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Abstract—The exploding popularity of mobile devices enables people to enjoy benefits brought by various interesting mobile apps.
However, the ever-increasing data traffic has exacerbated the congestion on current cellular networks, which results in users’
dissatisfaction, especially in crowded areas. Hence, how to alleviate data traffic in cellular networks becomes a challenging problem.
Traditional methods rely on mobile offloading techniques to deviate the data traffic originally targeted to cellular networks, such as
the small cell, Wi-Fi, and opportunistic communication. Unfortunately, mobile users still experience severe congestion when a large
number of users request for data. Facing these challenges, we introduce the concept of mobile participation to assist data offloading
by leveraging the mobility of users and the social features among a group of users. A mobile caching user, who pre-caches a certain
amount of contents, will roam around congested areas to participate in content dissemination in order to satisfy users’ requests, which
is expected to benefit both himself and users in the crowd simultaneously. To motivate such human-enabled mobile participation for data
offloading, a Stackelberg game is deployed with joint considerations on social effect and delay effect. Based on detailed performance
analysis, we demonstrate the feasibility and efficiency of the proposed approach.

Index Terms—Data Offloading, Mobile Participation, Homophily Phenomenon, Stackelberg Game.
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1 INTRODUCTION

THE soaring popularity of mobile devices enables people
to communicate with their social ties at any time and

from anywhere. People use mobile apps to create and ex-
change a huge amount of data with their social interactions
in cyberspace. Reports warn that monthly global mobile
data traffic will surpass 24.3 exabytes and the mobile data
traffic from smartphones will reach three-quarters by 2019
[1]. Although cellular network operators exploit their efforts
to provide better services in terms of higher data rate
and lower costs, users are still facing poor performance in
their daily life, especially in some crowded areas, such as
football stadiums, theme parks, and airports. However, the
above crowded areas are the places that highly need reli-
able wireless communication, e.g., broadcasting evacuation
information for safety purpose. As a promising solution,
mobile data offloading takes advantages of small cell, Wi-Fi,
and opportunistic communication to pro-actively reduce the
data traffic targeted for cellular networks [2]. Unfortunately,
although various types of mobile offloading schemes have
been proposed in both academia and industry, we are still
lacking effective methods. For example, utilizing small cells
is not an effective method due to the scarcity of licensed
spectrum bandwidths. Even worse, deploying more small
cells will incur significant costs. Regarding Wi-Fi offloading,
the service provider has access to much larger free spectrum
to cater the Wi-Fi deployment. However, Wi-Fi offloading
cannot provide guaranteed QoS, and Wi-Fi-enabled devices
may experience increased battery drainage since it has to
operate on two different radio interfaces [3]. To perform
mobile offloading, opportunistic communication has been
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identified as another approach, which increases communi-
cation chances by utilizing the potential social connections
among users and thus is beneficial to deliver contents. In
particular, some works [4, 5] apply social-based approaches
to help data dissemination among social ties or users with
similar social profiles. Apparently, the opportunistic com-
munication is not reliable for data delivery in an ad hoc
mode because there is lack of incentives for source users to
coordinate the data dissemination. Clearly, mobile offload-
ing has not been well developed nor widely applied.

Facing these challenges and existing solutions, we take
a step further to reconsider the human-enabled approach
for mobile offloading, which takes human social behaviors
and human activities into consideration. Intuitively, users
with similar social interests often group together at certain
location [6], which potentially results in similar content
requests. For example, users gathered in specific attractions
in the Disneyland may request the similar contents related
to those attractions. When they request similar contents,
network congestion would be caused due to limited band-
width. Such congestion potentially prevents users from get-
ting their requested contents. The above phenomenon leads
us to consider how to avoid repeated requests/retrievals
in order to reduce the number of accesses to the service
provider (SP). A possible solution is to leverage users’
similar social attributes to design a human-enabled data of-
floading scheme. In sociology [7], homophily phenomenon
describes that people with more similar attributes contact
more frequently than complete strangers. The interactions
between users with more contacts bring more social effect,
which captures the advantages of word-of-mouth communi-
cation [8]. Specifically, users typically form their opinions
about the quality of the contents based on the information
they obtain from other users. Thus, when a user demands
more contents, his social friends would also request
more contents due to the similarity of their interests.
Meanwhile, users with identical attributes could share their
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contents with each other using free device-to-device (D2D)
communication. As for human activities, an observation is
that users in crowded areas either walk around or go to their
interested attractions. Hence, we can take advantage of the
mobility of users to alleviate the congestion.

In this work, we propose a human-enabled mobile
participation approach in data offloading by introducing a
mobile caching user (MCU), who bridges the gap between
the SP and users when the above congestion happens. Qur
approach is mainly divided into two steps. In the first step,
we consider the data offloading between the MCU and the
representing users (RUs) with similar content requests in
crowded areas. Specifically, an MCU pre-caches a number
of large volume contents in advance. After receiving conges-
tion information (e.g., congestion area, requested contents,
.etc) from the SP, the MCU chooses a specific crowded area
where requested contents are similar with his own interests
and is near to his current location, physically moves to
the RUs in the chosen area and transfers the contents to
them. In the second step, the RUs with obtained contents
further disseminate content copies via D2D communication
to other users opportunistically, who have the identical con-
tent requests with them. We mainly consider the first step,
where delay-tolerant scenario and delay-sensitive scenario
are discussed. In the delay-tolerant scenario, RUs would
like to wait until they download the requested contents.
Whereas in the delay-sensitive scenario, RUs are urgent to
get the requested contents. They will be more dissatisfied
with the increasing of the waiting time. Compared to tra-
ditional data offloading approaches, the proposed approach
is significantly cheaper than the small cell build-out. More-
over, by physically moving to the crowd, the MCU makes
data transmission more reliable and flexible than either Wi-
Fi or pure D2D communication.

To motivate above human-enabled mobile participation,
we design an incentive mechanism. While participating in
human-enabled data offloading, the MCU spends a few
time in moving and consumes his own resources such as
battery and storage. Hence, he would not be interested
in it unless he receives a satisfying revenue. As for RUs,
they not only get the originally requested contents, but also
harvest additional contents they may be interested in due
to the similarity of their interests with other RUs, which
largely improves their satisfactions. Since RUs request sim-
ilar contents and pay for them individually, it is reasonable
to assume that RUs are selfish and rational. Hence, each RU
only wants to maximize his own satisfaction. To increase the
MCU’s total revenue and provide RUs’ satisfaction, we will
thoroughly investigate RUs‘ content requests, social effect,
delay effect, and unit payment strategy for both the MCU
and RUs in the proposed incentive mechanism.

Our Contributions: We highlight our major contribu-
tions as follows,
• We propose a new data offloading scheme that takes

advantages of both homophily phenomenon and
mobile participation to greatly reduce the conges-
tion in crowded areas where users with similar inter-
ests are normally grouped together.

• Specifically, we consider two system models: the
delay-tolerant model and the delay-sensitive model.
In both models, by considering RUs’ interactions, we
formulate the communication between the MCU and
RUs as a two-stage Stackelberg game. In Stage I, the

MCU chooses a unit payment to maximize his total
revenue. In Stage II, each RU chooses a requested
content level given the unit payment to maximize
his satisfaction on the received contents.

• For the delay-tolerant scenario, the interactions be-
tween RUs bring social effect. We first give an as-
sumption under which we show the existence and
uniqueness of the Nash equilibrium in Stage II. Then,
we present an effective algorithm to compute the
unique Stackelberg equilibrium in Stage I, at which
the revenue of the MCU is maximized, and none of
the RUs continue requesting contents by unilaterally
deviating from his current strategy

• For the delay-sensitive scenario, the interactions be-
tween RUs not only bring social effect but also delay
effect. We extend the Stakelberg game to the delay-
sensitive model. To alleviate the serious delay effect,
we propose two improved delay-sensitive models
by taking advantages of users’ mobility, where the
first one considers the queueing delay and the other
introduces multiple MCUs.

The rest of this paper is organized as follows: In Section
2, we briefly review the existing data offloading approaches,
economical incentives for performing data offloading and
the social effect due to similar interests between RUs based
on their social relationship. In Section 3, we explain our
motivations of leveraging the homophily phenomenon and
the mobile participation. Following with that, a detailed
description of our proposed data offloading system models
is given in Section 4, which are formulated as two-stage
Stackelberg games respectively. In Section 5, we study the
proposed Stackelberg game in the delay-tolerant scenario.
To better adapt to the practical situation, we extend the
Stackelberg game to the delay-sensitive scenario in Section
6. In Section 7, the performance of our data offloading
approach is evaluated, followed by the conclusion in Section
8.

2 RELATED WORK

2.1 Mobile Data Offloading

Mobile data offloading [3] is a promising way to alleviate
traffic congestion and reduce the energy and bandwidth
consumption. For example, Liang et al. in [9] offload their
applications and data from mobile devices to the cloud to
improve users’ experience in terms of longer battery life-
time, larger data storage, faster processing speed and more
powerful security services. Zhang et al. in [10] offload mo-
bile users’ applications to nearby mobile resource-rich de-
vices (i.e., cloudlets) in an intermittently connected system
to reduce energy consumption and improve performance.
In this paper, we generally discuss the mobile offloading
for cellular networks, which is classified into two categories
[11]. Infrastructure-based mobile data offloading [12] refers
to deploying small cell base stations and Wi-Fi hotspots for
mobile users [7, 13]. The connection between mobile users
and the base station is proposed to achieve flow level load
balancing under spatially heterogeneous traffic distributions
in [14, 15] . However, the lack of cost-effective backhaul
associations for base station often impairs their performance
in terms of offloading mobile traffic. The second category
is the ad-hoc-based mobile traffic offloading, which refers
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to applying short range communication as the underlay to
offload mobile traffic [4, 5, 16–18].

2.2 Economic Incentives for Data Offloading
The above works mainly focus on the technical perspective
adopt of data offloading without considering economic
incentives. The incentive issue is significant for the case
where Wi-Fi or small cell is privately owned by third-party
entities, who are expected to be reluctant to admit non-
registered users’ traffic without proper incentives [19]. The
incentive framework for the so-called user-initiated data
offloading is considered in [20, 21], where users initiate the
offloading process and offer necessary incentives in order to
obtain their contents. Gao et.al. in [19] consider the network-
initiated data offloading, where cellular networks initiate
the offloading process, and hence the network operators are
responsible for incentivizing Wi-Fi.

2.3 Attribute-based Social Effect
The above works do not consider homophily phenomenon
[7]. Reingen et al. in [22] conduct a survey of the members of
a sorority in which they measure brand preference congruity
as a function of whether they live in the sorority house.
They find that those who live together as a group have
more congruent brand preferences than those who do not.
Presumably, living together provides more opportunities for
interaction and communication. Taking a further step, they
note that information obtained from social tie connections
will influence in decision making in [23].

The above observations and inference are deployed in
several works. In [24–26], different privacy-preserving au-
thentication schemes for mobile health networks are de-
signed from a social perspective view. Users in online social
networks apply their attributes to find matched friends and
establish social relationships with strangers in [27]. Gong
et al. in [28] study users’ behaviors by jointly considering
congestion effect in the physical wireless domain and social
effect based on users’ social relationship. In [29, 30], a so-
cial group utility maximization framework, which captures
the impact of mobile users’ diverse social ties, is studied.
Considering the social effect brought by social ties among
users, different pricing strategies of a monopolist have been
studied in [31]. In our previous work [32], the social effect
brought by users’ similar social attributes is deployed to
assist data offloading. However, the introduction of the
MCU brings severe delay effect, which negatively affects
the data offloading performance. To alleviate delay effect,
we take the queue and multi-leader Stackelberg game into
consideration now, which differentiates our paper with [28].
We focus on incentive mechanisms to motivate human-
enabled mobile participation for data offloading under both
social effect and severe delay effect.

3 MOTIVATIONS AND PRELIMINARIES

3.1 Social Enabled Data Offloading
Given a pair of strangers, one cannot push another to
help recommend/forward his contents if they do not have
any pre-established relationship. However, comparing with
complete strangers, people may intend to help the one
that shares some similarities in terms of attributes, e.g.,
language, nationality, affiliation, etc. As discussed in [33], it
is a well-accepted nature of human interaction that people
like to interact with those who are similar to themselves,

which is often termed the ”like me” principle. In [34, 35],
the authors conduct an experiment based on the trace file
collected during the INFOCOM 2006 [36], which analyzes
the relationship between the contact rate and the number of
identical attributes. The result shows that the contact rate in
terms of the number of contacts between two users increases
with the increment of identical attributes, which further val-
idates the ”like-me” principle. Therefore, a potential social
tie can be set up based on the attribute similarity. Further-
more, Reingen et al. in [23] find that information obtained
from strong tie connections are more influential in decision
making than weak tie connections at a micro level (infor-
mation flows within dyads or small groups). Motivated by
it, content dissemination would be more efficient given the
assumption that more attribute similarities exist between
users. In addition, users who share similar interests intend
to form a group and they can forward messages to others
in the group more efficiently according to [37]. Hence, we
infer that the social-enabled content dissemination would
be much more efficient if users apply attribute similarity to
form the attribute-similar group.

Motivated by the above discussions, we consider hu-
man’s similar social attributes. In the scenarios where users
group together based on their similar social attributes, such
as interests, their requested contents have a higher proba-
bility to be similar even identical due to their influence on
each other. Hence, we could select RUs to request contents
and further disseminate them to other users via D2D com-
munication. Thus, users can obtain more interested contents
and their satisfactions are improved.

3.2 Mobile Participation
We conduct an experiment analyzing human mobility traces
using the real data trace file [38] in order to show the
feasibility of mobile participation. The human traces are ob-
tained every 30 seconds from 40 volunteers who spent their
Thanksgiving and Christmas holidays in Disney World,
Florida, US. We describe all the locations the volunteers
have gone to as shown in Fig.1a, in which we circle the
locations that are visited most. By comparing it with the real
Disney World map in Fig.1b, we find that those circled loca-
tions are exactly the crowded attraction areas, where users
with similar interests get together and request similar con-
tents. For example, at the Rock ’n’ Roller Coaster Starring
Aerosmith attraction, many young visitors who enjoy the
trilling feelings group together and they are more interested
in exciting contents. In addition, we draw 17 volunteers’
mobile traces as time changes in Fig.2a, which verifies the
mobility of volunteers. Meanwhile, we illustrate volunteers’
locations in different time-slots in Fig.2b,where we see that
volunteers are distributed in all crowded attraction areas
in each time-slot. Inferring from the observations in Fig.1
and Fig.2, we conclude that: 1). volunteers move as time
changes; 2), there always exist volunteers in each attraction
in each time-slot. Therefore, leveraging mobile participation
is feasible to achieve content delivery and dissemination.

4 SYSTEM MODEL AND PROBLEM FORMULATION

4.1 Overview
To assist the description, we continue the example in Disney
World as shown in Fig. 3, where the yellow area is denoted
as the Rock ’n’ Roller Coaster Starring Aerosmith attraction.
It is divided into two time-slots. In time-slot 1, no congestion
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(a) Potential location in Real Trace (b) Disney Map

Fig. 1: Potential Location of the MCU

(a) Potential Location vs. Time (b) Locations in Different Time Slot

Fig. 2: Time Changes vs. Potential Location

exists in the yellow area. David downloads numbers of
contents and continues to visit other attractions. In time-slot
2, an increasing number of users with similar interests group
together and request for contents related to the attraction,
which results in severe congestion. As a result, users cannot
get the requested contents from the SP. The SP asks David
for help via transmitting him the short message related to
the congestion information. Since David is interested in the
same attraction and can obtain extra revenue, he moves
back to disseminate the contents after checking the distance
availability between himself and the chosen attraction. He
first announces the unit payment for the requested contents.
Each RU chooses a requested content quantity to maximize
his satisfaction based on the unit payment and other RU’s
choices, which is submitted to David. David maximizes
the total revenue and computes the corresponding unit
payment which is returned to RUs. Such communication
between David and RUs is processed iteratively until David
and RUs reach an agreement, in which David gets the
maximized revenue and RUs satisfy the content obtaining
experience. Finally, RUs disseminate their contents to other
users in the crowd via D2D communication.

Time-slot 1 Time-slot 2
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Fig. 3: System Model of Mobile Participation

4.2 System Model
Depending on RUs’ sensitiveness to the waiting time for
the requested contents, two models are considered: delay-

tolerant model and delay-sensitive model.

4.2.1 Delay-Tolerant Model
In the delay-tolerant model, RUs do not care their waiting
time. Assume a set of RUs N = {1, 2, · · · , i, · · ·N} group
together and cannot get their requested contents from the
SP directly, where N denotes the total number of RUs. Their
corresponding requested content level profile is represented
as x = {x1, x2, · · · , xi, · · · , xN}T ∈ [0,∞)

N , which quanti-
fies the contents they request from the MCU. Let xi ∈ [0,∞)
denote the requested content level of the RU i and x−i
denote the requested content levels of other RUs except for
the RU i. According to [31], the RU i’s satisfaction consists
of the following two parts: 1), internal characteristics, rep-
resented by the maximum internal demand rate ai > 0 and
the internal demand elasticity factor bi > 0. The internal
demand rate represents the maximum satisfaction that each
RU gets given unit content level whereas the elasticity factor
measures the sensitivity of the RU’s satisfaction to changes
in content levels [39]. 2), external characteristics, represented
by social effect that RU j brings to RU i, quantified by
gij > 0, ∀j ∈ N and j 6= i. Since utility is a terminology
in game theory and economics to represent the satisfaction
experienced by the consumer of a good [40], the satisfaction
of each RU is quantified by utility hereinafter. Given the
unit payment p the MCU charges RUs, the utility of RU i is
quantified as,

ui(xi,x−i, p) = aixi−
1

2
bix

2
i +

∑
j 6=i

gijxixj − pxi,∀i (1)

The quadratic form in (1) not only allows for tractable
analysis but also serves a good second-order approximation
for a broad class of concave utility functions [31].

Given RUs’ requested content levels, the total revenue of
the MCU is,

R (x, p) =
∑

i∈N
(p− c)xi (2)

where c is the unit cost the MCU spends when transmitting
contents to RUs, including energy and move consumption.
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4.2.2 Intuitive Delay-Sensitive Model
Due to the difference of RUs’ requested contents, the MCU
moves to RUs and delivers contents to them one by one. As
a result, each RU has to wait for the content transmission
from the MCU when multiple RUs request contents. If they
are urgent to obtain the requested contents, their utilities
would be lowered due to long waiting time.

Assume RUs do not know the transmission order of the
MCU in advance. Each RU would consider the worst case
that he is the last one to receive the contents. To clearly
show the time delay effect, we assume the transmission rates
between the MCU and RUs are normalized and the same.
The utility of the RU i in the delay-sensitive model is,

ui (xi,x−i, p) = aixi − 1
2bixi

2 +
∑
j∈N gijxixj

− 1
2d
(∑

j∈N xj
)2
− pxi,∀i (3)

where d is the delay effect coefficient determined by the SP.
Compared (3) with (1), the social relationship between RUs
brings not only positive social effect but also severe delay
effect in the intuitive delay-sensitive model.

The total revenue of the MCU keeps unchanged,

R (x, p) =
∑

i∈N
(p− c)xi. (4)

4.2.3 Queue Delay-Sensitive Model
The potential assumption in the above intuitive delay-
sensitive model is that the MCU begins transmission after
the SP receives content requests from all RUs. If the SP can
predict the potential congestion effect at some locations,
it could arrange the MCU to move to these locations in
advance instead of asking the MCU for help after congestion
effect appears. Because the SP keeps the historical data
monitoring records, the above assumption is easily satisfied.
Thus, when an RU broadcasts a content request, the MCU
could transmit the content to him on time. Simultaneously,
the content requests from other RUs continuously arrive
at the MCU. Content transmission from the MCU to RUs
forms a First In First Out (FIFO) queue model in Fig. 4. The
notations are listed in Table. 1.

Waiting
Data 

Transmitting

nR

1nR  1nU 

2nU 2nR

1nR nC

1n nC R 

nU

1nU 

Leaving 
User

(Time)

nt

n nt T(                 )

(                 )

1

Fig. 4: M/G/1 Queue in Delay-Sensitive Model

In the queue delay-sensitive model, we assume the levels
of newly arrival requested contents Cn in a finite interval of
length t follows the Poisson distribution with mean arrival
rate λ: P{Cn = j|Tn = t} = (λt)j

j! e−λt. The Poisson process
is a viable model when contents originate from a large
population of independent RUs. Due to the similar interests
of RUs at the same location, most of their requested content
levels distribute in the same interval. Given unit content
transmission speed, the content transmission time is mod-
eled to follow the Gaussian distribution with mean µ � 0

and variance σ2. Assume the traffic intensity ρ = λ/µ < 1
for stability. Based on Pollaczek-Khinchin (P-K) formula
[41], the expected RU waiting time Wq for each RU is,

Wq =
ρ2 + λ2σ2

2λ(1− ρ)
(5)

Considering the waiting time, each RU’s utility becomes,

ûi (x̂i, x̂−i, p̂) = aix̂i − 1
2bix̂

2
i +

∑
j∈N gij x̂ix̂j

−k ρ
2+λ2σ2

2λ(1−ρ) − p̂x̂i,∀i (6)

where k is the congestion coefficient. According to the
historical records, the SP can predict the traffic mean arrival
rate λ. One observation is that contents related to each at-
traction are time-invariant. Thus, the SP could also evaluate
the current traffic intensity ρ. Since different RUs request
contents when congestion effect happens, the variance σ2 is
unknown. Point estimation [42] is applied to estimate σ2,

σ̂2 =
1

N − 1

∑
j∈N

(
x̂j −

1

N

∑
m∈N

x̂m

)2

(7)

Substitute (7) into (8), the utility becomes,

ûi (x̂i, x̂−i, p̂) = aix̂i − 1
2bix̂

2
i +

∑
j∈N

gij x̂ix̂j − k ρ2

2λ(1−ρ)

−k λ
2(1−ρ)

1
N−1

∑
j∈N

(
x̂j − 1

N

∑
m∈N

x̂m

)2

− p̂x̂i,∀i (8)

The total revenue of the MCU is the same as that in the
intuitive delay-sensitive model.

4.2.4 Multi-leader Delay-Sensitive Model
Another observation in the intuitive delay-sensitive model
is that only a single MCU satisfies RUs’ content requests.
If multiple MCUs cooperatively transmit contents to RUs
simultaneously, the waiting time for each RU is reduced.
Therefore, we extend to the case where multiple MCUs
assist content transmission.

Assume there are M MCUs denoted by M =
{m1,m2, · · · ,mM}. Each RU is assigned to the nearest
MCU. Denote Ii,m = 0, 1, i ∈ N ,m ∈ M as the connec-
tion indicator between RU i and MCU m. In particular,
Ii,m = 1 implicits MCU m transmits contents to RU i. Oth-
erwise, there is no connection between them. Meanwhile,
each RU is restricted to connect one MCU whereas each
MCU serves multiple RUs,

∑
m∈M Ii,m = 1. All the Ii,m

compose a indicator matrix I. Given the locations of both
RUs and MCUs, the indicator matrix is known. Denote the
number of RUs served by the MCU mi, i = 1, 2, · · · ,M
as nmi . To ease the description, we put the RUs served
by the same MCU together and reorder the RU set as
N = {x1, · · · , xnm1

, xnm1
+1, · · · , xnm1

+nm2
, · · · , xN} with∑

mi∈M nmi = N .
Because the introduction of multiple MCUs divides RUs

into smaller piles whereas the M/G/1 queue model adapts
to the case with a large number of RUs better. Taking the
indicator matrix I into consideration, We model the utilities
based on the intuitive delay-sensitive model instead of the
queue model. The utility of each RU is,

ũi (x̃i, x̃−i, p̃) = aix̃i − 1
2bix̃

2
i +

∑
j∈N gij x̃ix̃j

− 1
2d
∑M
m=1 Ii,m

(∑
j∈N Ij,mx̃j

)2
−
∑M
m=1 p̃mx̃i,∀i (9)
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TABLE 1: Notations in M/G/1 Queue

Symbols Meaning
Rn the remaining requested content levels in the queue after the content delivery to user n
Tn the content transmission period for user n
Cn the content requests newly coming to the queue while user n+ 1 is receving the requested contents
tn the time at which the content transmission for user n is finished

tn + Tn the time at which the content transmission for user n+ 1 is finished

where p̃ = {p11
T
nm1

, p21
T
nm2

, · · · , pM1TnmM
}T is the unit

payment vector corresponding to each RU. Specifically,
1nmi

represents nmi
× 1 vector with 1s, and p̃m is the unit

payment at the MCU m. Since MCUs serve different RU
piles, their unit payments are different.

Accordingly, the revenue of each MCU is,

R̃m (x̃, p̃m) =
∑

i∈N
(p̃m − c) Ii,mx̃i,∀m ∈M (10)

Because all MCUs cooperate to offload data, they aim to
achieve the maximum total revenue,

R̃ (x̃, p̃) =
∑

m∈M

∑
i∈N

(p̃m − c) Ii,mx̃i. (11)

5 UTILITY MAXIMIZATION IN DELAY-TOLERANT
MODEL

5.1 Overview
In game theory, Stackelberg game [43] is a tool to model
the scenario where a hierarchy of actions exists between
two types of players: one is the leader, and the other is the
follower. The leader makes its move first. After the leader
chooses a strategy, the follower always chooses the best
response strategy that maximizes its utility. Knowing this
reaction from the follower, the leader strategically chooses a
strategy to maximize its utility. This optimal strategy of the
leader, together with the corresponding best response strat-
egy of the follower, constitutes a Stackelberg equilibrium.
At a Stackelberg equilibrium, no follower has an incentive
to adjust its strategy unilaterally.

The communication between the MCU and RUs in the
delay-tolerant scenario can be formulated as such a two-
stage Stackelberg game, named as Utility Maximization
game in delay-tolerant (UMDT).

Stage I (Unit Payment) The MCU chooses a unit pay-
ment p∗ to maximize the total revenue R,

p∗ = arg max
p∈[0,∞)

∑
i∈N

xi(p− c)

Stage II (Requested Content Level) Each RU i ∈ N
chooses a requested content level xi to maximize the utility
ui (xi,x−i, p) given the unit payment p and the requested
content levels of others x−i,

x∗i = arg max
xi∈[0,∞)

ui (xi,x−i, p) ,∀i

In the UMDT game, the MCU is the leader with the unit
payment p∗ as the strategy and RUs are the followers. The
strategy of RU i is the requested content level x∗i , ∀i. Due
to each RU is selfish, the game in Stage II is considered
as a non-cooperative game, which we call Request Level
Determination (RLD) game. Given the UMDT formulation,
we are interested in the following questions:

• Q1: For a given unit payment p, is there a profile of
stable strategies in the RLD game such that no RU

can increase the utility by unilaterally changing his
current strategy?

• Q2: If the answer to Q1 is affirmative, is the stable
strategy profile unique? When it is unique, RUs will
be guaranteed to select the strategies in the same
stable strategy profile.

• Q3: How can the MCU select the value of p to
maximize the total revenue?

The stable strategy profile in Q1 corresponds to the concept
of Nash equilibrium [43].

DEFINITION 1. Nash equilibrium: A profile of strategies x∗ is
a Nash equilibrium of the RLD game if for any mobile RU i

ui(x
∗
i ,x
∗
−i, p) ≥ ui(xi,x∗−i, p) (12)

for any xi ≥ 0, where ui is defined in (1).

The existence (Q1) and uniqueness (Q2) of a stable Nash
equilibrium strategy profile not only ensure that no RU has
an incentive to make a change unilaterally but also allow the
MCU to predict the behaviors of RUs and thus to select the
optimal unit payment. The answer to Q3 depends heavily
on those to Q1 and Q2. Stackelberg equilibrium, which is
the final solution to the UMDT game, consists of the optimal
solution computed in Q3 and the corresponding strategies
at the Nash equilibrium in the RLD game.

5.2 RU Utility Maximization

Backward reduction methods [43] are deployed to maximize
the utilities of both RUs and MCUs. We answer above Q1
and Q2 first, followed by an algorithm to find the RUs’ best
response strategies in the RLD game.

DEFINITION 2. Best Response Strategy: Given p and x−i, a
strategy is RU i’s best response strategy, denoted by βi(x−i), if
it maximizes the utility function ui(xi,x−i, p) in (1), over all
xi ≥ 0.

Based on the definition of Nash equilibrium, every RU
plays his best response strategy at a Nash equilibrium. By
setting the derivative ∂ui(xi,x−i,pi)

∂xi
= 0 as the first order

condition in (1), we obtain the RU i’s best response strategy,

βi (x−i) = max

{
0,
ai − p
bi

+
∑

j 6=i

gij
bi
xj

}
,∀i (13)

in which the max operation is to ensure RU i’s strategy non-
negative. Each RU’s best response strategy consists of two
parts: internal demand (ai − p)/bi which is independent of
other RUs, and external demand

∑
j 6=i

gij
bi
xj indicating the

social effect other RUs bring to the RU i. The coefficient
gij/bi represents the marginal increase of RU i’s requested
content level when RU j’s requested content level increases.
It implies that the increase of other RUs’ strategies has a
positive impact on the RU i’s strategy.
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5.2.1 Existence and Uniqueness of RUs’ Best Response
Strategies — the Answers to Q1 and Q2

Since each RU has a great incentive to unboundedly increase
the requested content levels provided other RUs’ request
levels are sufficiently large, the Nash equilibrium cannot be
ensured to exist. To circumvent such situation, we give a
general assumption under which a Nash equilibrium exists.

Assumption 1.
∑
j 6=i

gij
bi
< 1,∀i.

The Assumption 1 is a sufficient condition for the ex-
istence of RUs‘ best response strategies. Assume that the
maximum requested content level among all the other RUs
is x

′

j . Under the Assumption 1, the external demand is∑
j 6=i

gij
bi
xj ≤

∑
j 6=i

gij
bi
x
′

j < x
′

j . It implies that the social
effect experienced by an RU from others is limited to the
largest effect this RU can experience from an individual of
the other RUs.

THEOREM 1. Under Assumption 1, the RLD game in Stage
II always admits a Nash equilibrium for RUs.

We prove the Theorem 1 in Appendix. The main idea
is to show our RLD game with unbounded content levels
is equivalent to a game with bounded content levels that
admits a Nash equilibrium.

THEOREM 2. Under Assumption 1, the RLD game in Stage
II has a unique best response strategy.

We prove the Theorem 2 in Appendix. According to [44],
we try to demonstrate that the RLD game is a concave game.

5.2.2 Calculation of RUs’ Best Response Strategies

We propose an algorithm to calculate RUs’ best response
strategies as shown in Algorithm 1.

Algorithm 1: Calculate the RUs’ Best Response Strate-
gies

Input: precision threshold ε
Output: x∗

1 x
(0)
i ← 0,∀i ∈ N ; n← 1;

2 for j = 1; j ≤ N do
3 x

(n)
i = max

{
0, ai−p

bi
+
∑

j 6=i

gij
bi
x
(n−1)
j

}
;

4 end
5 if ||x(n) − x(n−1)|| < ε then
6 x∗ = x(n);
7 break;
8 else
9 n = n+ 1;

10 go back to 2;
11 end
12 return x∗;

THEOREM 3. Algorithm 1 calculates the Nash equilibrium in
the RLD game.

We prove the Theorem 3 in Appendix. The key is to
prove that the best response strategy for each user is con-
verged.

To ease the description, we express the best response
strategies in a matrix format.

Lemma. Denote S as the set of RUs with positive strategies and
N − S as the set of other RUs: S = {i|x∗i > 0} and N − S =
{i|x∗i = 0}, the best response strategies are:

x∗S = (ΛS −GS)
−1

(aS − p1S) (14)

x∗N−S = 0N−S (15)

where x∗S = {x∗i |i ∈ S}, x∗N−S = {x∗i |i ∈ N − S} and aS =
{ai|i ∈ S}. The matrices ΛS ,GS are |S| × |S| matrices with
elements in Λ,G with indices in S ×S , respectively. The vectors
1S and 0N−S are 1× |S| and 1× |N − S| vectors with 1s and
0s, respectively.

We prove the Lemma in Appendix. The important part
is to show that (ΛS −GS)

−1 is invertible.

5.2.3 Discussion on social effect
PROPOSITION 1. For the RLD game, when ai = a > p
and the social effect is symmetric, gij = gji,∀i 6= j, the
social relationship between RUs brings a positive effect to Nash
equilibrium.

We prove the Proposition 1 in Appendix. The main idea
is to show that the total requested content level at the Nash
equilibrium increases when gij increases. In addition to that,
the performance under asymmetric social effect is shown to
be similar to that under symmetric social effect in Section 7.

5.3 The MCU Revenue Maximization

According to the above analysis, the MCU, as a leader,
knows there exists the unique Nash equilibrium for the RUs
given any unit payment. Hence, he can maximize the total
revenue by choosing the optimal unit payment.

5.3.1 The Impact of Unit payment
We first take the case with two RUs as an example. Without
loss of generality, assume a1 > a2. Intuitively, in (13), both
RU 1 and RU 2 have positive strategies when the unit
payment p is in a low price regime. Their strategies are,

x1 =
a1 − p
b1

+
g12

b1
x2 (16a)

x2 =
a2 − p
b2

+
g21

b2
x1 (16b)

By solving above equations, we get the value of x1 and x2,

x1 =
(a1 − p)b2 + (a2 − p)g12

b1b2 − g12g21
(17)

x2 =
(a2 − p)b1 + (a1 − p)g21

b1b2 − g12g21
(18)

which show that the strategies of both RU 1 and RU 2
decrease as p increases. Based on the Assumption 1, x1 > x2.
Thus, when increasing p, the strategy of RU 2, x2, first
decreases to 0. Denote the unit payment as pth at which
RU 2’s best response strategy is decreased to 0. According
to (18), pth = a2b1+a1g21

b1+g21
. Continuing to increase p, the

strategy of RU 1 then decreases to 0. Therefore, we have
the Proposition 2.

PROPOSITION 2. In RLD game, the impact that p brings to
the two RUs’ best response strategies x∗1 and x∗2 is as follows
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• When we set p in a low regime: 0 ≤ p < pth, the best
response strategies of two RUs are listed in (17) and (18);

• When we set p in a medium regime: pth ≤ p < a1,
x1 = a1−p

b1
and x2 = 0;

• When we set p in a high regime; p ≥ a1, RUs will not
pick up their strategies: x1 = x2 = 0.

Based on the Assumption 1, pth = a2b1+a1g21
b1+g21

> a2. It
implies that RU 2 would like to take part in the game (x2 ∈
0) although the unit payment he has to pay is larger than
the internal effect. This gives the credits to the social effect
that RU 1 brings to, which verifies that social effect brings
benefits in our scheme.

Next, we extend our discussion on the impact of p to a
general case where more RUs request contents.

PROPOSITION 3. In RLD game, the impact that p brings to
the RUs’ best response strategies x∗ is as follows

• When we set p in a low regime 0 ≤ p ≤ max
i∈M

ai: there

is a set of prices p0 , 0 < p1 < p2 < · · · < pM <
pM+1 , max

i∈N
ai. For each k ∈ {0, 1, 2, · · · ,M}, there

is a set Sk ⊆ N such that for any p ∈ [pk, pk+1] such
that x∗i =

[
(ΛSk

−GSk
)
−1

(aSk
− p1Sk

)
]
i
,∀i ∈ Sk

and x∗i = 0,∀i /∈ Sk
• When we set p in a high regime p ≥ max

i∈N
ai, x∗i = 0,∀i

We prove the Proposition 3 in Appendix. It shows
that each RU’ best response strategy is a piecewise linear
function of the price, which motivates us to propose the
Algorithm 2 to calculate the MCU’s optimal revenue.

5.3.2 Calculation of the MCU’s Optimal Revenue — the
Answer to Q3
Based on the Lemma, the piecewise unit payment p is
linear with the total best response strategies 1Tx∗ at the
Nash equilibrium. Hence, the total revenue of the MCU
(p− c)1Tx∗ is a quadratic function with the unit payment p
according to (2). Given above characteristics, we propose
the Algorithm 2. Inspired by PROPOSITION 3, we first
determine the unit payment interval in which the set of
RUs with positive strategies does not change when the unit
payment increases or decreases. Within each determined
unit payment interval, we calculate the optimal unit pay-
ment to maximize the total revenue of the MCU. Finally,
by comparing total revenues in each interval, we obtain
the final unit payment, which makes largest total revenue
for the MCU. The final unit payment, together with the
corresponding RUs’ requested content levels, composes the
Stackelberg equilibrium.

Specifically, the Algorithm 2 is initialized by calculating
the RUs’ best response strategies when the unit payment
p = 0, as shown in Step 1. From Step 3 to Step 7, it finds
the set S composed of RUs with positive strategies, which
serves the initial conditions in the following steps. As the
unit payment p increases from 0 to max

i∈N
ai, it iteratively

finds the critical unit payment at which the set S changes
as illustrated from Step 10 to Step 22. Because the change of
the set means either adding or dropping an eligible RU, the
process of finding the critical unit payment can be divided
into the following three parts:

• Step 10 to Step 15 investigates the critical unit pay-
ment in the set S , which makes at least one RU’s

Algorithm 2: Calculate the MCU’s Optimal Revenue
Input: none
Output: p∗, x∗,r∗

1 calculate the Nash equilibrium x∗
′

using Algorithm 1
when the unit payment is 0;

2 p← 0; p∗ ← 0; r∗ ← 0; S ← ∅;
3 for i = 1, i ≤ N do
4 if x∗

′
i > 0 then

5 S ← S
⋃
{i} ;

6 end
7 end
8 while p ≤ max

i∈N
ai and S 6= ∅ do

9 S1 ← ∅; S2 ← ∅;
10 foreach i ∈ S do
11 if

[
(ΛS −GS)

−1
]
i
1S > 0 then

12 S1 ← S1
⋃
{i};

13 p̂i ←
[(ΛS−GS)

−1]
i
aS

[(ΛS−GS)−1]
i
1S

;

14 end
15 end
16 foreach i ∈ N − S do
17 if [G]i,S (ΛS −GS)

−1 1S < −1 then
18 S2 ← S2

⋃
{i};

19 p̂i ←
[G]i,S(ΛS−GS)

−1aS+ai

[G]i,S(ΛS−GS)−11S+1
;

20 end
21 end
22 p = min

i∈S1∪S2
p̂i;

23 k = argi∈S1∪S2 p;

24 p
′
=

1T
S (ΛS−GS)

−1aS+c1T
S (ΛS−GS)

−11S
21T
S (ΛS−GS)−11S

;

25 if p
′
∈
[
p, p
]

then
26 p̃ = p

′
;

27 else if p
′
< p then

28 p̃ = p;
29 else
30 p̃ = p;
31 end
32 r̃ = (p̃− c)1T

S (ΛS −GS)
−1 (aS − p̃1S);

33 if r̃ > r∗ then
34 p∗ ← p̃;r∗ ← r̃; x∗S = (ΛS −GS)

−1 (aS − p∗1S);
x∗N−S = 0N−S , x∗ = x∗S

⋃
x∗N−S;

35 end
36 p← p̃;
37 if k ∈ S then
38 S = S\{k};
39 else
40 S = S ∪ {k};
41 end
42 end
43 return p∗,x∗, r∗

positive strategy decreases to 0. Since RU i is in the
set S , according to (14), his positive strategy xi is,

xi =
[
(ΛS −GS)−1

]
i,S (aS − p1S) > 0 (19)

where
[
(ΛS −GS)−1

]
i,S denotes a 1 × |S| vec-

tor with elements in the ith row of the matrix
(ΛS − GS)−1 and the columns with indices in S .
If
[
(ΛS −GS)−1

]
i,S 1S > 0, the RU i’s positive

strategy decreases as p increases. Assuming when
the unit payment increases to p̂i, the RU i’s positive
strategy xi decreases to 0. We have,[

(ΛS −GS)−1
]
i,S aS = p̂i

[
(ΛS −GS)−1

]
i,S 1S
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p̂i =

[
(ΛS −GS)−1

]
i,S aS

[(ΛS −GS)−1]i,S 1S
(20)

• Step 16 to 21 investigates the critical unit payment
in the set N − S , which makes at least one RU’s
strategy become positive When RU i is in the set
N − S , xi = 0 > ai−p

bi
+
∑
j 6=i

gij
bi
xj . If xj > 0,

xj =
[
(ΛS −GS)−1

]
j,S (aS − p1S). Denote Gi,S as

a 1 × |S| vector composed of the element of the ith
row of the matrix G with column indices in S ,

xi = 0 > ai−p
bi

+ 1
bi

[G]i,S (ΛS −GS)
−1

(aS − p1S)

= 1
bi

[G]i,S (ΛS −GS)
−1

aS + ai
bi
−

p
bi

(
[G]i,S (ΛS −GS)

−1
1S + 1

)
If [G]i,S (ΛS −GS)

−1
1S < −1, ai−p

bi
+

1
bi

[G]i,S (ΛS −GS)
−1

(aS − p1S) increases as
p decreases. It becomes positive when the unit
payment decreases to,

p̂i =
[G]i,S (ΛS −GS)

−1
aS + ai

[G]i,S (ΛS −GS)
−1

1S + 1
(21)

• By comparing both the critical unit payments in set
S and N − S , we choose the minimized one as the
final critical unit payment as illustrated in Step 22.

From Step 24 to Step 31, we calculate the unit payment
p̃ ∈

[
p, p
]

such that the MCU’s revenue R (x, p) is max-
imized, in which R (x, p) = R (xS , p) =

∑
i∈S

xi(p− c) =

(p − c)1TS (ΛS −GS)
−1

(aS − p1S) , p ∈
[
p, p
]
. By setting

the first order derivative of R (x, p) to 0, we find the poten-
tial optimal unit payment p

′
in the interval

[
p, p
]
.

p
′

=
1TS (ΛS −GS)

−1
aS + c1TS (ΛS −GS)

−1
1S

21TS (ΛS −GS)
−1

1S
(22)

if p
′ ∈

[
p, p
]
, the optimal unit revenue p̃ = p

′
. Otherwise,

the optimal unit payment is p̃ = p if p
′
<= p, or p̃ = p if

p
′
<= p. The local optimal revenue r

′
is,

r
′

= (p̃− c)1TS (ΛS −GS)
−1

(aS − p̃1S) , p̃ ∈
[
p, p
]

(23)

Meanwhile, the set S is updated as shown from Step 37 to
Step 41 by adding or deleting the RU k found in Step 23.
The renewed set S is deployed to continue finding another
local optimal unit payment.

Finally, by comparing the local optimal revenues in each
unit payment interval, we find the global optimal revenue
r∗ and its corresponding unit payment p∗ as illustrated in
Step 32 to Step 35. The related RUs’ best response strategies
x∗ are calculated.

6 UTILITY MAXIMIZATION IN DELAY-SENSITIVE
MODEL

In this section, we model the delay-sensitive cases as three
two-stage Stackelberg games to maximize the utilities of
RUs and MCUs, respectively. Specifically, the delay effect
considered in the intuitive delay-sensitive model is essen-
tially a specific form of the congestion effect studied in [28].
Therefore, we mainly discuss the other two delay-sensitive
models.

6.1 Intuitive Delay-Sensitive Model
Refering to [29], the RU i’s best response strategy is,

βi (x−i) = max

{
0,
ai − p
bi + d

+
∑

j 6=i

gij − d
bi + d

xj

}
,∀i (24)

By comparing (13) and (24), each RU suffers both positive
social effect and negative delay effect brought by other RUs.
When gij < d, the RU j even brings negative external effect
to the RU i. Otherwise, the RU j puts positive external
effect. Under the assumption

∑
j 6=i

|gij−d|
(bi+d)

< 1,∀i, the utility

maximization is obtained according to Algorithm 3 in [29].

6.2 Queueing Delay-Sensitive Model

By setting the derivative ∂ûi(x̂i,x̂−i,p̂)
∂x̂i

= 0 in (8), the RU i’s
best response strategy is obtained as,

βi (x̂−i) = max

0,
ai − p̂
bi + d̂

+
∑

j 6=i,j∈N

gij − d̂
N−1

bi + d̂
xj

 (25)

where d̂ = kλ
N(1−ρ) is assumed as a system parameter

estimated by the SP. Comparing (24) and (25), given d̂ = d,
the delay effect in the queueing delay-sensitive model is
relieved from d to d

N−1 , which theoretically proves that
our queue model lowers the delay effect. Meanwhile, the
content mean arrival rate λ brings a negative effect to RUs’
utilities. It is because larger λ increases the queue length
given the fixed average content transmission time and thus
puts RUs to the longer waiting time. Similarly, the traffic
intensity ρ puts a negative delay effect to RUs’ utilities.

Since each RU’s utility in (25) is similar to that in (13)
and the MCU’s utility keeps unchanged, we could simply
apply the Algorithm 2 to obtaining the best strategies for
both RUs and MCU under the following assumption:

Assumption 2.
∑
j 6=i

|gij− d̂
N−1 |

(b̂i+d̂)
< 1,∀i.

6.3 Multi-leader Delay-Sensitive Model
Due to the participation of multiple MCUs, the previous
single-leader Stackelberg game is extended to a multi-leader
two-stage Stackelberg game as follows:

Stage I (Unit Payment) Each MCU announces its unit
payment p̃m to maximize their total revenues,

p̃∗ = arg max
p̃∈[0,∞)M

R̃ (x̃, p̃)

Stage II (Requested Content Level) Each RU i ∈ N
strategies the required content level x̃i to maximize his own
utility given the price p̃ and the requested content levels of
others x̃−i,

x̃∗i = arg max
x̃i∈[0,∞)

ũi (x̃i, x̃−i, p̃) ,∀i.

6.3.1 Utility Maximization for RUs
Similar with (13), the best response strategy for RU i is:

βi (x̃−i, p̃) =

max

0,
ai−

M∑
m=1

Ii,mp̃m

bi+d̃
+

∑
j 6=i,j∈N

gij−d̃
M∑

m=1
Ii,mIj,m

bi+d̃
xj


(26)
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Formula (26) shows that the introduction of multiple MCUs
reduces each RU’s delay effect by serving them locally
whereas does not affect their global positive social effect.
With known indicator matrix, (26) is similar with (3). There-
fore, if we have the following assumption, the existence and
uniqueness can be proved referring to the previous proof.

Assumption 3.
∑
j 6=i

|gij−d̃
M∑

m=1
Ii,mIj,m|

(b̂i+d̂)
< 1,∀i

Meanwhile, under the Assumption 3, the best response
strategies for all RUs given the unit payment vector are

x̃∗S =
(
Λ̃S − G̃S

)−1
(aS − p̃S) (27)

x̃∗N−S = 0N−S (28)

The corresponding matrices Λ̃ = diag(b1 + d, b2 +
d, · · · , bN + d) and G̃ = G − D, where D =

d



0
∑

m∈M
I1,mI2,m · · ·

∑
m∈M

I1,mIN,m∑
m∈M

I2,mI1,m 0 · · ·
∑

m∈M
I2,mIN,m

...
...

. . .
...∑

m∈M
IN,mI1,m

∑
m∈M

IN,mI2,m · · · 0

.

The implication for S has been explained previously.

6.3.2 Utility Maximization for MCUs
Due to the globally positive social effect and locally negative
delay effect, we cannot simply deploy the Algorithm 2 to
solve the Stackelberg game for each pile of RUs. However,
owing to the existence and uniqueness of all RUs’ best
response strategies x̃∗, MCUs can correctly predict the be-
haviors of all RUs given the unit price p̃, which gives them
opportunities to maximize their total revenues.

To ease the description, we consider the case where all
RUs receive their requested data x̃∗S = x̃∗. The case in which
some RUs receive no contents can be easily extended. With
the known indicator matrix, (11) is rewritten as,

R̃ (x̃, p̃) = (p̃− c1N )T x̃∗ (29)

Substitute (27) into (29), we have,

R̃ (x̃, p̃) = (p̃− c1N )T
(
Λ̃− G̃

)−1
(a− p̃)

= −p̃T
(
Λ̃− G̃

)−1
p̃ + p̃T

(
Λ̃− G̃

)−1
a +

c1TN

(
Λ̃− G̃

)−1
p̃− c1TN

(
Λ̃− G̃

)−1
a (30)

We ignore the last term in (30) since it has nothing to do with
p̃ in the following. To obtain the strategies for each MCU,
we have the total utilities maximization problem as,

max
p̃1,··· ,p̃M

R̃ (x̃, p̃)
′

= −p̃TAp̃ + p̃TAa + c1TNAp̃

s.t. 0 ≤ p̃m ≤ max
i∈N

ai,∀m (31)

where A =
(
Λ̃− G̃

)−1
. The constraints in (31) is to restrict

each MCU’s unit payment. Otherwise, RUs would not re-
ceive any contents from MCUs as shown in (27) and (28).
Since p̃ is piecewise, we divide the matrix A into blocks,

A =


A11 A12 · · · A1M

A21 A22 · · · A2M

...
...

. . .
...

AM1 AM2 · · · AMM

 (32)

where

Auv =


ai−1∑

u=1
nmu+1,

j−1∑
v=1

nmv+1
· · · ai−1∑

u=1
nmu+1,

j∑
v=1

nmv

...
. . .

...
a i∑

u=1
nmu ,

j−1∑
v=1

nmv+1
· · · a i∑

u=1
nmu ,

j∑
v=1

nmv


a = {a1, · · · , anm1

, anm1+1, · · · , anm1+nm2
, · · · , aN}T =

{a′T1 ,a
′T
2 , · · · ,a′TM}T is rewritten, where a

′

i =
{a∑nmi−1

+1, · · · , a∑nmi
}T . Substituting (32) into (31),

R̃ (x̃, p̃)
′

=
M∑
i=1

M∑
j=1

p̃ip̃j1
T
nmi

Aij1nmj
+

M∑
i=1

p̃i
M∑
j=1

(
(1Tnmi

Aij1nmj
)T + 1Tnmi

Aija
′

j

)
= p̃

′TA
′
p̃
′
+

M∑
i=1

p̃i
M∑
j=1

(
(1Tnmi

Aij1nmj
)T + 1Tnmi

Aija
′

j

)
(33)

where p̃
′

= [p̃1, p̃2, · · · , p̃M ] and A
′

is a new matrix with the
ijth element 1Tnmi

Aij1nmj
. According to [45] and [46], the

total utilities maximization is a convex optimization prob-
lem as long as A

′
+ A

′T is positive semidefinite. Therefore,
we can use convex toolbox cvx [47] to obtain the strategies
of MCUs under the positive semidefinite assumption.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the data
offloading approaches in both the delay-tolerant scenario
and the delay-sensitive scenario.

7.1 Simulation Settings

We consider a scenario with N = 10 RUs served by MCUs.
Their internal characteristics follow a Gaussian distribution,
where ai ∼ N (µa, 2) and bi ∼ N (µb, 2) ,∀i. To show the
social effect brought by RUs’ social relationship, we deploy
the Erdős-Rényi (ER) graph [48] model, in which a social
edge between RUs exists with probability PS in a group. If
a social edge indeed exists, it is assumed to follow a normal
distribution N (µg, 2). To ensure the assumptions proposed
in the paper, we set µa = µb = 30. In addition, the MCU’s
unit cost when delivering contents to RUs is constant, c = 5.

7.2 Simulation Results

In our simulations, we mainly compare the performance of
the following cases: (1) No relationship case (NSR), in which
there are no interactions between RUs, gij = 0, i, j ∈ N ,
d = d̂ = d̃ = 0. (2) Delay-tolerant case (UMDT), in which
the social effect exists among RUs due to their similar social
attributes gij 6= 0,∃i, j ∈ N , d = d̂ = d̃ = 0. (3) Intuitive
Delay-sensitive case (iUMDS). (4) Queue Delay-sensitive
case (qUMDS), and (5) Multi-leader Delay-sensitive case
(mUMDS). Note that we normalize most simulation per-
formance based on the NSR case, which means the perfor-
mance value is divided by the corresponding value in the
NSR case. In what follows, we show the impacts to which
the social effect and delay effect will bring respectively.
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(a) Asymmetry Effect (b) Social Effect

Fig. 5: UMDT Case
(a) Primitive Delay Effect (b) Queue Effect

Fig. 6: Delay Effect

(a) Total Revenue (b) Total Utility

Fig. 7: Effect from MCUs
(a) Total Revenue (b) Total Utility

Fig. 8: Effect from RUs

7.2.1 The Impact of the Probability of Social Edge
To investigate the impact of social effect, we first consider
the UMDT case in Fig.5. Since two RUs in a social rela-
tionship could have different interests, we want to find
whether such an asymmetry impacts RUs’ utilities. Fig.5a
shows that it does not play an important role on RUs.
Therefore, we choose the asymmetric social relationship in
the followings as gij 6= gji to be close to reality. Fig.5a
also tells us that the probability of the social relationship
between RUs has a large impact. This is because the proba-
bility implies the contact opportunities between RUs, which
would bring more social effects. Fig.5b further demonstrates
the above observation, which shows that the total utility
of RUs increases as the increasing of the probability of
social relationship. Hence, our motivation is verified that the
homophily phenomenon truly brings positive social effects
to data offloading scheme.

7.2.2 The Impact of Delay Effect
In iUMDS case, we consider the primitive delay effect. From
Fig.6a, we find that such delay effect puts a serious negative
impact on the MCU’s total revenue. Specifically, when the
delay effect is large, it could even cancel out the benefits
brought by the social effect. When RUs are eager to obtain
their requested contents, they have to wait for a long time.
Thus, they would not request more contents even if the unit
payment is low. The low unit payment and few contents
decrease the total revenue of the MCU.

Fig. 9: Total Levels vs. Number of RUs

7.2.3 The Benefits brought by Improved Models
In order to show the benefits in the qUMDS and mUMDS
cases, we compare the MCU’s total revenue as shown in
Fig. 9. The worst situation is considered that the primitive
delay effect cancels the benefits brought by social effect
completely, where µg = d = 3. Fig. 9 demonstrates that
the introduction of the queue and multiple MCUs indeed
helps increase the total revenue.

qUMDS Case. We discuss the impact of the mean ar-
rival rate shown in Fig. 6b. It impacts RUs’ content levels
negatively. Higher mean arrival rate indicates that more
content requests come to the MCU while it is delivering
contents, which would increase the content queue length.
RUs have to wait for a longer time to obtain their contents
and thus dissatisfy with the content transmission. Therefore,
their requested content levels would decrease.

mUMDS Case. In Fig. 7, we draw the impacts to both
MCUs and RUs’ utilities brought by the number of MCUs.
Assume there are N = 25 RUs requesting contents. As can
be seen from Fig.7a and Fig.7b, more MCUs not only in-
crease the utilities of RUs but also improve the total revenue
of themselves. Fig.8 shows an interesting phenomenon.
Given the number of MCUs, each RU’s waiting time will
increase as the number of RUs becomes large, and thus their
own utilities reduce. In the worst case, the total utilities of
a larger number of RUs are lower than those of a smaller
number of RUs as shown in Fig.8b. However, since the
number of RUs is large, the total avenue obtained from them
can still be as high as shown in Fig. 8a. Both Fig. 7 and Fig.
8 demonstrate the effectiveness of our proposed multiple
MCU delay sensitive model.

8 CONCLUSION

In this paper, we proposed a data offloading approach by
leveraging human’s social behavior and human activities. To
motivate the participation of MCUs, a two-stage Stackelberg
game is deployed considering the interactions between RUs.
In the delay-tolerant scenario, the interactions bring social
effect owing to RUs’ similar social attributes. We prove
that the Stackelberg game has a unique Nash equilibrium
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and design an effective algorithm to compute the RUs’
best response strategies. This enables the MCU to maximize
the revenue. In the delay-sensitive scenario, by taking ad-
vantages of RUs’ mobility, we propose two improved ap-
proaches to lower RUs’ delay effect due to their long waiting
time, which introduces queue and extends the single-leader
Stackelberg game to the multi-leader scheme, respectively.
Based on the simulation results, we have shown the feasi-
bility and effectiveness of our approaches.
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APPENDIX

Proof of Theorem 1
In the RLD game G =

{
N , {ui}i∈N , [0,∞]N

}
, we denote x∗

as a strategy profile and x∗i as the largest requested content
level in it, i.e., x∗i > x∗j ,∀j 6= i. Based on (13), when x∗i > 0,

x∗i =
ai − p
bi

+
∑

j 6=i

gij
bi
x∗j ≤

|ai − p|
bi

+
∑

j 6=i

gij
bi
x∗i

from which we get x∗i ≤ |ai − p| /(bi −
∑
j 6=i gij) ≤ x̃.

x̃ is any number that satisfies x̃ ≥ maxi∈N |ai − p| /(bi −∑
j 6=i gij). Since x∗i is the largest content level, all the content

levels in game G are bounded, i.e., x∗j ∈ [0, x̃], j ∈ N .
Therefore, our game G is equivalent to a new game G̃ ={
N , {ui}i∈N , [0, x̃]N

}
that has the same Nash equilbium

stategy profile.
Taking the game G̃ into consideration, the strategy

space [0, x̃]N is compact and convex. The utility function
ui (xi,x−i, p) is continuous in xi and x−i. The second-order
derivative of RU i’s utility function ∂2ui(xi,x−i,p)

∂2xi
= −bi is

negative. Therefore, it is a concave game and admits a Nash
equilibrium [44, 49]. Hence, the Nash equilibrium for our
RLD game G exists.
Proof of Theorem 2
The Jacobian matrix ∇u(x) of RUs’ utility profile u(x)

∆
=

{u1(x), u2(x), · · · , uN (x)} is given by∇u (x) = −(Λ−G),
where Λ = diag(b1, b2, · · · , bN ) and G =
0 g12 · · · g1N

g21 0 · · · g2N

...
...

. . .
...

gN1 gN2 · · · 0

. Based on Assumption 1, we

have,
[Λ−G]ii >

∑
j 6=i

∣∣∣[Λ−G]ij

∣∣∣ ,∀i
where [Λ−G]ij denotes the element in the ith row and
jth column in the matrix [Λ−G]. Hence, [Λ−G]
is strictly diagonal dominant. Assume social effect
between RUs is symmetric, gij = gji,∀i, j ∈ N ,
[Λ−G]

T is also strictly diagonal dominant. Therefore,
∇u (x) + ∇uT (x) = − [Λ−G] − [Λ−G]

T is strictly
diagonal dominant and symmetric. According to [45], a
symmetric matrix that is strictly diagonally dominant with

real nonnegative diagonal elements is positive definite.
Thus, − [Λ−G] − [Λ−G]

T is negative definite since
the elements in it are negative. ∇u(x) is diagonally
strictly concave [44]. The RLD game G has a unique Nash
equilibrium.

Proof of Theorem 3
Let ∆x

(n)
i , x

(n)
i − x∗i ,∀i. According to step 3 in Algorithm

1,

|∆x(n)
i | ≤

∣∣∣∣∑j 6=i

gij
bi

∆x
(n−1)
j

∣∣∣∣ ≤∑j 6=i

gij
bi

∣∣∣∆x(n−1)
j

∣∣∣ ,∀i
(34)

Denote ||∆x(n)
i ||∞ as the l∞-norm of vec-

tor (∆x
(n)
1 ,∆x

(n)
2 , · · · ,∆x(n)

N ), ||∆x(n)
i ||∞ =

max
i∈N

(∆x
(n)
1 ,∆x

(n)
2 , · · · ,∆x(n)

N ). According to

(34), ||∆x(n)
i ||∞ ≤ max

i∈N

∑
j 6=i

gij
bi

∣∣∣∆x(n−1)
j

∣∣∣ ≤(
max
i∈N

∑
j 6=i

gij
bi

)
||∆x(n−1)

i ||∞. Since max
i∈N

∑
j 6=i

gij
bi

< 1,

||∆x(n)
i ||∞ ≤ ||∆x(n−1)

i ||∞. It implies that Algorithm 1
results in a contraction mapping of ||∆x(n−1)

i ||∞ and thus
converges to the Nash equilibrium.

Proof of Lemma
According to (13) and Algorithm 1,

x∗i =
ai − p
bi

+
∑

j 6=i

gij
bi
x∗j , i, j ∈ S (35)

The matrix format of (35) is,

(ΛS −GS) x∗S = (aS − p1S) (36)

Because ΛS is a positive diagonal matrix, it is invertible.
Denote any eigenvalue and the corresponding eigenvec-
tor of Λ−1

S GS as λ and µ, respectively. Mathematically,(
Λ−1
S GS

)
µ = λµ. Assume µi is the largest element in

absolute value, |µi| ≥ |µj | ,∀j 6= i,

|λµi| =
∣∣∣∑j∈N

[
Λ−1
S GS

]
ij
µj

∣∣∣
≤
∑
j∈N

∣∣∣[Λ−1
S GS

]
ij

∣∣∣ |µj | ≤ |µi|∑j∈N
|gij |
bi

< |µi| (37)

From (37), the absolute values of all eigenvalues of Λ−1
S GS

are less than 1. Since the eigenvalue values of the matrix
I−Λ−1

S GS are equaled to 1−λ, the matrix I−Λ−1
S GS does

not have 0 eigenvalues. Thus, ΛS −GS = ΛS
(
I−Λ−1

S G
)

is invertible and xS
∗ = (ΛS −GS)

−1
(aS − p1S).

Proof of Proposition 1
From (35), we find that RUs’ strategies at the Nash equilib-
rium is a continuous function of the matrix GS . Thus, we
can find a matrix G

′

S , in which g
′

ij ≥ gij , g
′

ij ∈ G
′

S , gij ∈ GS
and at least one strictly inequality exists, such that RUs with
positive strategies x∗

′

S at the Nash equilibrium under G
′

S are
also in the set S . According to (36),

(ΛS −GS) x∗S = (aS − p1S) (38)(
ΛS −G

′

S

)
x∗
′

S = (aS − p1S) (39)

Subtract (38) from (39),

x∗
′

S − x∗S = (ΛS −GS)
−1

∆GSx
∗′
S (40)
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where ∆GS = G
′

S−GS . Thus, the total difference between
x∗
′

S and x∗S is

1TS

(
x∗
′

S − x∗S

)
= 1TS (ΛS −GS)

−1
∆GSx

∗′
S (41)

Since x∗S = (ΛS −GS)
−1

(a− p)1S in (14), it follows that,

1TS (ΛS −GS)
−1

=
(

(ΛS −GS)
−1

1S
)T

=
1

a− p
x∗TS

(42)
Substitute (42) into (41), we get the total difference as,

1TS

(
x∗
′

S − x∗S

)
=

1

a− p
x∗TS ∆GSx

∗′
S (43)

Because a > p, x∗
′

S ,x
∗
S � 0 and ∆GS � 0, the total

difference between x∗
′

S and x∗S , 1TS

(
x∗
′

S − x∗S

)
> 0,

which implies that the total requested content levels at
the Nash equilibrium increase when gij increases. The
PROPOSITION 1 verifies that the social effect between RUs
with similar social attributes makes RUs get more interested
contents.

Proof of Proposition 3
For any unit payment p ∈ [0,maxi∈N ai], the requested
content levels of the set of RUs S with positive strategies
are given in (14). Meanwhile, according to (13), RU i’s
the requested content level x∗i = ai−p

bi
+
∑
j 6=i

gij
bi
x∗j is

continuous in p and RU j’s requested content level x∗j ,
j 6= i. When the unit payment p increases a small amount
to p

′
, the set of RUs with positive strategies at the Nash

equilibrium does not change and their strategies are still
given by (14) except that p is replaced by p

′
. Hence, the

set of RUs with positive strategies is the same at any unit
payment in a continuous unit payment interval. However,
when the unit payment p increases a large amount to p′′,
some RUs’ strategies decrease to 0 and thus they would not
request any contents as shown in above two-RU example.
Therefore, the interval of the unit payment is piecewise.

Assuming RU i has a maximized strategy x∗i > 0 when
p ≥ max

i∈N
. According to (13), x∗i = ai−p

bi
+
∑
j 6=i

gij
bi
x∗j ≤∑

j 6=i
gij
bi
x∗j ≤

∑
j 6=i

gij
bi
x∗i < x∗i , which is a contradiction.

Therefore, x∗i = 0,∀i when p ≥ max
i∈N

ai.
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