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Abstract—The exploding popularity of mobile devices enables
people to enjoy benefits brought by various interesting mobile
apps, such as social networking, mobile video services, and
location-based services, etc. However, the ever-increasing data
traffic has exacerbated congestion on current cellular networks,
which results in users’ dissatisfaction, especially in crowded
areas. Hence, how to deal with the explosive data traffic in
cellular networks becomes a challenging problem. Traditional
methods rely on mobile offloading techniques to deviate the data
traffic targeted to cellular networks, such as small cell, Wi-Fi,
and opportunistic communication. Unfortunately, mobile users
will still experience severe congestion when a large number of
users request for data. Facing these challenges, we introduce
the concept of mobile participation to assist data offloading by
leveraging the mobility of mobile users and the social features
among a group of users. A mobile caching user, who precaches
certain amount of contents, can roam around congested areas
to participate in data dissemination in order to satisfy users’
requests, which can benefit both herself and users in the crowd si-
multaneously. Therefore, we propose a game theoretical approach
to analyze the data offloading via mobile participation with joint
considerations on users’ content requests, network effect brought
by their social features, congestion effect, and pricing strategy.
Based on detailed performance analysis, we show the feasibility
and efficiency of the proposed approach.

Index Terms—Data Offloading, Mobile Participation,
Social-enabled, Stackelberg Game

I. INTRODUCTION

The soaring popularity of mobile devices enables people
to communicate with their social ties at anytime and from
anywhere. People use their mobile apps to create and ex-
change a huge amount of data for their social interactions
in cyberspace. Analysts from Cisco warn that monthly global
mobile data traffic will surpass 24.3 exabytes and smartphones
will reach three-quarters of mobile data traffic by 2019 [1].
Although cellular network operators exploit their efforts to
provide better services in terms of higher data rates and
lower costs, mobile users are still facing poor performance
in their daily life, especially in some crowded areas, such
as football stadiums, theme parks, and airports. However, the
above crowded areas are the places that highly need reliable
wireless communication for safety purposes, e.g., broadcasting
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evacuation information. As one promising solution, mobile
data offloading takes advantages of small cell, Wi-Fi, and
opportunistic communication to proactively reduce the data
traffic targeted for cellular networks [2].

Unfortunately, although various types of mobile offloading
schemes have been proposed in both academia and industry,
we are still lacking of effective methods to offload data. For
example, small cell technique for data offloading is not an
effective method due to the scarcity of licensed spectrum
bandwidths. Even worse, deploying more small cells will
incur significant costs. Regarding Wi-Fi offloading, service
providers have access to much larger free spectrum to cater
the Wi-Fi deployment, because it operates on unlicensed
bands. However, Wi-Fi offloading cannot provide guaranteed
QoS, and Wi-Fi-enabled devices may experience increased
battery drainage, since it has to operate on two different radio
interfaces [3]. To perform the mobile offloading, opportunistic
communication has been identified as another approach, which
increases communication chances by utilizing the potential
social connections among users and thus is beneficial to deliver
contents. In particular, some works [4-7] apply social-enabled
approaches to help data dissemination among social ties or
users with similar social profiles. Apparently, the opportunistic
communication is not reliable for data delivery in a pure ad
hoc mode, while there is lack of incentives for source users to
coordinate the data dissemination. Clearly, mobile offloading
has not been well developed nor widely applied.

Facing these challenges and existing solutions, we take
a step further to reconsider the social-enabled approach for
mobile offloading. As we can see from current social net-
works, many socially-related contents shared among social
ties are similar or even identical (e.g., similar photo updates
on Facebook), which leads us to consider how to avoid
repeated requests/retrievals in order to reduce the number of
accesses to the service provider. From the data perspective, a
simple observation is that users with similar social interests
often group together at certain location [8], which potentially
results in similar data requests. For example, football fans in
the stadium may request for the same information regarding
the players and the game. Although their similar requests
often cause wireless network’s congestion when they compete
for the limited bandwidth, we can take advantages of their
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social relationships for mobile offloading, i.e., using free
device-to-device (D2D) communication to enable social-
based data sharing. The intuition behind this methodology
is to let a representing user download the data and further
disseminate copies via D2D communication. In this work, we
propose a multi-win social-enabled data offloading approach
via mobile participation by introducing a mobile caching user,
who bridges the gap between service providers and users when
severe congestion happens. The mobile caching user first pre-
caches a number of large volume contents and then physically
moves to specific users when there are content requests. In
addition to getting rewards from users in the crowd, the mobile
caching user has social and interest-driven incentives to roam
back to the crowded area for content delivery. Compared to
traditional data offloading approaches, utilizing the mobile
caching user is significantly cheaper than small cell build-
out. Moreover, by physically moving to specific users, the
mobile caching user makes data transmission more reliable
than both Wi-Fi and D2D communication. At the same time,
the mobile caching user has more incentives to offload data by
getting rewards from requesting users, including social gains
and revenue payoffs. For users in the crowd, they can get their
requested contents even when there is severe congestion. To
fully exploit the benefits of mobile participation, it is highly
needed to thoroughly investigate users’ requests, social gains,
congestion effect, as well as the pricing strategy for both the
mobile caching user and users in the crowd.

Our Contributions: We highlight and list out our major
contributions as follows,

o The proposed data offloading scheme introduces a new
concept, mobile participation, which takes the advan-
tages of the mobility of mobile caching users to compen-
sate the congestion effect for a large group of people.

« By investigating the social influence among users, the
proposed social-enabled data offloading scheme greatly
reduces the congestion effect for crowded areas where
people are normally grouped together based on their
social profiles.

o Our approach not only satisfies users’ content requests,
but also benefits the mobile caching user economically by
jointly considering network effect and the actual request
levels from the users.

o To maximize the benefits of the mobile caching user
and users, we deploy a Stackberg game. The existence
and uniqueness of the Stackelberg equilibrium are proved
first. Following that, we calculate the best strategies under
practical assumptions.

The rest of this paper is organized as follows: In Section
II, we briefly review the existing data offloading approaches
and economical incentives for performing data offloading.
Then, we give a detailed description of the system model and
formulate it as a Stackelberg game in Section III. In Section IV
and V, we study the proposed game model in detail. In Section
VI, the performance of our approach is evaluated, followed by
the conclusion in Section VII.

II. RELATED WORK
A. Mobile Data Offloading

Mobile data offloading [3] is a promising way to allevi-
ate traffic congestion and reduce the energy and bandwidth
consumption of the cellular network, which can be classified
into two categories [9]. First, infrastructure-based mobile data
offloading [10] refers to deploying small cell base stations and
Wi-Fi hotspots for mobile users [11-13]. The connection be-
tween mobile users and the base station is proposed to achieve
flow level load balancing under spatially heterogeneous traffic
distributions in [14, 15] . However, the lack of cost-effective
backhaul associations for the base station often impairs their
performance in terms of offloading mobile traffic. The second
category is the ad-hoc-based mobile traffic offloading, which
refers to applying short range communication as the underlay
to offload mobile traffic [4-7].

B. Economic Incentives for Data Offloading

The above works only focus on the technical perspective
adoption of data offloading, without considering the economic
incentives of mobile data offloading. This incentive issue
is significant for the scenario where Wi-Fi or small cell is
privately owned by third-party entities, who are expected to
be reluctant to admit non-registered users’ traffic without
proper incentives [16]. In [17, 18], they consider the incentive
framework for the so-called user-initiated data offloading,
where users initiate the offloading process, and hence users
offer necessary incentives in order to obtain their contents. In
[16], they consider the network-initiated data offloading, where
cellular networks initiate the offloading process, and hence the
network operators are responsible of incentivizing Wi-Fi.

C. Network Effects and Congestion Effects

The above works do not take severe congestion into con-
sideration, which may result in users’ dissatisfaction due
to not obtaining their requested contents. In [19], mobile
caching user behaviors are studied by jointly considering the
congestion effect in the physical wireless domain and the
network effect based on users’ social relationships. A social
group utility maximization framework is studied in [20, 21],
which captures the impact of mobile users’ diverse social
ties on the interactions of their mobile devices subject to
diverse physical relationships. Considering the network effect
brought by social ties among users, different pricing strategies
of a service provider have been studied in [22]. However,
it does not take congestion effect into consideration, which
makes the problem more complex due to the coupling of
network and congestion effects among users. Different from
[22], congestion effect due to many users’ requested contents
simultaneously is considered in our paper. In [19], they discuss
both network and congestion effects under the assumption the
service provider charges the same price for all users’ contents.
Different from [19], an optimal situation is considered in our
paper where the mobile caching user charges discriminated
prices to users. A mobile caching user is introduced to assist
data offloading to alleviate the network congestion. We focus
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Fig. 1: System Model of Mobile Participation

on the economic incentives between the mobile caching user
and users under both network and congestion effects. Perfect
price discrimination is considered for users.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Overview

We give an intuitive example in our daily life as illustrated in
Fig. 1 to assist our description of the proposed approach. Mo-
bile users request for videos and live information in crowded
resorts and theme parks, such as Disneyland. People normally
group together based on their social profiles including interest,
gender, age, efc., all of which are in accordance with their
locations in the designated area. Assume there is no congestion
in time-slot 1. Alice downloads a number of videos in the
roller coaster area and continues to visit the next spot. In time-
slot 2, there are increasing number of mobile users requesting
for contents in that area, which results in severe congestion.
Therefore, a set of visitors N = {1,2,--- , N} cannot get
their requested contents from the service provider. Then, the
service provider asks Alice for help. Due to her interests and
potential rewards, Alice moves back to the crowded roller
coaster area and disseminates her videos to users who have
the request. Thus, users get what they request, Alice makes
profits regarding her contents, and the congestion is greatly
alleviated.

B. System Model

Assume that x = {z1, 2o, -+ ,zx}T € [0,00)" is denoted
as content request level profile of all users. Denote u; as the
satisfaction level of user ¢, which is the total satisfaction that
user ¢ gains from requesting z; level contents. It is affected
by the following four parts:

Internal Effect: It displays the satisfaction level that user
1 derives from requesting x; level contents irrespective of the
requests of her peers. This level is quantified by the parameter
a; and bl

Network Effect: It captures word-of-mouth communication
among users: users typically form their opinions about the
quality of a content based on the information they obtain from

their peers. Because the increasing content request level of a
user has a positive impact on the content request level of her
peers, network effect brings a great potential for the mobile
caching user’ revenue increase. We use g;; > 0 to quantify
the social influence from user j to user ¢. Note that g;; = 0
for the case where user ¢ cannot bring influence to herself.

Congestion Effect: It demonstrates the negative impacts
among users due to limited wireless capacity and large content
requests from users. To guarantee successful transmission, the
mobile caching user has to move to each user and transmits
each content to users one by one, which increases users’
waiting time and makes users unsatisfied. Thus, the revenue
of the mobile caching user is affected negatively. We denote
d as the congestion factor.

Economical Effect: The mobile caching user charges users
for the requested contents’ transmission. We denote the vector
p = {p1,p2, - ,pn}T as the unit price profile.

Denote x_; as the content request level profile without user
1. The satisfaction level of user ¢ under network and congestion
effects is,

i (T3, X4, pi) =a;x; — bizi® + Z GijTi;
JEN
2 (1
—d ij — pixi, Vi
JEN
The revenue of the mobile caching user is,

R(x,p) = Z (pi —c)w; 2)

ieN
in which ¢ denotes the unit cost that the mobile caching user
spends when transmitting contents to user ¢, including power
and move consumption, etc. It keeps unchanged among users.

C. Stackelberg Game Formulation

A two-stage Stackelberg game is utilized to model the
interaction between the mobile caching user and users:

Stage I (Pricing) The mobile caching user chooses each
user’s price p; to maximize her revenue. We have

p* =arg max Z (pi — ¢)x;
p€[0,00)" [

Stage II (Request Level) Each user i € A chooses her
content request level x; to maximize her satisfaction level
given the price p; and the content request levels of her peers
X

x; =arg max u; (x;,X_;,pi),Vi
x;€[0,00)

The game is studied from Stage II first. For users, we
investigate the existence and uniqueness of a set of strategies at
which no user deviates based on the price the mobile caching
user charges. This is so-called Stackelberg equilibrium. For the
mobile caching user in Stage I, we are interested in the pricing
strategy that maximizes her revenue given the Stackelberg
equilibrium of users in Stage 1.



IV. USERS’

In this section, a general condition is given under which
there exists a unique Stackelberg equilibrium. Then, we get
the users’ best response strategy given the prices the mobile
caching user charges.

Given the mobile caching user’s pricing strategy p and the
content request level profile x_; without user i, user ¢’s best
content request level is computed by solving the following
satisfaction level maximization problem.

BEST RESPONSE STRATEGY

max w; (@i, X_i, p;) -
st. x_; =0

Set the derivative Qu; (x;,x_j, p;)/0x; = 0 as the first order
condition and based on the fact that the content request level
of user ¢ is positive, user ¢ ’s best content request level strategy

Bi (x—;) is

a; — Pi 9ij — 2d
7 —i) = Oa
Bi (%) = max 2o+ d) 2ol d)

Vi (4)

Remark: Each user’s content request level strategy is com-

posed of two parts: internal request Q?g:f;) which is inde-
gij—2d

pendent of her peers, and external request Z] #i 207 a) i
that indicates network and congestion effects her peers bring.
When network effect dominates, e.g. g;; > 2d, the increase
of other users’ content levels has a positive influence on the
user ¢’s content request level. Otherwise, congestion effect
dominates and other users’ content request levels have a
negative effect on user <.

Although obtaining the best content request level strategy of
each user in (4), we cannot ensure the Stackelberg equilibrium
exists because each user may have great incentive to unbound-
edly increase her content request level provided other users’
request levels are sufficiently large. To avoid above situation,
a general assumption is given first under which there exists a
unique Stackelberg equilibrium.

Assumption 1: Z Dl fj)l <1,Vi
J#
gij—2d
Due to the fact that [}, 30 —2ay il <

Z]# g](’g fj)lxj < max;z; xj, the Assumption 1 limits
user ¢’s external request to the maximum request level among
all the other users.

THEOREM 1: Under Assumption 1, the game G =
{N {ui};en - [0,00)" } always admits a Stackelberg equilib-
rium for users.

Proof: We mainly prove Theorem 1 by finding a e-
quivalent game which admits a Stackelberg equilibrium. De-
note x* as a strategy profile and :U;‘ as the largest con-
tent request level in x*, zi7 > Vi # J. Accord—

(2
ing to (4), we have z} = 2‘2;} fZi) + Z 29(5 5 <

|H.1 _p1
2(b;+d)

o= o

+ Z ‘29(’11 fj)'x From above 1nequahty, we get z7 <

> jzil9i5 — 2d|) < I. Because z}

is the largest content request level in x*, we have z} €
[0,%],7 € N. Thus, our game has the same strategy space
with the game G = {N, {u;};,cn,[0,7]V}, where & >

ai = pil / (206 + ) = X2, 4. 1915 — 2d

Because the strategy space [0, %] is compact and convex
and the satisfaction level wu; (x;,X_;,p;) is continuous in z;
and x_; and concave in x;, the game G admits a Stackelberg
equilibrium according to [23], so does the game G. |

THEOREM 2: Under Assumption 1, the game G has a
unique content request level strategy.

Proof:
faction level profile u(x)

The Jacobian matrlx Vu(x) of the satis-

(), ua (%), - -, un (%)}

of the game G is given by Vu( ) —(2 A - G)
b1 +d 0
0 bo+d --- 0
where A = . . ) and G =
0 0 by +d
0 g12 — 2d gin —2d
g21 — 2d 0 gan — 2d .
. . . . The matrix G
gn1—2d gn2—2d - 0

reflects interactions between different users, in which the 7;jth
element (g;; — 2d) represents network and congestion effects
that user j brings to user 4, j # 4. Considering Assump-
tion 1, we have 2A — G|,, > > '[ZA — G]Z.j‘ ,Vi. There-
fore, [2A — G] is strictly diagonjal dominant, — 2A — G] —
[2A — G]” is negative definite. Following to [23], Vu(x)
is diagonally strictly concave and the game G has a unique
Stackelberg equilibrium. According to Theorem 1, the game
G also admits an unique Stackelberg equilibrium due to the
equivalence between these two games. [ ]

Following Theorem 1 and 2, we compute the best content
request level strategies of users given that all users would like
to buy their requested contents. Then, we get general best
content request level strategies in which some users may not
buy the requested contents.

THEOREM 3: Assume all users would like to pay the
requesting content, x; > 0, Vi. The best content request level
strategies of users are x* = (2A — G)~' (a — p), in which
a = {ay,a9, - ,aN}T denotes users’ the internal demand
rate profile.

Proof: Based on (4), we get (2A — G)x* = (a—p).

In addition, we can easily prove that (2A — G) is invertible
according to Assumption 1. Therefore, we have Theorem 3.
|

The above discussion is based on the assumption that all
users buy positive content request levels. Next, a general
situation is considered where users in set S C N would like
to buy the requested contents at the Stackelberg equilibrium.

THEOREM 4: Suppose X = {T1, T2, -, TN} is the best
content request level profile. The unique equilibrium of the



game given the price vector pg takes the following form:

%s = (2As — Gs) ' (as — ps)

5
s = 0 (&)

where Xg is a vector of Z; such thati € S and X = XgUXn_s.
Vectors ag, ps and matrices Ag, Gg are the corresponding

parameters defined in the set .S.
The proof of Theorem 4 is similar with that of Theorem 3.

V. MOBILE CACHING USER’S BEST RESPONSE STRATEGY

In this section, the situation where all users buy positive
content levels is considered by making the following assump-
tion. Then we discuss a general situation that some users may
not buy contents where the following assumption does not
hold.

Assumption 2: a; > c, gi; > 2d,Vi,j # i

It ensures that all users would like to buy positive content
levels at the Stackelberg equilibrium by limiting the relation-
ship between the network effect and the congestion effect.

THEOREM 5: Under Assumption 2, the optimal prices
are as follows:

p'=a-(2A—-G)(4A-G+G") '(a—c) (6)

Proof: To solve the best pricing strategy of the mobile
caching user, we solve the following maximization problem:

b 2 (=)
s.t.a; — 2b;xf + Zgijx; —2d Z x; —pi =0 (7N
j#i JEN
x; >0,Vi

By removing p;, we get x* = (4A — G + GT)f1 (a—c).
Comparing it with the x* in Theorem 3, Theorem 5 is proved.
|

However, network and congestion effects are independent
in practice. Now we discuss how to obtain the best pricing
strategy of the mobile caching user by relaxing the Assumption
2, where some users may not buy contents.

First, we find the set where users buy positive levels of
contents. Then, we calculate the best pricing strategy of the
mobile caching user. We relate content request level strategy
X* at the equilibrium to a pricing strategy p*. Because some
users may not buy contents, p* does not need to be unique.
The mobile caching user can set arbitrarily large price to the
users who do not buy contents, and X* is unchanged. Since
only the prices offered to users who buy contents play a part
in the mobile caching user’s revenue R, R is unique. So we
maximize the mobile caching user’s revenue by using content
request level strategy X* as variables instead of p*.

max R ®)
X*>0
where B = x*7 (a—c¢) — x*7 (2A — G)X*. It is acquired
by substituting p* = a — (2A — G) X" according to Theo-
rem 3 into (2). Note that above problem is a convex opti-
mization problem provided that b;, g;; and d are such that

[2A — G] + [2A — G]” is positive definite. After getting the
best content request level strategy of users X, the mobile
caching user calculates her pricing strategy according to
P" =a— (2A — G)X*. Thus, we obtain the pricing strategy
of the mobile caching user even if Assumption 2 does not
hold.

VI. PERFORMANCE EVALUATION

In this section, we study the performance of our data
offloading scheme. The Erdds-Rényi (ER) graph [24], in which
a social tie exists between users in a group with probability
Dy, is deployed to investigate network and congestion effects
on the performance. We assume N € {20,30,40} users
take part in the game. Other parameters are set as follows:
a; ~ N (4,2), b; ~ N (10,0.5), gij ~ N (4,2), d = 2 and
¢ = min(a;) — 1.

We investigate network and congestion effects on users’
content request level strategies as illustrated in Fig.2 under
different cases, with symmetric network effect, asymmetric
network effect, and without network effect. In each case, the
normalized content request level decreases as the congestion
factor becomes large. Meanwhile, the increase of normalized
content request level is in line with the increase of the
probability of social ties. These two facts demonstrate the
negative effect of congestion and the positive effect of social
ties on users. At the same time, we can see that users in
the symmetric network enjoy more benefits than users in the
asymmetric network. When only congestion effect exists, users
do not purchase any contents from the mobile caching user as
shown in Fig.2(c). In another example, the number of users
is taken into consideration. As shown in Fig.3, the mobile
caching user can get more revenues if more users with strong
social ties request for contents. However, the increase of the
number of users cannot bring benefits to the total revenue of
the mobile caching user when there is only congestion effect.
This is because users cannot get extra contents’ information
from her peers without social ties among them. Meanwhile,
users even cannot obtain their requested contents from the
mobile caching user due to congestion effect. Therefore, users
do not purchase any contents, which results in the low total
revenue of the mobile caching user. The above results exactly
match our design objective and demonstrate the importance of
the social relations among users.

VII. CONCLUSION

In this paper, we propose a data offloading approach via
mobile participation, which leverages the social relationships
between users in a group to alleviate the wireless network’s
congestion. To investigate the maximized satisfaction levels
of both the mobile caching user and users, we model the
problem as a Stackelberg game. We first prove the existence
and uniqueness for the Stackelberg equilibrium. Then, the best
strategies for the mobile caching user and users are calculated.
Based on the simulation results, we have shown the feasibility
and efficiency of our approach.
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