roadside lighting poles. To effectively tune the angle of a
reflector plate, we first design the system architecture fol-
lowed by the operational procedures. Considering the con-
tradiction between the highly dynamic blockages and the
time-consuming mechanical angle tuning, our fundamental
challenge is to design the angle tuning policy to fast adapt
to V2I transmissions. To enable autonomously exploration,
learning and mapping from the observable traffic patterns
to desirable reflector angles, we propose the Learning-based
Fast Reflection (LFR) algorithm by using deep reinforcement
learning (DRL). Embracing the advantages of deep neural
networks (DNN), DRL has been adopted in complicated
vehicular transmission environments [11], [12]. By using LFR
algorithm, the angle of a reflector plate can be determined
to serve the blocked vehicle in near future based on current
traffic pattern, where a reflective link can be established in
advance to recover the blocked data to the fullest extent.
Simulation results verify the effectiveness of our environment
augmentation proposal for mmWave V2I communications, and
the significant performance gain by LFR algorithm.

II. SYSTEM MODEL

A. System Architecture

Our system architecture is extended from our previous work
for mmWave wireless local area networks (WLANs) [8]. As
illustrated in Fig.1(b), the system architecture is developed
form the concept of control-/data-plane decoupling to mitigate
the inherent blindness of directional mmWave transmissions
while saving cost. The data-plane provides mmWave V2I
transmissions among the RSUs using mmWave bands, named
by mm-RSUs, and vehicles. The control-plan aims at coordi-
nating the establishments of reflective links by supporting fast
handshakes among the vehicle, reflector(s) and mm-RSU, and
facilitating operations on directional mmWave transmissions,
which is done by a controller. Physically, the controller could
be a RSU using relatively reliable low-frequency bands with
omni-directional coverage, named by LF-RSU. Based on the
control signaling, the angle of a reflector plate is adjusted to

Fig. 2. The operational procedures of our tunable reflector enabled mmWave
V2I communications.

reflect mmWave signals to surrounding vehicles. Besides a
smooth metallic plate, a tunable reflector is equipped with
a cost-effective low-frequency transceiver, such as the com-
mercialized onboard V2I transceiver, and a simple mechanical
device to rotate the metallic plate. Without damaging the
aesthetic nature of environments, these small-piece tunable
reflectors are deployed at places of interest, such as the top of
a lighting pole. To enable a reflective V2I link, the controller
connects with an mm-RSU through either low-frequency links
or deployed wired links. A vehicle is assumed to be equipped
with both the low-frequency and mmWave transceivers for
control-/data-plane signaling, respectively.

B. Operational Procedures

Based on above system architecture, we propose the corre-
sponding operational procedures as illustrated in Fig.2. In each
reflector scheduling slot t ∈ T , instead of the conventional
V2I beam alignment which might be failed due to blockages
as shown in Fig.1(a), we first observe the environment to
examine blockages. Since the blockages can be either dynamic
like moving vehicles or static like trees or buildings, the
examination is based on the information of both current
traffic pattern and existing environment information (historical
blockage records). After that, the LOS V2I links can be
established based on conventional beamforming techniques,
while the blocked V2I links would be assisted by tunable
reflectors. By using either conventional or reflective V2I links,
the mmWave transmissions can be processed. It should be
mentioned that the time-scale of blockage examinations is
larger than that of communication scheduling, e.g., hundreds
or thousands vs. tens of milliseconds. The duration of reflector
scheduling can sufficiently catch the traffic changing, i.e., dy-
namic blockages in mmWave V2I transmissions, and meet the
time requirement for mechanical reflector angle tuning. Based
on the LOS V2I tunnels provided by tunable reflectors in one
reflector scheduling slot, a vehicle may have multiple data
transmissions, depending on the communication scheduling for
specific applications.

The transmission environment observation focuses on the
road segment covered by a typical mm-RSU, which is as-
sumed to be two-way l-lane. The driving information of all
vehicles, i.e., vehicles on or heading to this road segment, are
recorded and periodically updated in the LF-RSU through the



control signaling. This kind of driving data collection might
be a mandate for driving-safety related applications, such as
collision warning and traffic management in near future [1].
Denote all vehicles at time t by a set Vt = {vt,i}i=1,...,Vt

of Vt vehicles, whose driving information can be given by
Iv = {xv, yv, d, u, h}, representing the coordinate of current
position, heading direction, velocity and size, respectively.
Since there might be only a portion of all vehicles subscribe
mmWave V2I services, denote vehicles with mmWave V2I
requests by a set Vm

t =
{
vmt,i
}
i=1,...,V m

t

⊂ Vt of V m
t vehicles.

In addition, the existing environment information of this road
segment illustrates the static blockages, which is mapped
to the definitely blocked positions based on the historical
knowledge. Denote the existing environment information by
Ie = (X b,Yb), which might require an updated with a large-
scale time duration.

Based on the above observations, at each time slot t ∈ T ,
tunable reflectors are activated to serve the blocked mmWave
V2I clients. Assume each reflector is only used by one mm-
RSU. Define a set K = {kj}j=1,...,K of K tunable reflectors,
deployed along the roadside at the top of the lighting poles
with height hr, whose positions are (xrkj

, yrkj
). Since the

mechanical angle tuning is time-consuming, we prefer to use
the reflector with a small angle tuning. Denote the angle of re-
flectors kj ∈ K at time t by φt,kj . Thus, we have the status in-
formation of tunable reflectors, Irt,kj

=
{
xrkj

, yrkj
, φt,kj

}
kj∈K

,

which is recorded by the LF-RSU. By integrating all above
contextual information, we particularly design the learning-
based fast reflection (LFR) algorithm to autonomously handle
the whole operational procedures for better mmWave V2I
communications, detailed below.

III. LFR ALGORITHM

A. The Learning Framework

Aiming at autonomously handling transmission environment
augmentation for blocked mmWave V2I transmissions, LFR
algorithm is based on deep reinforcement learning (DRL).
As a policy learning process, the agent of DRL periodically
makes decisions, observes and learns from the correspond-
ing results, and then autonomously adjust its policy [11]–
[13]. The tasks are usually formulated as Markov Decision
Process (MDP) with implicit transition probability and the
rewarding. Embracing the advantages of deep neural networks
(DNN), DRL can be fast trained to reach optimal policy for
complicated tasks, which has been applied in recent mmWave
vehicular analysis [11]–[13]. As illustrated in Fig.3, our agent
periodically interacts with the environment to make decisions
about mmWave V2I transmissions. Physically, the agent can
be an mm-RSU, whose observations are gathered from the
LF-RSU through wired connections.

At each time slot t ∈ T , the agent observes a state
st from state space S, which includes the traffic pattern
Iv =

{
Ivvi |vi∈V

}
, the existing environment Ie = (X b,Yb),

Fig. 3. The framework of LFR algorithm.

the reflector status information Ir =
{
Irkj
|kj∈K

}
, and the

mmWave V2I client Vm. Thus, we have

st = {Irt , Ivt , Ie,Vm
t } . (1)

Based on state st, the agent takes an action at ∈ A to
determine the establishment of reflective links, i.e., a reflector
should be used at what specific angle for which blocked
vehicle. Define the blocked mmWave V2I clients in time slot
t by a set Vbm

t ⊂ Vm
t of V bm

t vehicles. Note that due to the
limited number of tunable reflectors, given each reflector only
serves one vehicle at one time, only part of blocked vehicles
can be served when V bm

t > K. Define the reflector allocation
indicator by J

kj

vbm
t,i

with J
kj

vbm
t,i

= 1 if the blocked vehicle

vbmt,i ∈ Vbm
t is served by reflector kj ∈ K, and J

kj

vbm
t,i

= 0

otherwise. Since one reflector can serve one vehicle at a time
slot,

∑
vbm
t,i ∈{Vbm

t ∪vbm
t,0 } J

kj

V bm
t,i

= 1 for all kj ∈ K, where vbmt,0
represents reflector kj is not used for any vehicle. Meanwhile,
since we assume one blocked vehicle is at most served by
one reflector,

∑
kj∈K J

kj

vbm
t,i

∈ {0, 1} for all vbmt,i ∈ Vbm
t . Due

to certain beam-width, e.g., 15◦, instead of high-resolution
control, we divide the angle tuning range into M partitions
to reduce the requirement of the mechanical tuning device
while guaranteeing the performance of the reflected beams.
At time slot t, the target angel of reflector kj ∈ K should
be determined by the service indicator

{
J
kj

vbm
t,i

}
vbm
t,i ∈Vbm

t

. The

action at ∈ A can be given by

at =
{
J
kj

vbm
t,i

|kj ∈ K, vbmt,i ∈ Vbm
t

}
. (2)

Since V bm
t ≤ V m

t , the dimension of action space is V m
t ×K.

B. Expected Reward Estimation

The objective of LFR algorithm is to effectively serve the
blocked mmWave V2I transmissions to mitigate their data
loss at the maximum extent. On the one hand, compared
with the blocked vehicles that can be fast recovered, vehicles
with longer blocking time, i.e., more data loss, should have
higher service priority. On the other hand, less angle tuning
time should be used to leave more time for data transmission,
and thus improve the utility of each reflective link. Since the
learning process is guided by the reward value r, the reward
function is defined as the increased data amount by introducing



reflective links. Denote the capacity of an mmWave V2I
transmission for vehicle vmt,i by

Cvm
t,i

(L(d)) = W log2(1 +
PtG0L(d)−1

σ2
), (3)

where Pt is the transmit power, G0 is the beamforming
gain, σ2 is the noise power. L(d) = α + 10η log10(d) +
ξ[dB], ξ ∼ N(0, ρ2) is the path loss model of mmWave
transmissions, where d is the transmission distance, α and
η are the least square fits of floating intercept and slope over
the measured distance, and ρ2 is the lognormal shadowing.
The values of α, η and ρ are different for LOS and Non-
LOS (NLOS, i.e., blocked) link states [14]. Thus, the capacity
improvement by introducing a reflective link can be given by
∆Cvbm

t,i
= CR

vbm
t,i

(L′(d′))− CD
vbm
t,i

(L(d)), vbmt,i ∈ Vbm
t .

Since the mechanical angle tuning is time-consuming, we
take the useful transmission time in each scheduling slot t ∈
T into account. Given the M partitioned angle tuning range,
define the time used to tune to the next angle partition by ∆τ .
Thus, the time used to tune reflector kj from current angel φkj

t

to serve vehicle vbmt,i can be expressed as τkj

t (φ
kj

t , v
bm
t,i ),where

τ
kj

t ∈ {m∆τ}m=0,1,...,M . Given the duration of a time slot
by ∆t, we derive the reward function at time slot t by,

rt =
∑
kj∈K

 ∑
vbm
t,i ∈Vbm

t

J
kj

vbm
t,i

∆Cvbm
t,i

(∆t− τkj

t

)
. (4)

In order to obtain the long-term benefits, not only the
immediate rewards but also the future rewards should be
considered. Therefore, the aim of our agent is to find an
optimal policy a∗t = π∗(xt) ∈ A for t ∈ T , which maximizes
the expected cumulative discounted rewards,

Rt = E

[ ∞∑
n=0

βnrt+n

]
, (5)

where β ∈ [0, 1] is the discount factor to limit the effect of
rewards in the far future.

C. Deep Q-Learning

Based on a policy π, the agent maps the state space, S, to
the action space, A, by π : st ∈ S → at ∈ A, to maximize
the long-term expected cumulative discount rewards, Rt. Q-
learning algorithms are popular techniques to derive the opti-
mal policy π∗ due to its effectiveness and simplicity [11]–[13].
The Q-value Q(st, at) is defined as the expected cumulative
discounted reward, Rt, for a given state-action pair (st, at),
which measures the qualify of a certain action at for a
given state st. Based on the Q-value of a given state st, an
improved policy can be easily derived by taking the action
at = arg maxa∈AQ(st, a). Therefore, the optimal policy can
be known based on the following update equation,

Qnew(st, at) =Qold(st, at) + γ[rt+1+

δmax
s∈S

Qold(st, at)−Qold(st, at)],
(6)

where γ is the learning rate, and the second term on the right
is the temporal difference error of the Q-value update, which
approaches to zero under the optimal policy π∗. It has been
proved that the Q-value in MDP problems converges to the
optimum, if each action in A can be executed under each state
in S for infinite times with appropriately decaying learning
rate γ [11]–[13]. The optimal policy π∗ can be determined
based on the optimal Q-value Q∗. In classical Q-learning, the
optimal policy is found through a look-up table of Q-value
based on the state-action space, whose efficiency is limited by
the size of that space. When the state-action space is huge,
the Q-value of the infrequently visited state-action pair will
be updated rarely, and thus the Q-value becomes hardly to
converge. Recently, embracing the advantages of DNN, deep
Q-learning algorithms have been widely adopted to handle
MDP problems under a huge state-action space, where the
Q-function is approximated by a DNN with weights θ that is
denoted as Q-network Q [11]–[13]. Based on the well-trained
Q-network Q∗, the sophisticated mapping between the state
and action spaces can be used to determine the optimal Q-
values, i.e., the optimal policy π∗. Given the training data set
D with transitions {st, at, rt, st+1}t∈T , the Q-network Q is
trained based on the loss function below,

L(θ) =
∑

(st,at)∈D

(y −Q(st, at,θ))2, (7)

where y = rt + maxa∈AQold(st, a,θ).

Algorithm 1: Pseudocode of LFR Algorithm
Data: D = {st, st+1, at, rt}t∈T , Q-network structure;
Result: Q-network θ;

1 Initialization: Q-network Q with random weights θ,
2 experience memory DM , episode = 1;
3 while episode < Nepi do
4 With probability ε select a random action at,

otherwise select at = arg maxaQ(st, a;θ);
5 Perform action at and observe the reward rt and next

state st+1, and then store the new transaction
(st, at, rt, st+1) in DM ;

6 Sample a minibatch of transitions from DM ;
7 Optimize the Q-network Q by using this minibatch

transactions through gradient descent with respect to
weights θ to minimize L(θ);

8 episode = episode+ 1;
9 end

D. LFR Algorithm Description

Based on above design, the proposed deep Q-network is
trained on a data set D, generated from the interactions
with an environment simulator, Simulation of Urban MObility
(SUMO) [15]. As an open source microscopic traffic simu-
lator, SUMO enables repeatable controlled experiments at a
per-vehicle level based on real-world traffic topology [15].
Specifically, we utilize SUMO to generate the traffic pattern



Fig. 4. The simulation scenario and dynamic blockages.

Iv = {xv, yv, d, u, s}, i.e., the position, direction, velocity,
and shape of each vehicle on a road segment, and derive the
existing environment information Ie based on the roadside en-
vironments. Combining with the initially randomized reflector
status information Ir, the immediate reward rt of each action
at ∈ A can be derived.

The detailed LFR algorithm is illustrated in Algorithm 1.
During the training process, we utilize the Q-learning with
experience replay technique [11]–[13] to improve the train-
ing performance by suppressing the temporal correlation of
transactions in D. Specifically, in each episode, a minibatch
transactions is randomly sampled form the experience memory
DM , which is used to train the Q-network Q through gradient
descent method. Note that the new transactions will pop up
the old ones in the experience memory DM , when the buffer
of DM is full. In addition, the ε-greedy policy is utilized
to balance the exploration and exploitation, i.e., the trade-off
between improving the system knowledge about the reward
distribution (exploration) and switching to the action with the
highest empirical mean reward (exploitation).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our LFR
algorithm. As shown in Fig.4, a two-way 4-lane road segment
is generated by SUMO simulator [15], where one mm-RSU
and two tunable reflectors are uniformly deployed along the
roadside. For simplicity, we evaluate two type vehicles with
different sizes, e.g., sedan and bus/truck, where a large vehicle
may block a small one in the adjacent lane under scenarios as
shown in Fig.4. Based on the floating car data (FCD) output
in SUMO, the driving information of every vehicle along this
road can be collected in each time slot, including the position,
velocity and corresponding size, i.e., Ivt . The default system
parameters are listed in Table I, where subscripts ’L’ and ’N’
represent LOS and NLOS conditions, respectively [12], [14].
In addition, the Q-learning network in our simulation is a
five-layer fully connected neural network with three hidden
layer with 256, 128 and 128 neurons, respectively. The Relu
function is used, and the learning rate γ is 0.01 at beginning
and decreases exponentially.

To evaluate the performance of our augmented V2I trans-
missions, we first analyze the data loss caused by blockages,
which involves only dynamic blockages, i.e., outages caused
by large vehicles that are much more challenging comparing
with static blockages. The total arrival rate of this road
segment (4 lanes) is set to be 0.6. Since the large vehicles,

TABLE I
DEFAULT PARAMETERS OF EVALUATION

Parameter Value Description
αL,ηL,αN ,ηN 72,2.92,61.4,2 channel state parameters

W 500MHz bandwidth
Pt / σ2 5×105 mm-RSU Tx/noise power
G0 10dB antenna gain
hv 1.75m/3.5m height of large/small vehicle
hr 4.5m height of a reflector
∆t 1s scheduling interval

Fig. 5. The data loss caused by dynamic blockages.

like buses in the cities and trucks on the highway, are asym-
metrically distributed among different lanes, i.e., they usually
stay on the right-hand lane with relatively slow velocity, we
dynamically change the intensity of large vehicles on the right-
hand lanes (lane 1 and 4), where the intensity of large vehicles
on the left-hand lanes (lane 2 and 3) are set to be 0.1. As
illustrated in Fig.5, the average data loss in each scheduling
interval is as a function of the intensity of large vehicles on the
right-hand lanes. We observe that the data loss increases with
the intensity of large vehicles. Even with a few large vehicles,
the data loss is still significant due to the high transmission rate
of mmWave transmissions, where the minimum total data loss
is around 0.81 Gigabits per second. Thus, mitigation strategies
are imperatively necessary for mmWave V2I communications.
In addition, we observe that vehicles in the right-hand lanes
(lane 2 and 3) have larger data loss compared with those in the
left-hand lane (lane 4), which further motivates our analysis
to provide fairness to vehicles with different sizes and driving
on different lanes.

Based on the fact of poor system performance caused by
blockages, we then evaluate the performance benefits through
reflections as a function of the intensity of large vehicles.
As illustrated in Fig.6, we observe that the ideal reflection,
i.e., reflective links established without reflector angel tuning,
can mitigate more than 60% data loss. However, due to the
time-consuming nature of mechanical angle tuning, it is hard
to eliminate the overhead of reflector angle tuning which is
further analyzed below. Assume the unit time of angle tuning
∆τ is 10 ms. Although comparing with the ideal reflection,
the recovered data based on LFR scheme is reduced by nearly
8%, LFR scheme can still significantly recover more than 55%
blocked data. Moreover, we observe that LFR scheme can
effectively handle large data loss caused by more blockages,



Fig. 6. Comparison of recovered data through reflections.

Fig. 7. Comparison of average reflector angle tuning units.

where the recovered data amount is more than three times
under maximum blockages compared to that under minimum
blockages, i.e., the comparison between the intensity of large
vehicles under 1 and 0.1. In addition, since LFR scheme
autonomously pre-tunes the angle of a reflector by outage
predictions, we evaluate its performance by comparing with
the outage-report based scheme, where the reflector angle is
tuned based on the reported outages from blocked vehicles.
We observe that LFR scheme outperforms the report based
scheme by at most 10% more recovered data. To clarify this
difference, we compare their reflector angle tuning time in
each scheduling slot as a function of the intensity of large
vehicles in Fig. 7. We observe that the reflector angle tuning
time of the report based scheme is around 5 times as that of
LFR scheme, when there are a few blockages. This is because
the angle tuning in report based scheme sacrifices the time of
data transmission, while LFR scheme can pre-tune the angle
of a reflector and thus the tuning will sacrifice the time of data
transmission time only when two different vehicles are blocked
in consecutive time slots. This advantage of LFR scheme is
diminished but still significant with more blockages.

V. CONCLUSION

In this paper, we have investigated how to implement
tunable reflectors, the highly-reflective cheap metallic plates
with adjustable angles, to augment mmWave V2I transmission
environments for better communications, while not damaging
the aesthetic nature of the environment. Specifically, we have
first designed the system architecture, followed by the oper-
ational procedures. Considering the fundamental challenge of

our design, i.e., tuning the angle of a reflector plate to adapt to
the highly dynamic vehicular environments, we have proposed
LFR algorithm based on DRL. Aiming at maximizing the sys-
tem throughput, LFR autonomously learns from the observable
traffic pattern to select the desirable reflector angle for the
probably blocked vehicles in near future, in which way the
LOS reflective links can be established in advance. Simulation
results have demonstrated the effectiveness and the significant
performance gain of our environment augmentation proposal.

ACKNOWLEDGMENT

This work was partially supported by US National Science
Foundation under grants CNS-1717736 and IIS-1722791.

REFERENCES

[1] J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W.
Heath, “Millimeter-wave vehicular communication to support massive
automotive sensing,” IEEE Communications Magazine, vol. 54, no. 12,
pp. 160–167, 2016.

[2] Y. Wang, K. Venugopal, A. F. Molisch, and R. W. Heath, “Mmwave
vehicle-to-infrastructure communication: Analysis of urban microcel-
lular networks,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 8, pp. 7086–7100, 2018.

[3] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N.
Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave
mobile communications for 5g cellular: It will work!” IEEE access,
vol. 1, pp. 335–349, 2013.

[4] Q. Xue, X. Fang, and C.-X. Wang, “Beamspace su-mimo for future
millimeter wave wireless communications,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 7, pp. 1564–1575, 2017.

[5] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and
H. Zheng, “Mirror mirror on the ceiling: Flexible wireless links for data
centers,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 443–454, 2012.

[6] Z. Genc, U. H. Rizvi, E. Onur, and I. Niemegeers, “Robust 60 ghz
indoor connectivity: Is it possible with reflections?” in 2010 IEEE 71st
vehicular technology conference. IEEE, 2010, pp. 1–5.

[7] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter
wave communications (mmwave) for 5g: opportunities and challenges,”
Wireless Networks, vol. 21, no. 8, pp. 2657–2676, 2015.

[8] L. Zhang, L. Yan, B. Lin, H. Ding, Y. Fang, and X. Fang, “Aug-
menting transmission environments for better communications: tunable
reflector assisted mmwave wlans,” http://www.fang.ece.ufl.edu/drafts/
augmenting4journal.pdf, to be submitted for journal submission.

[9] R. W. Heath, “Millimeter wave communication: From origins
to disruptive applications,” http://users.ece.utexas.edu/∼rheath/
presentations/2017/MmWaveOriginsDisruptiveApplications Lytle
Washington 2017.pdf, 2017.

[10] B.-G. Choi, W.-H. Jeong, and K.-S. Kim, “Characteristics analysis
of reflection and transmission according to building materials in the
millimeter wave band,” power (dBm), vol. 13, no. 50.62, pp. 64–48,
2015.

[11] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in commu-
nications and networking: A survey,” arXiv preprint arXiv:1810.07862,
2018.

[12] H. Ye, Y. G. Li, and B.-H. F. Juang, “Deep reinforcement learning
for resource allocation in v2v communications,” IEEE Transactions on
Vehicular Technology, 2019.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[14] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rap-
paport, and E. Erkip, “Millimeter wave channel modeling and cellular
capacity evaluation,” IEEE journal on selected areas in communications,
vol. 32, no. 6, pp. 1164–1179, 2014.

[15] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. WieBner,
“Microscopic traffic simulation using sumo,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 2575–2582.


