IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

1187

Maximizing Lifetime Vector
in Wireless Sensor Networks

Liang Zhang, Shigang Chen, Senior Member, IEEE, Member, ACM, Ying Jian,
Yuguang Fang, Fellow, IEEE, Member, ACM, and Zhen Mo

Abstract—Maximizing the lifetime of a sensor network has been
a subject of intensive study. However, much prior work defines
the network lifetime as the time before the first data-generating
sensor in the network runs out of energy or is not reachable to the
sink due to network partition. The problem is that even though one
sensor is out of operation, the rest of the network may well remain
operational, with other sensors generating useful data and deliv-
ering those data to the sink. Hence, instead of just maximizing the
time before the first sensor is out of operation, we should maximize
the lifetime vector of the network, consisting of the lifetimes of all
sensors, sorted in ascending order. For this problem, there exists
only a centralized algorithm that solves a series of linear program-
ming problems with high-order complexities. This paper proposes
a fully distributed algorithm that runs iteratively. Each iteration
produces a lifetime vector that is better than the vector produced
by the previous iteration. Instead of giving the optimal result in
one shot after lengthy computation, the proposed distributed algo-
rithm has a result at any time, and the more time spent gives the
better result. We show that when the algorithm stabilizes, its result
produces the maximum lifetime vector. Furthermore, simulations
demonstrate that the algorithm is able to converge rapidly toward
the maximum lifetime vector with low overhead.

Index Terms—Network lifetime, sensor networks.

I. INTRODUCTION

E STUDY the problem of maximizing the lifetime of
long-term low-rate monitoring sensor networks that
collect data from fields for ecosystem study, environmental
monitoring, seismic measurement, etc. Such sensor networks
are designed to gather tens of thousands of data points from
each selected location over a period of weeks or months.
Battery-powered sensor nodes are limited in computation ca-
pability, memory space, communication bandwidth, and, above
all, energy supply. A sensor network cannot carry out its task
after the nodes’ energy is exhausted. Hence, maximizing the
operational lifetime of a sensor network is critical.
The lifetime maximization problem has received a lot of
investigation in the past under different definitions of lifetime

Manuscript received September 10, 2011; revised July 19, 2012; ac-
cepted September 04, 2012; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor M. Liu. Date of publication December 11, 2012; date of
current version August 14, 2013. This work was supported in part by the US
National Science Foundation under Grants CPS 0931969 and CNS 0916391.

L. Zhang is with Juniper Networks, Sunnyvale, CA 94089 USA (e-mail:
liangz@juniper.net).

S. Chen and Z. Mo are with the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: {sgchen, zmo}@cise.ufl.edu).

Y. Jian is with Google, Mountain View, CA 94043 USA (e-mail:
yingj@google.com).

Y. Fang is with the Department of Electrical and Computer Engineering, Uni-
versity of Florida, Gainesville, FL 32611 USA (e-mail: fang@ece.ufl.edu).

Digital Object Identifier 10.1109/TNET.2012.2227063

for a sensor network. Much prior work tries to maximize
the time before the first sensor in the network runs out of
energy [1]-[8]. Others maximize the time before the energy of
the first replay node is depleted [9], the time before the first
loss of coverage [10], [11], or the time before the network
is partitioned [12]. Also related are the studies that prolong
the average node lifetime [13] or the time before a certain
percentage of nodes run out of power [14], although they do
not maximize the minimum lifetime in the network.

In reality, the operational lifetime of the network is not lim-
ited to the smallest lifetime of all nodes. When one sensor is out
of operation or a few sensors are partitioned from the sink, the
rest of the network can still work, as long as useful data gener-
ated by other sensors can reach the sink. We believe the lifetime
of a sensor network should include the lifetimes of all sensors
that produce useful data. A sensor’s lifetime is the duration from
the time when it begins to generate the first data packet to the
time when it generates the last packet that is deliverable to the
sink. The network lifetime can be defined as the vector of all
sensors’ lifetimes sorted in ascending order, which is called the
lifetime vector. The value of the lifetime vector is determined by
the nodes’ forwarding policies that specify how packets are for-
warded from the sensors through the network to the sink. More
specifically, for every node, its forwarding policy specifies the
proportion of packets that should be forwarded on each outgoing
link toward the sink.

Hou et al. [15], [16] define the problem of maximizing a
sensor network’s lifetime as to find the packet forwarding poli-
cies for all nodes that collectively produce the lexicographically
largest lifetime vector, called the maximum lifetime vector. In
less precise terms, it first maximizes the smallest lifetime of all
nodes, then maximizes the second smallest lifetime of all nodes,
and so on. Hou e al. show that this problem can be modeled as
a series of linear programming (LP) problems. After solving the
LP problems, the sink uploads the optimal packet forwarding
policies to the sensors. Based on its forwarding policy, each
sensor forward its packets. Such a solution is, however, a
centralized one. It requires solving O(|N|) LP problems of size
O(|£]), where |N| is the number of sensors in the network,
|E| is the number of links, and LP has high-order polynomial
complexity. The computation overhead can be prohibitively
high for large sensor networks that need to be operational soon
after deployment. Collecting the complete information about
the network and uploading the complete forwarding policies
to all nodes require significant amount of transmissions in the
network, particularly for nodes around the sink. To avoid these
problems, a distributed algorithm that spreads the overhead
evenly on all nodes becomes important.

This paper presents the first distributed solution for the
problem of maximizing the lifetime vector of a sensor network.

1063-6692 © 2012 IEEE

1188

Our strategy is to design a distributed progressive algorithm
that works in a series of iterations. Each iteration produces a
lifetime vector that is better than the lifetime vector from the
previous iteration. The sequence of lifetime vectors produced
from the iterations approaches to the optimal solution. A dis-
tributed progressive algorithm is practically attractive because a
result is available at any time and is getting better as more time
is spent. We show that when the algorithm stabilizes, its result
produces the maximum lifetime vector. We have performed
thousands of simulation runs on random networks of various
sizes and compared them to Hou’s centralized algorithm as well
as other related algorithms. The results demonstrate that our
algorithm rapidly converges to the maximum lifetime vector
and its overhead is small. For networks of thousands of nodes,
it produces near-optimal results in 10-30 iterations—one itera-
tion requires each node to transmit two small control messages.
The algorithm scales well as its overhead increases slowly with
respect to network size. When used as a centralized algorithm,
it is two to three orders of magnitude faster than Hou’s linear
programming solution for random networks of thousands of
nodes; the performance gap increases for larger networks.
We also compare the proposed algorithm with other existing
algorithms that maximize the smallest sensor lifetime in the
network or perform minimum-power routing. The proposed
algorithm produces much better lifetime vector.

The rest of this paper is organized as follows. Section II gives
the network model and the problem statement. Section III lays
down the theoretical foundation for our algorithm. Section IV
proposes our distributed progressive algorithm for maximizing
the lifetime vector. Section V gives a few illustrative examples.
Section VI presents the simulation results. Section VII draws
the conclusion.

II. NETWORK MODEL AND PROBLEM DEFINITION

A. Sensor Network Model

Let N be the set of sensor nodes, among which a subset S
of nodes that are located in places of interest will generate data.
They are called data sources. Other nodes in N — S help to
forward packets from data sources to the sink although they do
not have to generate data themselves. Note that data sources will
also forward packets from others if they are on the routing paths
to the sink.

Let g;.¢ € N, be the source rate at which node ¢ generates
new data packets. g; > 0ifz € S; g, = 0if 7 &€ S. We assume
that the source rates are set low enough to not cause congestion
in the network. The sink may consist of multiple geographically
dispersed base stations. We assume the base stations are con-
nected to a data server. It makes no difference to which base
station a data packet is routed.

Two nodes are neighbors if they can receive packets from
each other (to support DATA/ACK exchange). There may be
multiple routing paths from each node to the sink. Let D; be
the set of neighbors that node 7 use as the next hops to the sink.
They are called downstream neighbors of node i.Vj € D;, (i,)
is called an outgoing link of i. Let U; be the set of upstream
neighbors, which use ¢ as the next hop on their routing paths
to the sink. V& € U;, (k,1) is called an incoming link of i. If
1 is a downstream neighbor of %, then £ must be an upstream
neighbor of i. Let £ = {(i,4) | Vi € N,j € D;}. We call

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

50K 100K

BS BS
(@) (b)

Fig. 1. (a) Meshy routing graph (b) Single-path routing (c) All-paths routing.

the graph consisting of all these links as the routing graph of
the sensor network, which contains all routing paths from data
sources to the sink. The routing paths should be acyclic.

Any suitable routing protocol may be used to generate the
routing paths. For example, if geographical routing [17]-[20] is
used, D, may consist of all or a selected subset of neighbors that
are closer to the sink (based on Euclidean distance to the closest
base station), and U; may consist of all or a selected subset of
neighbors that are further away from the sink. Numerous lo-
calization methods have been proposed to establish geographic
locations among sensors; relative locations [21] or virtual lo-
cations [19] may also be used. Another alternative approach is
to use hop counts, where D;(U;) may consist of all or a se-
lected subset of neighbors that are closer to (farther away from)
the sink based on hop count. The hop counts from nodes to a
sink can be learned from a distance-vector protocol or through a
broadcast from the sink, in which the broadcast message carries
a counter that is increased by one after each hop and, upon the
first receipt of the message, each node takes the counter value
of the message and forwards the message to neighbors except
for the one from which it receives the message.

An example is given in Fig. 1(a), where s and w are data
sources, x and y are nonsource nodes, and BS stands for a base
station. Using geographical routing, we have D, = {z,y},
D, = {x,y}, D, = {BS}, U, = {s,u}, and so on. There
are two routing paths from s to BS: s — 2 — BS,and s — y —
BS. Similarly, there are two routing paths from « to BS. In a
large, complex network, there may be numerous different paths
from each data source to the sink.

Since sensors around the sink have to forward others’ data,
they are likely to exhaust their energy first and prevent the rest
of the network from reaching the sink. The proposed algorithm
in this paper deals with how to make the best use of available
energy. It cannot make a physical energy bottleneck going away.
To address this issue, we have to increase the energy availability
around the sink by deploying more sensors there, using larger
batteries, or perform in-network data aggregation to reduce the
amount of traffic going through those nodes.

B. Lifetime, Volume, and Lifetime Vector

For an arbitrary data source s, we define its lifetime %5 to be
the period from the time it begins generating data to the time
when it runs out of energy or its packet can no longer reach the
sink. The latter case happens when s is partitioned from the sink
because other nodes on its routing paths run out of energy.

We define the source volume (i) of a node i € N to be
the total number of data packets that are generated by ¢ and
delivered to the sink in its lifetime. Obviously, 1:(é) > 0ifi € S,

ZHANG et al.: MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS

and it is zero otherwise. The lifetime of a data source s and its
volume are connected by the following formula:

ty = p(s)/gs- (1
For example, in Fig. 1(a), suppose s produces a new data packet
per minute, i.e., g5 = 1. If the energy at s allows it to produce
50 K packets and the energy at nodes on its routing paths can
deliver all these packets to BS, then #, is 50 K min. When data
sources share routing paths, their volumes (i.e., lifetimes) are
dependent on each other. If we deliver more packets for one data
source (so that it has a larger volume and can operate longer),
another competing source may have to suffer.

Each data source has its own lifetime. If we put the lifetimes
of all sources in a vector (i, s € S) and sort them in ascending
order, we have the lifetime vector of the sensor network. As we
will demonstrate through an example shortly, different ways of
forwarding packets in the network will result in different life-
time vectors. Our goal is to find the optimal way of forwarding
packets in order to achieve the lexigraphically maximum life-
time vector, which is defined as follows.

Consider two feasible lifetime vectors, 7" = (t1,%2,. .., t|5)
and T’ = (3,15, ... t]g), respectively, where ¢; < ¢; and
ty <5V, e 1, |S|J, i< j.WesayT =T ift; = ¢,
Vi e [1,|8]],and T > T if Ik € [1,|S]], tx > ¢}, and ¢; =
tvie 1L,k -1].

Let IT be the set of all feasible lifetime vectors that can pos-
sibly be achieved in a sensor network. The maximum lifetime
vector T is the largest in IT: V7' € II,T* > T'. Our goal is to
design a distributed algorithm to achieve the maximum lifetime
vector. Intuitively, it is to first maximize the smallest lifetime
among all sources, then maximize the second smallest, and so
on.

C. Decoupling Routing

If we choose a single routing path for each data source, we
will have a path selection problem. In Fig. 1(b), suppose x and
y are energy bottlenecks in the network, and they have enough
energy to forward 50 K packets and 100 K packets, respectively.
If g, = g, = 1 packet per minute, the lifetime of s is 50 K min,
and that of is 100 K min, using the routing paths shown by bold
arrows in Fig. 1(b). The lifetime vector is thus (50K, 100K).

There is a serious problem: Once the optimal routing path
for a source is determined, this information has to be sent to
all nodes on the path so that they can create a routing entry
for packets from that source. However, the scheme requires
per-source routing entries, which may not be acceptable for
memory-constrained sensors.

To address the above problem, we decouple routing from
lifetime maximization. The lifetime maximization algorithm
should be able to work with any underlying routing protocol.
For example, if geographic routing is used, nodes simply for-
ward packets to neighbors that are closer to the sink. No routing
entries are needed. There may exist numerous paths from a
source to the sink. Packets from the source should be able to
use all these paths in order to fully explore the opportunities of
lifetime maximization. An example is shown in Fig. 1(c), where
we label each link with the number of packets sent over the link.
Source s sends 50 K packets through x to the sink, and 25 K
more through y. The resulting lifetime vector is (75K, 75K),

1189

larger than what’s achieved in Fig. 1(b). The problem is how
we determine the number of packets transmitted over each
link so that the maximum lifetime vector can be achieved in a
complex network.

D. Volume Schedule

The volume v(i, j) of alink (¢, j) is defined as the number of
packets transmitted on the link over the lifetime of the sensor
network. All link volumes and source volumes together form a
volume schedule. There are many possible volume schedules,
but not all of them can be actually realized. A volume schedule
is feasible only if it satisfies the following energy and volume
conservation constraints.

Let ¢; be the energy available at node 2. Let & be the amount
of energy that a node spends on receiving a data packet from
an upstream neighbor, J; be the amount of energy that node @
spends on producing a new data packet, and -y; be the amount
of energy that node + spends on sending a packet. The energy
constraint is given as follows:

Z ax vk, i)+0;xpu(i)+ Z Yixv(i, j) < e

kel, jeD;

Vi e N.

2

We say a node ¢ is exhausted if

Z a X v(k,i) 4+ B x u(i) + Z vi X v(t, 1) = e;.

keU; JjeD;

That is, its energy will be used up after all packets are delivered
in the network according to the volume schedule. The volume
conservation constraint depends on the application model.

+ If each node simply forwards all packets that it receives
from upstream neighbors, then the number of packets sent
out by a node will be equal to the number of packets it re-
ceives plus the number of packets that it generates locally,
ie.,

> oling) = pli)+ Y ok,

JED; kel;

VieN. (3

* For periodic min/max/avg measurement among readings
from data sources, each node will aggregate information
from packets received from its upstream neighbors and
then send out a single packet downstream. For example,
suppose the application is to find out the minimum reading
of all sensors. As the readings are sent from sensors toward
the sink, each node will perform aggregation by finding
the smallest value among its local reading and the read-
ings received from upstream neighbors. It will only send
this smallest value downstream

> (i) = max{max{v(k, i)}, u(i)}

JjED;

Vie N. (4)

E. Packet Forwarding Based on Volume Schedule

The volume schedule specifies the number of packets from
each source that can be delivered to the sink. According to (1),
this determines the lifetimes of all sources, i.e., the lifetime
vector. Moreover, the volume schedule also specifies how many
of these packets are delivered on each link. This information
tells how to forward packets through the network to reach the

1190

sink, and thus gives an implementation of the lifetime vector.

To implement a volume schedule, each node ¢ simply does the

following: 1) It generates new packets at its source rate g; for

1(7) packets, and 2) it forwards the received packets to down-

stream neighbors in weighted round robin, using the volumes on

the outgoing links as the weights. Therefore, the packet rates on

the outgoing links are proportional to the volumes on the links.

This is called the volume-rate property

oAl

= ZE;;% Vi,q' € Di,v(i.) # 0,0(i,3') # 0

®)

where r(i, 7) is the packet rate on link (i,).

Our goal is to design a full distributed algorithm that finds
a feasible volume schedule to produce the maximum lifetime
vector. Once we find the volume schedule for the maximum
lifetime vector, the nodes know how to forward their received
packets based on the volumes of their adjacent links.

r(i,)
o(i, j)

F. Additional Definitions

We give additional definitions that are needed by the proof
of a theorem in Section III. The volume of a (directed) path is
defined as the minimum volume of the links on the path. A path
in the routing graph is called a forwarding path if its volume is
greater than zero. Otherwise, it is called a nonforwarding path.

Node s € S is a feeding source of node « € N if there is a
forwarding path from s to ¢. Furthermore, node s is a restricted
feeding source of node ¢ if there is an exhausted node on every
forwarding path from s to <. Node s is an unrestricted feeding
source of node ¢ if there is no exhausted node on at least one
forwarding path from s to ¢, where the path referred in this def-
inition includes s but excludes ¢. Node s is a potential source of
node ¢ if it is not a feeding source of ¢, but there exists a nonfor-
warding path from s to ¢, and the path has no exhausted node.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
MAXIMIZING LIFETIME VECTOR

This section establishes the necessary and sufficient condi-
tions for maximizing the lifetime vector in a theorem. We ex-
plain a basic technique used in the proof, called volume shift,
which increases the lifetime (or volume) of a data source at the
expense of another.

In Fig. 2, consider a feasible volume schedule where nodes s
and w are two unrestricted feeding sources of node 7. Suppose
the volume of s is larger than the volume of w. Let P; and P»
be two forwarding paths that do not have any exhausted node.
We show that the lifetime of an unrestricted feeding source (w)
can be increased at the expense of the lifetime of another (s).
To do so, we simply let w send more packets down the path P
and let s send less down the path P, such that their combined
number of packets to node ¢ stays the same. More specifically,
we decrease the source volume of s by a certain amount and
decrease the volumes on the links of P accordingly. We then
increase the source volume of w by the same amount and in-
crease the volumes on the links of P, accordingly. The amount
of change should be small enough such that its addition on P;
does not violate the energy constraint. The above operation is
called a volume shift from s to w with respect to . After volume
shift, the volume schedule remains feasible and the lifetime of s
is decreased, the lifetime of w is increased, while the lifetimes
of all other sources remain unchanged. Obviously, in order to

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

— link with zero volume
— link with non-zero volume
—~- path

o source node

] non-source node
=] exhausted node
°

base station

Fig.2. There is no exhausted node on P; or P ; nodes s and « are unrestricted
feeding sources of . There is an exhausted node x on I’5; node « is a restricted
feeding source of 2. There is no forwarding path from = to 2; node = is a potential
source of .

improve the lifetime vector, we shall always perform a volume
shift from a node with a larger lifetime to a node with a smaller
lifetime.

Not only can a volume shift be performed between two un-
restricted feeding sources, but also it can be performed from a
restricted feeding source u to an unrestricted feeding source s,
or from an unrestricted feeding source s to a potential source z,
but not the other way around—more specifically: 1) 4 volume
shift cannot be performed from an unrestricted feeding source s
to a restricted feeding source u because we cannot add any ad-
ditional volume to P that has an exhausted node x; 2) a volume
shift cannot be performed from a potential source z to an unre-
stricted feed source s because the volume of any path from z to
i is zero, and thus nothing can be shifted out.

Theorem 1: A feasible volume schedule produces the max-
imum lifetime vector if and only if the following conditions are
met.

1) There is an exhausted node on every path from any source

to the sink.

2) All unrestricted feeding sources of a node must have the
same lifetime, which should be no less than the lifetimes
of the restricted feeding sources of the same node, and no
greater than the lifetimes of the potential sources of the
same node.

Proof: First, we prove that the conditions are necessary. If
a feasible volume schedule does not meet either condition, we
show that a larger lifetime vector can be produced by modifying
the volume schedule. If the first condition is not true on a path P
from a source s to the sink, we can improve the lifetime of s by
increasing its source volume as well as the volume of P’ by a tiny
amount, which results in a larger lifetime vector. Next, consider
the second condition.

» Ifanunrestricted feeding source s has a greater lifetime than
another unrestricted feeding source w of a node 7, we can
perform a volume shift (Fig. 2) from s to w such that the
lifetime of w is slightly increased (but still below that of s),
whichresultsinalargerlifetime vector. Note that the volume
shiftonly changes the lifetimes oftwonodes, s and .

+ If an unrestricted feeding source s has a smaller lifetime
than a restricted feeding source u, we can perform a
volume shift from u to s to increase the lifetime vector.

o If an unrestricted feeding source s has a greater lifetime
than a potential source z, we can perform a volume shift
from s to z to increase the lifetime vector.

Second, we prove that the conditions are sufficient. The life-
time space, consisting of all feasible lifetime vectors, is convex
and compact, which can be easily seen from the linear (or max)
nature of the energy constraint (2) and the volume conserva-
tion constraint (3) or (4), as well as the lifetime definition (1).

ZHANG et al.: MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS

Radunovic and Le Boudec showed that a max-min vector al-
ways exists in a convex, compact space. Moreover, it is unique
and must be lexicographically largest in the space [22]. Hence,
we only need to show that a feasible volume schedule that meets
the two conditions produces the max-min vector, satisfying the
following requirement: The lifetime ¢, of one source s cannot
be increased without decreasing lifetime £, of another source w,
for which ¢,, < t,. We can show that the above requirement is
indeed satisfied based on the following facts: The lifetime of any
source is determined by its source volume; these two quantities
are proportional to each other. Due to the first condition, each
path from s to the sink has an exhausted node, so that its lifetime
(i.e., source volume) cannot be increased without decreasing
the lifetime (source volume) of another node, which must be
a feeding source because a potential source does not send any
competing packets and thus has no volume to decrease. Due to
the second condition, the lifetimes of other feeding sources are
not greater than the lifetime of s. If we increase the lifetime
(source volume) of s, at least one of those nodes has to pay, by
lowering its lifetime (source volume).]

The above theorem gives us some guideline for designing
a distributed algorithm that generates a volume schedule to
maximize the lifetime vector. Based on the first condition, data
sources should aggressively set their source volumes to the
highest values that their paths to the sink allow.

According to (1), the lifetime of a source s is equal to its
volume p(s) divided by its rate g5. For unrestrictive feeding
sources of a node, the second condition requires their volumes
to be allocated in proportional to their rates, so that they will
have the same lifetimes.

IV. DISTRIBUTED PROGRESSIVE ALGORITHM

After the sink is deployed, before the sources actually gen-
erate data packets and deliver them to the sink, a distributed
progressive algorithm (DPA) is executed to produce a volume
schedule, based on which the data packets will be forwarded.

A. Rate Schedule, Volume-Bound Distribution, Volume
Schedule

DPA iteratively refines a volume schedule, {v(3, j), ¥(i,j) €
E, u(i), Yi € N}. To accomplish this task, we need to in-
troduce a couple of auxiliary concepts. A rate schedule,
{r(i,7), V(4,7) € E}, is defined by assigning a rate value to
each link in the routing graph. A volume-bound distribution,
{b(4,4), Y(i,7) € E, b(i), Vi € N}, is defined by assigning
a volume bound to each link and each node, where volume
bound b(i, j) specifies the maximum volume that is allowed on
link (%, §) and source volume bound b(i) specifies the maximum
volume that is allowed to be generated from a node <. One of the
key operations of DPA is to compute volume bounds. Volume
bounds are constrained by the energy at the nodes. Essentially,
we will convert energy constraints into volume bounds before
the volumes are set.

DPA begins with an initial rate schedule that can be arbitrarily
set. From the rate schedule and energy availability at the nodes,
it computes a volume-bound distribution based on the second
condition in Theorem 1. From the volume-bound distribution,
it sets a volume schedule, based on which it will in turn derive
a new rate schedule. This completes the first iteration of the al-
gorithm. As shown in Fig. 3, in each subsequent iteration, DPA

1191

rate

schedule —I

rate

) schedule _l

rate

j schedule _l

Initialization

1 | volume bound
t it ti . . .
st iteration distribution

2nd iteration |)volume bound
distribution

3rd iteration I_)

Fig. 3. Iterations of DPA.

volume
schedule

volume
schedule

repeats the above computation of a new volume-bound distri-
bution (based on the rate schedule from the previous iteration),
then a new volume schedule, and finally a new rate schedule.
Each iteration produces a better volume schedule whose life-
time vector is larger than the previous one.

The rate schedule, volume-bound distribution, and volume
schedule are stored and computed in a fully-distributed way.
Each node only maintains the rates, volume bounds, and vol-
umes of its adjacent links with a space complexity of O(|D;| +
|U;|). Because each directed link is shared by a pair of up-
stream-downstream nodes. Some properties of the link will be
set by the upstream node and then sent to the downstream node,
while other properties will be set by the downstream node and
then sent to the upstream node. Details are given as follows.

Node i will set its outgoing rates, v(i,4).j € D,, by dis-
tributing the total incoming rate among the outgoing links. It
will learn the incoming rates, r(k,i), k € U,, from upstream
neighbors £ who set those rates. (We want to stress that the
link rates here are auxiliary variables used to facilitate the com-
putation of volumes. They have nothing to do with the actual
data-packet rates on the links at the time when DPA is executed.
In fact, DPA can be executed at the beginning of the deployment
before any data packets are transmitted.)

Node i will set its outgoing volumes v(i, j) by distributing the
total incoming volume among the outgoing links. It will learn
the incoming volumes v(k,4) from upstream neighbors k& who
set those volumes.

Node ¢ will set its incoming volume bounds b(k.i) by dis-
tributing its forwarding capacity among the incoming links. It
will learn the outgoing volume bounds b(i, j) from downstream
neighbors 7 who set those bounds.

In the rest of the section, we will describe the details of DPA,
which consists of initialization phase and iterative phase with
each iteration having two steps. The first step computes volume
bounds based on link rates. The second step determines link vol-
umes from volume bounds and then computes new links rates,
which sets the stage for the next iteration.

B. Initialization Phase

This phase arbitrarily sets up a rate schedule. The distributed
computation for initializing link rates is described as follows.
The sink broadcasts an INIT packet backward in the routing
graph. When a node £ receives INIT, it forwards the packet
to its upstream neighbors. If & has no upstream neighbor (i.e.,
k is a leaf in the routing graph), it distributes its source rate
evenly among its outgoing links, i.e., r(k, i) — u%—i‘,Vi € Dy,
where 7« is the assignment operator. Node % then sends
those outgoing rates to its downstream neighbors in a RATE
packet. After a node ¢ learns (&,) in RATE packets from all
upstream neighbors £, it first computes its outgoing rates as

1192

o o (ki) ta. .
r(i,j) Z“ELID—,‘, ¥4 € D;, and then sends those rates

to downstream neighbors j in a RATE packet. The initializa-
tion phase terminates when the sink receives RATEs from all
neighbors. Intuitively, this phase begins with a wave of INITs
traveling backward in the routing graph to all nodes, and the
INIT packets are turned around at leaf nodes to form a reverse
wave of RATEs that assign the initial rates of all links subject
to the flow conservation constraint.

In total, at most |N| INIT packets and |N| RATE packets
are transmitted. Each node ¢ sends one INIT of size O(1) and
one RATE packet of size O(| D;|). The initialization phase com-
pletes within the maximum round trip time between the sink and
any source in the network.

C. Iterative Phase—Step 1: From Rates to Volume Bounds

The first step of each iteration is to set volume bounds based
on link rates. Each node ¢ must appropriately set its incoming
volume bounds, b(k, i), Yk € U;, and the source volume bound,
b(i), such that it does not receive more packets than it is able
to forward. We describe two volume-capacity constraints that
the volume bounds must satisfy, and then present the distributed
algorithm that sets all volume bounds.

First, a node ¢ should not receive and forward more packets
than the downstream neighbors can handle. If the application
model is characterized by (3), then the combined incoming
volume bound (set by #) should not exceed the combined
outgoing volume bound (set by downstream neighbors)

Zb 21)1]

keU; J€D;

Y+ b(i (6)

where b(i, j) is learned by 7 from j. If the application model is
characterized by (4), then the constraint becomes

i)}, b(0) }<ZbLJ

JjED;

mdx{max{b(

(7

Second, node ¢ should not receive and forward more packets
than its energy allows

S ax bk i)+ B xb(i)+ > v x V(i j) e (8)
keu; jED;
where .
(gibwj)+mn>7§%%??
b(i,j) = j?(?ri application model (3)

ERICY) J)

Z (4.4’

3 61)

for application model (4).

max{max{b(k i)}, (i)}

As we have explained in Section III, the second condition of
Theorem 1 requires that volume allocation should be made in
proportion to the incoming rates (which must be adjusted for re-
stricted feeding sources, as will be discussed shortly in Step 2).
Hence, we have the following rate-bound property:

bk,i) _ b(K',i) _ b(4)

r(k,d) (k0 g
Vi, k' € U; U {i}, r(k,

If r(k,4) = 0, then b(k

i) £ 0,0(K. i) £ 0,g: £ 0.
,i) =0.If g; = 0, then b(i) = 0.

©

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

The distributed computation of Step 1 is described as follows.
The sink begins the process of setting volume bounds after the
rate initialization phase terminates (at the time when the sink re-
ceives RATEs from all upstream neighbors), or after Step 2 com-
pletes (at the time when the sink receives VOL_RATE packets
from all upstream neighbors—to be described in Section IV-D).
The sink sets its incoming volume bounds to be infinite and
sends a BOUND packets to upstream neighbors, carrying the
volume bounds of its incoming links. After a node ¢ receives
BOUNDs from all downstream neighbors j € D), and learns all
outgoing volume bounds (7, j), it sets the incoming volume
bounds, b(k,i),k € U;, and its source volume bound (%)
as large as possible, based on (9) subject to the constraints of
(6)—(8). Node ¢ then sends its incoming volume bounds to the
upstream neighbors in a BOUND packet.

In total, | N| BOUND packets are transmitted. Each node ¢
only transmits one packet of size O(|U;]).

D. Iterative Phase—Step 2: From Volume Bounds to Volumes
and Rates

Next we discuss how to set the volumes of all links based
on the volume bounds from Step 1. We first discuss how the
volumes should be assigned, and then present the distributed
algorithm to do so. Each node ¢ should set the outgoing volumes,
v(i,7),¥j € D;, and its source volume p(i), subject to the
following bound constraint:

(i) <0(i), (i,) < b(i,)

The first condition of Theorem 1 requires us to set the source
volume as high as possible. Hence, we should assign

(i) — b(3). (11

In addition to (10), outgoing link volumes are also subject to the
volume conservation constraint in (3) or (4). A node cannot send
more packets than it receives. If it does not receive enough in-
coming volumes, its outgoing volumes may have to be set lower
than what the volume bounds allow. If the volume conservation
constraint is (3), to satisfy this constraint, node ¢z assigns its out-
going volumes as follows:

Vje D;Vie N. (10)

w(i, §) — oy i) < (i) | 20 g p,
(4,5) <k§ (k) +)) _é}b(i,j’) Vj e D;
T (12)

where v(k,) is set by upstream neighbor & and learned by ¢
from k. If the volume conservation constraint is (4), node % as-
signs the outgoing volumes to be

v(i,) — max{gleza({v(k, iy} p(i)} % VieD,.
j'en;
(13)

First, we prove by induction that using (12) will satisfy the
bound constraint (10). Consider the base case with U; = (). By
(12), (6), and the fact that {/; = @), we have

7.7) = (e M
v(i, j) = (i) S b(i,)

J'ED;

bi. 5)
<2 Wi,)

j'eD;
=b(i,).

ZHANG et al.: MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS

link with zero volume

link with non-zero volume
path

source node

" k)“'/j
X

i non-source node

exhausted node

e m O O

base station
BS

Fig. 4. There is no exhausted node from s to ¢; node s is an unrestricted feeding
sources of . There is an exhausted node # from w« to ¢; node w is a restricted
feeding source of 2. The upstream bottleneck x may prevent source u from fully
utilizing the volume bound set by ¢ on link (&,).

Next, we make the inductive assumption that v(k,i) <
b(k,4), ¥k € U, and prove the case when U; # . (This is a
valid inductive assumption for a DAG routing graph, which
has no loop for circular reasoning.) Together with (6) and (11),
we have

. PN B CY)
7,(/,,]) (k;i (]m)+//()) A[;} b(’i,j’)
<3 eoreio) PR
- i b g) :
JGZD 7 J'€D; 2, M
=b(i, 7).

By similar induction proof, it can be shown that using (13) will
also satisfy the bound constraint (10). This result, together with
(8), ensures that the assigned volumes satisfy the energy con-
straint required in (2)—to see this, one has to use the fact that
v(i,7) < b'(4,7) due to (12) and (13) and (10), where b’ (4,) is
defined in (8). Consequently, the resulting volume schedule is
feasible.

After we set the link volumes, we assign new link rates based
on the rate-volume property in (5), setting the stage for the next
iteration. For application model (3)

. ‘ v(%, J ‘
r(i,j) — (Z r(k,i) + gq> % Vje D,
kel J'€D; "
(14)
For application model (4)
- , , v(i, j) ,
(2, b e g k ¢/ e —weee V D7
7(z,j)<—max{£%%gf7(1), 9i} S o7 j e
J'eD;
5)

We have one additional issue that must be handled. As shown
in Fig. 4, the volume bound assigned by ¢ on link (w, %) for an
unrestricted feeding source s will be fully utilized. However, the
volume bound assigned by ¢ on link (%,) for a restricted source
1 may not be fully utilized due to an upstream bottleneck x
that may set a tighter bound on the source volume of w. In this
case, the volume v(k,), which is set by k and constrained by
the limited upstream energy at x, is smaller than the volume
bound b(k,¢). When this happens, we shall reduce b(k,7) to
match v(k, i), and allow b(w, i) to be larger, which will in turn

1193

allow s to have a larger source volume and thus a larger lifetime.
Since volume bounds are set at Step 1 based on link rates, we
can achieve the reduction of b(k, ¢) by artificially reducing the
rate r(k,).

More specifically, after the link rates are calculated based on
(14) and (15), they may be reduced by multiplying a reduction
Sactor f(i)(€ (0, 1]), which has an initial value of 1 and is up-
dated at each iteration as follows. Suppose node : is not a direct
neighbor of the sink. If i is exhausted, i.e., Y, o @ X v(k, i) +
Bi x p(i) + 3 5ep, Viv(i,) = e, or it was exhausted in one
of the previous iterations, then it updates f(¢)

— 3 b3/ 1)
J€D;
uliy — 3 oli)

JjeD;

Z a x vk, i) +

kel

e

+ 8 x p(i) + >0 viv(i, j)

JED;

(16)

where B(i) and u(i) are the would-be volume bound and
volume on all outgoing links, respectively, if the rate reduction
had not been preformed to reduce the outgoing volume bound
in previous iterations. Clearly, the value of f(i) will stabilize
at an exhausted node @ only when the volume 3. v(i, j)
matches the bound >,), b(i, 7). After updating f(7), node
reduces the outgoing rates as follows:

r(i,) (i, 5) x f(i)

For the example in Fig. 4, both i and 2 will perform the above
operation. When = does so, its rate reduction will propagate
downstream, causing the reduction of r(k,4), which in turn
causes the reduction of (%, 7) and the increase of b{w, 7).

The distributed computation of Step 2 for setting volumes/
rates is a natural continuation of Step 1. After a node with no
upstream neighbor receives BOUND (defined Step 1) from all
downstream neighbors, it is able to assign its source volume by
(11) and outgoing volumes by (12) and (13). It then updates
the link rates by (14)—(17). After that, it sends the outgoing
volumes/rates to the downstream neighbors by a VOL _RATE
packet. After a node ¢ receives VOL RATE packets from all
upstream neighbors k and learns v(k,), it is able to assign its
source volume by (11), the outgoing volumes by (12) and (13),
and the new outgoing rates by (14)—(17). It sends the outgoing
volumes/rates to downstream neighbors in VOL_RATE. When
the sink receives VOL_RATE from all upstream neighbors, it
knows that Step 2 is completed.

Step 2 transmits |N| packets. Each node ¢ sends only one
packet of size O(|D;|). Each iteration, including Steps 1 and
2, completes within the maximum round trip time between the
sink and any source in the network.

Vj e D;. (17)

E. Property

DPA carries out three computations to set volume bounds,
volumes, and rates, respectively. We show that all three compu-
tations lead to better lifetime vectors.

1194

First, consider the computation of volume bounds. The total
forwarding capability of a node, which is determined by (6)—(8),
is distributed as volume bounds based on the rate-bound prop-
erty in (9), which essentially performs volume shift from
feeding sources with larger lifetime (i.e., volume divided by
rate) to those with smaller lifetime. Such volume shift increases
the lifetime vector. The only problem is that a volume bound
may not be fully turned into volume if there is an upstream
exhausted node that sets a tighter volume bound. This problem
is solved by rate reduction, which contiguously updates a
reduction factor by (16) until the volume matches the bound.

Second, the volume assignments in (10), (12), and (13) are
aggressive in the sense that they try to fully utilize all volume
bounds, by setting the source volumes as high as possible and
by forwarding all incoming volumes at each node.

Third, the rate reduction in (14)—(17) artificially decreases
the link rates if the volume bounds are not fully turned into the
volumes. In subsequent iterations, due to (9), decreased rates
lead to decreased volume bounds on those links, allowing other
links that can fully utilize their bounds to have higher volume
bounds.

In summary, the volume bound computation performs
volume shift from large-lifetime sources to small-lifetime
sources; the volume computation and the rate reduction tech-
nique ensure that the volume bounds are fully utilized. Together,
they improve the lifetime vector as DPA executes through its it-
erations. As the lifetime vector moves increasingly closer to its
maximum value, the room for improvement becomes smaller
and smaller. Our simulations will show that DPA converges
rapidly.

Theorem 2: When DPA stabilizes the link volumes, the re-
sulting volume schedule produces the maximum lifetime vector.

Proof: Let G be the subgraph consisting of all paths from
sources to the first encountered exhausted nodes or to the sink
if no exhausted nodes are encountered. Rate reduction has no
impact on the link rates inside G. When link volumes are stabi-
lized in G, link rates and volume bounds must also be stabilized
because their linear interdependency in (5), (9), and (12)—(15).
We prove by induction that

v(i; j) = b(1, 5) (18)

Consider the base case with U; = (). Node i is not exhausted
and hence

Vi, j) € G.

3 x (i) + Z v X v(i,) < e;.

J€D;
By (11)—(13), it can be rewritten as
B xb(i)+ > i xV(i5) < e

jeD;

where (3, j) is defined in (8). Therefore, the real constraint for
the value of b(¢) is (6) and (7). Since we should set b(i)’s value
as large as possible, we have

b(i) = Y b(i.).
Jj€D;

By (12) and (13), we have (i, j) = b(¢, 7). Next, we make
inductive assumption that v(k, ¢) = b(k, i), Vk € U, and prove
the case when U; #). (This is a valid inductive assumption for a

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

DAG routing graph, which has no loop for circular reasoning.)
The proof is similar to the base case, except that v(k.¢) and
b(k.) are included in the formulas.

To prove that the resulting volume schedule achieves the
maximum lifetime vector, we have to show that the two condi-
tions in Theorem 1 are satisfied.

First, we prove by contradiction that the first condition holds.
If not, the sink will be in G. Consider an arbitrary link (¢, sink).
We have proved earlier that v(i, sink) = b(s, sink), which is
not possible because b(7, sink) is infinity.

Second, we prove that the second condition of Theorem 1
holds. Let s and w be two unrestricted feeding sources of node .
Let P; be a path from s to ¢ that has no exhausted node. Let P»
be a path from w to ¢ that has no exhausted node. Both P; and P»
are in G. Hence, for each link on the paths, its volume is equal
to its volume bound. By (3)—(5), (9), (14), (15), and (18), the
ratio of volume to rate is kept constant over the links of P; and

equal to "(5—5), the lifetime of s. Similarly, the ratio of volume to

rate is kept constant over the links of P, and equal to ";ﬂ , the
lifetime of w. Moreover, these two ratios have to be the same
when P; and P intersect at + due to (9) and (18).

By assigning link rates in proportion to link volumes, (14)
and (15) attempt to equalize the links’ volume-to-rate ratios,
which means, after each iteration, the rate is shifted away from
downstream links with smaller volume-to-rate ratios to links
with larger volume-to-rate ratios. The construction of the ini-
tial rate schedule ensures that every routing path is a forwarding
path and there is no potential feeding source at the beginning.
An unrestricted feeding source may become a potential feeding
source by shifting its rate away from a path. When an unre-
stricted feeding source of ¢ has a larger lifetime than other un-
restricted feeding sources of i (due to routing paths that are
not through), the node’s downstream link toward ¢ will have
smaller volume-to-rate ratio than its other links. Only in this
case, due to (14)—(15), its rate will be contiguously shifted away
from feeding ¢, and eventually turns itself into a potential source
of :.

We have proved earlier the first condition of Theorem 1 that
there is an exhausted node on every path from a source to the
sink. Let G’ be the subgraph consisting of all paths from sources
to the last encountered exhausted nodes, and C’ be the set of
those last encountered exhausted nodes, which forms a cut of
the network that separates the sink from all sources. When link
volumes are stabilized in G, link rates and volume bounds must
also be stabilized because their linear interdependency in (5),
(9), and (12)—(15). We prove by contradiction that

v, 4) = b(i, 4) (19)

Suppose,3(k, i) € G’ w(k,i) < b(k, (). Based on the definition
of G/, any path from 7 to the sink must contain an exhausted node.
By (8), (10), (12), (13), and the above assumption, we have

Z a x vk, i)+ B x p(i) + Z v X v(i, §) < e

keU; Jj€D;

v(i,j) € G.

In addition, from (3), (4), (6), and (7), we have: (3, j) € E,
v(4,7) < b(4,7). Following the same token, we know that j
must not be exhausted, and it also has a downstream link whose
volume is smaller than bound. Repeating the above reasoning,
we can construct a path all the way to the sink without passing

ZHANG et al.: MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS

an exhausted node, which contradicts with the fact that any path
from ¢ to the sink must contain an exhausted node.

By (3)-(5), (9), (14), (15), and (19), the ratio of volume to
rate is kept constant on any path segment in G’ that does not
contain an exhausted node (which performs rate reduction). It is
easy to see that the lifetime of a restricted feeding source « of a
node ¢ can only be equal to or smaller than that of an unrestricted
source because, due to rate reduction, the radio of volume to rate
will decrease when we traverse a path backward from ¢ to v and
cross an exhausted node. O

F. Termination Conditions

By Theorem 2, we shall terminate DPA when it has stabi-
lized the link volumes, which can be detected by adding a flag
that is transitively carried by the control messages. The flag is
initially unset. A node sets the flag if it changes a link volume
by an amount that is not negligibly small. It is up to the applica-
tion requirement to decide on how small is negligible. The sink
will stop if it does not receive a flag that is set. Alternatively,
DPA may also be terminated artificially after a certain number
of iterations, or when the resulting lifetime vector meets the ap-
plication requirement.

G. Overhead

DPA has a flooding-based design. Flooding would be con-
sidered as inefficient for point-to-point tasks such as routing a
packet from a source to a destination. However, for a global task
such as building a volume schedule that involves every node and
every link, flooding is the obvious choice that allows every node
to participate in the distributed computation.

While the flooding design itself may appear noninnova-
tive, the novelty of DPA is in the details that establishes
the constraints and formulas for nodes to perform localized
operations—iteratively computing their individual volume
bounds from rates, volumes from volumes bounds, and rates
from volumes with reduction—yet globally, as a net outcome,
produce a progressively better lifetime vector, approaching to
the optimal result.

During each iteration, node ¢ sends two control packets, one
BOUND of size O(|U;|) and one VOL_RATE of size O(|D;]).
Upstream/downstream neighbors represent a subset of all nodes
within the communication range of ¢. The packet size is lim-
ited when we choose a small number of upstream/downstream
neighbors for routing purpose. We performed many simulations
in Section VI, which shows that DPA converges quickly toward
the optimal lifetime vector. To achieve no more than 5% devi-
ation from the optimal, for networks of 1000 nodes, less than
25 iterations are needed. In addition, the overhead (i.e., number
of iterations) increases slowly with network size.

If the network is designed to collect tens of thousands of data
packets from each source, the small overhead of DPA (in tens
of control packets per node) is negligible. If the number of iter-
ations is predetermined, we can take the small energy consump-
tion of DPA into account by reducing the nodes’ energy (e;) for
an appropriate amount.

H. Centralized or Distributed

DPA can be trivially turned into a centralized one that is im-
plemented at the sink if it has the complete information about
the network. Comparing with the existing approach [15], [16] of

1195

Kk (1.0) S (13.3) k 6.7

s (1.0)

S (13.3) k 6.7)
Q O

k (1.0) S k

$ (1.0)

s (10.0)

s (11.01) k (9.09) S (10.43) k (9.57)

(€] (GY) @
Fig. 5. Progressively improving lifetime vector. (Volume and volume bound
are in thousands.) (a) Rate. (b) Volume bound. (¢) Volume. (d) Rate. (¢) Volume
bound. (f) Volume. (g) Volume after fifth iteration. (h) Volume after 10th itera-
tion. (i) Volume for max lifetime vector.

solving O(| N|) linear programs (each having high-order com-
plexity), this centralized algorithm is remarkably efficient as it
only needs to run for a small number of iterations (each having
linear complexity O(|E|)) to get close-to-optimal results. How-
ever, we believe a distributed implementation is more relevant
to sensor network deployment in general when the complete in-
formation of the network is not readily available.

1L Topology Change

During network operation, unexpected node failures may
change the topology of routing graph and reduce the lifetimes
of affected sources. When node failure is detected, DPA may be
reexecuted to produce an updated volume schedule. However,
if small topology changes are frequent, invoking DPA fre-
quently may cause considerable overhead. One way to reduce
overhead is to perform DPA periodically or upon triggering
after a certain number of node failures are detected. We will
evaluate the impact of small topology changes on lifetime
vector by simulation.

V. EXAMPLES

This section gives a few examples to illustrate how DPA
works.

A. Iterations of DPA

In Fig. 5, data sources s and & generate new data at the same
rate of one packet per minute. Suppose v and ¢ are energy
bottlenecks in the network. Each of them is able to forward
10 000 packets before its energy is exhausted. This maximum
number of packets that a node is able to forward is called the
volume capacity. Assume the energy available to sources s and
k is plentiful.

The top two rows of plots in the figure show the rate schedule,
the volume-bound distribution, and the volume schedule after

1196

the first two iterations of the algorithm, respectively, while the
third row presents only the volume schedules after the fifth and
10th iterations, as well as the optimal volume schedule that pro-
duces the maximum lifetime vector.

We now examine the first iteration of the algorithm. In
Fig. 5(a), DPA begins with an initial rate schedule, where
each node splits its rate (received from upstream or locally
generated) evenly among its outgoing links. For example,
r(s,4) = 0.5 and 7(k, 7) = 1.0. The source rate is shown in the
parentheses beside the source node.

In Fig. 5(b), the volume capacity of a node is shown in the
parentheses beside the node. It is determined either by the local
energy if the node itself is a bottleneck (in the case of v or #),
or by downstream energy bottleneck (in the case of s or k). A
node should set the volume bounds on its incoming links in such
a way that their sum is equal to the node’s volume capacity and
their values are proportional to the link rates. Because the ratio
of r(s,4) and r(k, ¢) is 1:2, node ¢ splits its volume capacity in
the same ratio, 3.3 thousand packets for link (s, ¢) and 6.7 thou-
sand packets for link (&, ¢). The volume capacity of s is the sum
of the volume bounds on its outgoing links, which is 13.3 thou-
sand packets.

Node s sets its source volume to 13.3 thousands, as shown
in the parentheses beside the node in Fig. 5(c). Then, it sets the
volumes on the outgoing links to be the same as the volume
bounds. Because the source rates of s and k are both 1, their
lifetimes are equal to their source volumes in this example.

Next we examine the second iteration of the algorithm. Based
on the volume-rate property in (5), from the volume schedule in
Fig. 5(c), we can derive the new rate schedule in Fig. 5(d) for
the next iteration. Note that (s, ¢) is changed from 0.5 in the
previous iteration to 0.25. It means that s has directed some of
its traffic away from 2 to v in an effort to equalize its lifetime
with k. From the new rate schedule, the algorithm calculates
the volume-bound distribution in Fig. 5(¢) and then derives the
volume schedule in (f). It is evident that a volume shift from s to
k with respect to 7 has happened when compared to the previous
volume schedule. It results in a lifetime vector (8,12) larger than
the previous one (6.7, 13.3).

The volume schedules after the fifth and the 10th iterations
are shown in Fig. 5(g) and (h), respectively. Their lifetime
vectors are (9.09, 11.01) and (9.57, 10.43), respectively, ap-
proaching to the maximum lifetime vector (10, 10), which is
shown in Fig. 5(i).

B. Rate Reduction

Next, we show an example with a restricted feeding source in
Fig. 6, where a new node %', whose limited energy allows it to
forward only 5000 packets, is inserted between & and .

The first iteration of the algorithm is illustrated by the top
row of plots in the figure. Let us take a close look at Fig. 6(b).
Node i’s volume capacity is divided between (s,) and (k’,)
in proportion to the link rates. Hence, the volume bound b(%',)
is 6.7 thousand packets. However, node &' cannot fully utilize
this volume bound because its energy can only forward 5 thou-
sand packets. Consequently, the volume bound b(k, k') is only
5000 packets, and the source volume of % is also limited to 5000,
as shown in Fig. 6(c). The volume bound on (%, %) is not fully
utilized. Solving this problem requires rate reduction.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

k (1.0) k 5.0)

s (1.0) 1.0

k (1.0)
S (1.0) 1.0

1
0.75, 25 T K
1.0

BS
@) © ®
Fig. 6. Problem caused by restricted feeding sources. (Volume and volume
bound are in thousands.) (a) Rate. (b) Volume bound. (c) Volume. (d) Rate.
(e) Volume bound. (f) Volume.

To illustrate the necessity of rate reduction (described in
Section IV-D), we first demonstrate what will happen without
it. The second iteration of the algorithm is illustrated by the
next row of plots. In Fig. 6(d), s directs some of its traffic away
from link (s, %), as we have explained in the previous example.
Shown in Fig. 6(e), this results in a larger volume bound for
link (%’.4), which is now 8000, compared to 6.7 thousand
in the previous iteration. However, the volume bound for
link (k, k') remains 5000 due to the bottleneck %’. Hence, the
source volume of % is still limited to 5000 in Fig. 6(f). The
new lifetime vector (5.0, 12.0) is smaller than the previous one
(5.0, 13.3). If we continue this example, we will see that the
lifetime vector will become smaller after each iteration.

The cause of the problem is that & is a restricted feeding
source of ¢, with an exhausted node &’ on its forwarding path,
which prevents it from fully utilizing the volume bound as-
signed on link (%', %) by node 4. To solve this problem, node i
should reduce the volume bound on (%’,7) and increase the
volume bound on (s,i) such that the unrestricted feeding
source s can have a larger lifetime.

We use Fig. 7 to explain the solution of rate reduction. We
know that the volume bounds should be set in proportion to
the link rates. In order to reduce the volume bound b(k’, %),
we can artificially reduce the link rate r(%’,4). More specifi-
cally, each exhausted node &’ maintains a new variable f(k'),
called the rate-reduction factor. The exact formula for calcu-
lating the value of f(£’) is given in Section IV-D. In this simple
example, when we see the volume bound b(%’,¢) is 6.7 thou-
sand in Fig. 7(b) and the volume (%', %) is 5000 in Fig. 7(c),
we want to reduce the volume bound by a factor of ;Ef,g)
that the two vslzill match. To achieve that, we set the value of
F(k' . 4) to 2’8:,:)), and artificially reduce the link rate 7(%’,)
by multiplying it with f(%’,¢). The result is shown in Fig. 7(d),
where 7(k', i) is reduced to 22 = (.75, which leads to a reduced
volume bound &(k', ¢) in Fig. 7(e), now 7.5 thousand instead of
8000, and an increased volume bound b(s,), now 2.5 thousand
instead of 2 thousand. This allows the lifetime of s to be 12.5 in
Fig. 7(f), instead of 12 in Fig. 6(f), where the rate reduction on
link (%', ¢) was not performed.

With rate reduction, after the fifth, 10th, and 12th iterations,
the lifetime of source s is improved to 14.94, 14.97, and 15.0,

ZHANG et al.: MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS

K(.0)

S (13.3)

5.0

5.0

k(5.0)
s (12.5)

5.0

5.0

k(.0)
§ (15.0) 5.0
kl
5.0

® (h)
Fig. 7. Rate reduction. (Volume and volume bound are in thousands.) (a) Rate.
(b) Volume bound. (¢) Volume. (d) Rate. (¢) Volume bound. (f) Volume.
(g) Volume after fifth iteration. (h) Volume after 10th iteration. (i) Volume after
12th iteration.

respectively, as shown in Fig. 7(g)—(i), practically achieving the
maximum lifetime vector (5.0, 15.0).

VL

In this section, we develop a simulation software to evaluate
the performance of DPA. We want to point out that the proposed
algorithm is designed to run at the application layer. It is ex-
ecuted before the network begins to operate and deliver data
packets. The link quality does not affect the execution of the al-
gorithm as long as control messages can get through the link,
possibly after retransmissions when necessary—if control mes-
sages cannot get through a link, then this link should not be used
in the topology in the first place.

SIMULATION

A. A Simple Illustrative Test Case

The first simulation is performed on the routing graph shown
in Fig. 8, where a circle represents a source node, a square
represents a nonsource node, and the two numbers beside a
node are the initial energy (in joules) and the source rate (in
packets/min), respectively. DPA itself does not dictate how the
routing graph should be constructed. Instead, it can work with
any routing graph that contains the potential routing paths it
can choose from (see Section IT). DPA works at the application
level; it is independent of which MAC protocol is used. Sup-
pose a = 3 = 0.000012 J/packet and v = 00.0000432 J/packet,
which are chosen based on the parameters in [23] and will be
used in all our simulations.

Table I shows the lifetime vectors after the first, second, 10th,
and 20th iterations of DPA, as well as the maximum lifetime
vector (MLV) in the last column, which is computed numer-
ically based on Hou’s centralized algorithm [16]. The result

1197

Fig. 8. Simple illustrative test case.

TABLE 1
DATA SOURCE LIFETIMES (IN DAYS)
sources | Istiter. | 2nd iter. | 10th iter. | 20th iter. | MLV
k 41.9 41.9 41.3 41.9 41.9
v 41.9 41.9 413 41.9 41.9
u 36.9 63.2 131.2 129.4 125.8
X 33.6 60.7 109.0 121.6 125.8
m 129.9 146.2 158.9 157.3 157.3
] 108.8 154.2 160.2 157.3 157.3
w 151.0 140.5 156.7 157.3 157.3
q 335.5 200.5 239.5 251.7 251.6
TABLE II
DATA SOURCE VOLUMES (IN THOUSANDS OF PACKETS)
sources | Istiter. | 2nd iter. | 10th iter. | 20th iter. | MLV
k 60.4 60.4 59.4 60.4 60.4
v 120.8 120.8 118.8 120.8 120.8
u 53.1 90.9 188.9 186.3 181.2
X 48.3 87.5 156.9 175.1 181.2
m 187.0 210.6 228.8 226.5 226.4
j 156.6 222.0 230.6 226.5 226.4
w 434.8 404.6 451.2 453.0 452.9
q 483.1 288.7 344.8 362.5 362.3

demonstrates that the sequence of lifetime vectors produced by
DPA converges rapidly toward MLV. Table II shows the source
volumes that are assigned by DPA to the source nodes after
the first, second, 10th, and 20th iterations, as well as the op-
timal source volumes that produce MLV. Recall that the source
volume is the number of packets that a source can successfully
deliver to the sink over its lifetime. Source ¢ has a larger life-
time than w, but a smaller source volume. That is because its
source rate is smaller.

B. Simulation Setup for Complex Cases

Unless specified otherwise, each sensor network used in
the remaining simulations has 500 nodes that are randomly
deployed in a 1000 x 1000 area. There are 100 data sources
randomly selected from the 500 sensors. Their source rates
are all one packet per minute. When the network size is not
500 nodes, we change the deployment area proportionally
while keeping the same node density. The sink consists of four
base stations, evenly spaced along one edge of the deployment
area. Each sensor has a transmission range of 100 and an initial
energy of 5 J. The routing graph is constructed based on hop
count. Each sensor picks its downstream neighbors from those
neighbors that are one hop closer to the sink. Each of the data
points used to produce the figures in this section is the average
of 100 simulation runs on different random networks.

1198

—
max dev.

Iterations

Fig. 9. Max deviation and avg deviation of lifetime vector with respect to the
number of iterations that DPA has performed.

Each sensor uses up to three downstream neighbors, which
are chosen from the neighbors that are one hop closer to the sink.
If there are more than three such neighbors, the sensor picks
three among them randomly.

C. Convergence Speed of DPA

The first simulation studies how quickly DPA converges its
lifetime vector to the MLV, which is computed numerically
based on Hou’s centralized algorithm [16]. Consider the life-
time vector V,. produced by DPA after the xth iteration. We
measure how much V. deviates from MLV by the following
two metrics. Let ¢,,(s) be the lifetime of source s in V.. Let
t«(s) be the lifetime of s in MLV. The max deviation of V,, is

defined as
may d 2 (8) = 1:(5)]
s€S t.(s)

and the avg deviation is defined as
1 3 [t (s) = £2(s)|
5] 0o
$ES

Fig. 9 shows the avg/max deviations of lifetime vectors pro-
duced by DPA on 500-node sensor networks. The deviations
drop quickly to an insignificant level after a small number of it-
erations. For example, the avg/max deviations are merely 0.066
and 0.013, respectively, after 20 iterations—that means, in the
worse case, the lifetime of any source deviates from its optimal
value by no more than 6.6%, and on the average case, the life-
time of a source deviates from the optimal by 1.3%.

D. Scalability of DPA

We evaluate the scalability of DPA on random networks of
500-3000 nodes (with 20% being sources). We set a target (avg
or max) deviation to be 0.025, 0.05, 0.075, or 0.1. We then count
the number of iterations that DPA has to perform in order to
produce a lifetime vector whose deviation is bounded by the
target value. The simulation results are presented in Fig. 10. It
shows that the overhead for DPA to satisfy a target deviation,
which is measured by the number of iterations, grows slowly
with the network size. Recall that a node sends at most two small
control packets in each iteration. Even for a network of 3000
nodes, only 12 iterations are needed to achieve an avg deviation
of 5%, and 32 iterations are needed for a max deviation of 5%.

E. Comparison to Hou's Centralized Algorithm

We use LP to stand for Hou’s centralized algorithm [16] based
on iterative linear programming. Our DPA can also be used as a
centralized algorithm when the information about the network
is available at the sink. The target max deviation for DPA is

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

Avg deviation Max deviation

80 80

[To02s — | [0.025 ——]
o o] o D i——
g 7 0.075 e |2 BT 0.075
g 50 . £ 50
3 0.1 8 0.1
2 40t 2 40t
5
g 30 o
10F

0
500 1000 1500 2000 2500 3000

Number of nodes

0 i L 1 L L
500 1000 1500 2000 2500 3000

Number of nodes

Fig. 10. DPA scales well. Its overhead grows slowly with the network size.

1e+006
100000 F
10000 ¢
1000 ¢
100 ¢

10 Bez===mi i | .
500 600 700 800 900 1000

Number of nodes

g
DPA Max<0.025--------- 3

Time (milliseconds)

Fig. 11. Comparison of running time between LP and DPA.

25 Lp — L LP i
DPA Max<0.025 -~ 14} DPA Max<0.025 - -

Overhead (kilobytes)
[

0 1000 2000 3000 4000 5000

Max nodal overhead (kilobytes)
=

Number of nodes

Fig. 12. (left) Comparison of nodal overhead distribution between LP and
DPA. (right) Comparison of maximum nodal overhead between LP and DPA.

set to be 0.025. Fig. 11 compares the running times of the two
algorithms. It shows that DPA is orders of magnitude faster than
LP, and the gap widens when the network size increases.

Next we compare the communication overhead of the two al-
gorithms when LP is used as a centralized algorithm while DPA
is used as a distributed algorithm. For LP, the sink has to col-
lect network information, including, for each node, source rate
(4 B), node energy (4 B), transmission power y (4 B), node ID,
and IDs of its downstream neighbors (2 B each). The sink has
also to download the resulting volume schedule to the network,
which includes, for each node, its source volume and the vol-
umes of its outgoing links (4 B each). For DPA, in every iter-
ation, a node sends out the volumes/rates of its outgoing links
and the volume bounds of its incoming links (4 B each).

The communication overhead of DPA spreads evenly among
all nodes. The communication overhead of LP concentrates on
nodes surrounding the sink. For 5000-node random networks,
the left plot in Fig. 12 shows the nodal communication overhead
in ascending order. The overhead is measured by the number of
bytes that a node has to transmit. Clearly, some nodes in LP (at
the right end of the figure) bear a huge burden of communication
overhead.

The right plot in Fig. 12 shows the maximum nodal overhead
with respect to network size. The maximum nodal overhead of
LP increases much faster than that of DPA.

F. Comparison to Other Centralized and Distributed Solutions

We compare DPA with two additional algorithms: SLP (fol-
lowing the same name used in [15]) that is a linear programming

ZHANG et al.: MAXIMIZING LIFETIME VECTOR IN WIRELESS SENSOR NETWORKS

Lifetime (days)

Fig. 13. Network lifetimes of DPA, SLP, and MPR.

0.8
0.7
0.6 F
0.5
0.4
03} b
02} b
0.1F b

Avg deviation
Max deviation

L L L

00 1000 1500 2000 2500 3000

Number of nodes

18
16
14
12
10
8
6
4
2
0
5

0
500 1000 15002000 2500 3000

Number of nodes

Fig. 14. Avg and max deviations of SLP and MPR.

70

'500 nodes -
60 1 node removed -—------ A
50 10 nodes removed -+ |

w0k 25 nodes removed

30
20
10 -

Lifetime (days)

0
0 10 20 30 40 50 60 70 80 90 100

Fig. 15. Impact of small topology changes.

solution for maximizing the minimum lifetime of all sources,
and Minimum-Power Routing (MPR [24], [25]) that is a dis-
tributed algorithm for energy-efficient routing.

First we run DPA, SLP, and MPR on 100-node random net-
works (with all nodes being sources). Fig. 13 compares the life-
time vectors produced by the algorithms. Each curve represents
the lifetime vector in ascending order generated from one of the
three algorithms. The smallest lifetime in the vector produced
by DPA is more than 100% larger than the smallest lifetime in
the vector by MPR. For SLP, the result shows that maximizing
the minimum /ifetime of sources does not maximize the lifetime
vector of the network. DPA produces far better source lifetimes
in the lower three quarters of the vector. Second, we compare
the algorithms on larger networks. Fig. 14 shows the avg/max
deviations of the lifetime vectors produced by SLP and MPR
on networks of 500-3000 nodes (with 20% being sources). The
deviations are large when comparing with those of DPA, which
can be made arbitrarily small.

G. Topology Change

We evaluate the impact of unexpected topology change on
lifetime vector. Initially, there are 500 nodes in the network,
among which 100 sensors are data sources. See the simula-
tion setup in Section VI-B. The lifetime vector of the 100 data
sources is shown by the line of “500 nodes” in Fig. 15, where
the horizontal axis shows the sources in ascending order of their
lifetimes, and the vertical axis shows the lifetimes. To simulate
the impact of a node failure, we randomly select a nonsource
node and remove it from the topology. The removal may cause
the lifetimes of some sources to be shortened. The resulting life-
time vector is shown by the line of “1 node removed,” which is

1199

the average of 100 simulation runs, each run removing one ran-
domly selected node. Similarly, we repeat the simulation with
10 or 25 nodes removed. The results show that although small
topology changes worsen the lifetime vector, they do so by a
relatively small amount.

VII. CONCLUSION

We have proposed a distributed progressive algorithm for
maximizing the lifetime vector in a wireless sensor network. Its
design is based on the necessary and sufficient conditions that
we have proved for the maximum lifetime vector. The algorithm
is totally decentralized, and it improves the lifetime vector iter-
atively toward the maximum value. Our simulations show that
the algorithm rapidly converges toward the maximum lifetime
vector and significantly outperforms the existing algorithms.

In this paper, we decouple routing from lifetime maxi-
mization so that the proposed algorithm can work with any
underlying routing protocol, which may be predetermined
based on considerations other than lifetime in practice. In our
future work, we will study the related problem of finding the
optimal routing strategy for the purpose of lifetime vector
maximization. Some revelant heuristics can be found in [26] in
the context of max-min rates. Our future work will study both
heuristic and exact distributed solutions for finding the optimal
routing graph.

VIII. ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for
their constructive comments.

REFERENCES

[1] D. Luo, X. Zhu, X. Wu, and G. Chen, “Maximizing lifetime for the
shortest path aggregation tree in wireless sensor networks,” in Proc.
IEEE INFOCOM, Apr. 2011, pp. 1566-1574.

[2] H. Wang, N. Agoulmine, M. Ma, and Y. Jin, “Network lifetime opti-
mization in wireless sensor networks,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 7, pp. 1127-1137, Sep. 2010.

[3] Y. Yun and Y. Xia, “Maximizing the lifetime of wireless sensor net-
works with mobile sink in delay-tolerant applications,” IEEE Trans.
Mobile Compu., vol. 9, no. 9, pp. 1308-1318, Sep. 2010.

[4] G. Zussman and A. Segall, “Energy efficient routing in ad hoc dis-
aster recovery networks,” in Proc. IEEE INFOCOM, 2003, vol. 1, pp.
682-691.

[5] A. Sankar and Z. Liu, “Maximum lifetime routing in wireless ad-hoc
networks,” in Proc. IEEE INFOCOM, 2004, vol. 2, pp. 1089-1097.

[6] J. Zhu, S. Chen, B. Bensaou, and K.-L. Hung, “Tradeoff between life-
time and rate allocation in wireless sensor networks: A cross layer ap-
proach,” in Proc. IEEE INFOCOM, 2007, pp. 267-275.

[71 Y. Wu, S. Fahmy, and N. B. Shroff, “On the construction of a max-
imum-lifetime data gathering tree in sensor networks: NP-complete-
ness and approximation algorithm,” in Proc. IEEE INFOCOM, 2008,
pp. 356-360.

[8] Y. Shi and T. Hou, “Theoretical results on base station movement
problem for sensor networks,” in Proc. [EEE INFOCOM, Apr. 2008,
pp. 1-5.

[9] F. Wang, D. Wang, and J. Liu, “Traffic-aware relay node deployment:
Maximizing lifetime for data collection wireless sensor networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1415-1423,
Aug. 2011.

[10] D. Blough and P. Santi, “Investigating upper bounds on network life-
time extension for cell-based energy conservation techniques in sta-
tionary ad hoc networks,” in Proc. ACM MobiCom, 2002, pp. 183-192.

[11] M. Bhardwaj and A. Chandrakasan, “Bounding the lifetime of sensor
networks via optimal role assignments,” in Proc. [EEE INFOCOM,
2002, vol. 3, pp. 1587-1596.

1200

[12] Q. Li, J. Aslam, and D. Rus, “Online power-aware routing in wireless
ad-hoc networks,” in Proc. ACM MobiCom, 2001, pp. 97-107.

[13] S. Cui, R. Madan, A. J. Goldsmith, and S. Lall, “Joint routing,
MAC, and link layer optimization in sensor networks with energy
constraints,” in Proc. IEEE ICC, 2005, vol. 2, pp. 725-729.

[14] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy
conservation for ad hoc routing,” in Proc. ACM MobiCom, 2001, pp.
70-84.

[15] Y. T. Hou, Y. Shi, and H. Sherali, “On lexicographic max-min node
lifetime for wireless sensor networks,” in Proc. IEEE ICC, Jun. 2004,
vol. 7.

[16] Y.T.Hou,Y. Shi,and H. D. Sherali, “Rate allocation in wireless sensor
networks with network lifetime requirement,” in Proc. ACM MobiHoc,
2004, pp. 67-77.

[17] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guar-
anteed delivery in ad hoc wireless networks,” in Proc. 3rd DialM, Aug.
1999, pp. 48-55.

[18] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, Aug. 2000, pp. 243-254.

[19] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proc. ACM Mo-
biCom, Apr. 2003, pp. 96-108.

[20] S.Chen, G. Fan, and J. Cui, “Avoid void in geographic routing for data
aggregation in sensor networks,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 1, no. 4, pp. 169-178, Jul. 2006.

[21] Y. Wang, S. Lederer, and J. Gao, “Connectivity-based sensor network
localization with incremental Delaunay refinement method,” in Proc.
IEEE INFOCOM, Apr. 2009, pp. 2401-2409.

[22] B. Radunovic and J. L. Boudec, “A unified framework for max-min
and min-max fairness with applications,” in Proc. 40th Annu. Allerton
Conf. Commun., Control, Comput., 2002.

[23] W. Heinzelman, “Application-specific protocol architecture for wire-
less networks,” Ph.D. dissertation, MIT, Cambridge, MA, 2000.

[24] S. Doshi, S. Bhandare, and T. Brown, “An on-demand minimum en-
ergy routing protocol for a wireless ad hoc network,” Mobile Comput.
Commun. Rev., vol. 6, no. 3, pp. 50-66, Jul. 2002.

[25] J. Gomez, A. Campbell, M. Naghshineh, and C. Bisdikian, “Con-
serving transmission power in wireless ad hoc networks,” in Proc.
IEEE Int. Conf. Netw. Protocols, Nov. 2001, pp. 24-34.

[26] R. Liu, K. Fan, Z. Zheng, and P. Sinha, “Perpetual and fair data
collection for environmental energy harvesting sensor networks,”
IEEE/ACM Trans. Netw., vol. 19, no. 4, pp. 947-960, Aug. 2011.

Liang Zhang received the B.E. and M.E. degrees in
computer science from Tsinghua University, Beijing,
China, in 1999 and 2001, respectively, and the Ph.D.
degree in computer engineering from the University
of Florida, Gainesville, in 2009.

He had worked with Oracle R&D Center, Beijing,
China, from 2002 to 2003. Since 2008, he has been
working with Juniper Networks, Sunnyvale, CA. His
research interests include sensor networks, multihop
wireless networks, and network security.

Shigang Chen (M’02—-SM’12) received the B.S. de-
gree from the University of Science and Technology
of China, Hefei, China, in 1993, and the M.S. and
Ph.D. degrees from the University of Illinois at Ur-
bana—Champaign in 1996 and 1999, respectively, all
in computer science.

He is an Associate Professor with the Department
of Computer and Information Science and Engi-
neering, University of Florida, Gainesville. After
graduation, he had worked with Cisco Systems,
San Jose, CA, for three years before joining the
University of Florida in 2002. He served on the technical advisory board for
Protego Networks, Sunnyvale, CA, from 2002 to 2003. He published more
than 100 peer-reviewed journal/conference papers. He holds 11 US patents.
His research interests include computer networks, Internet security, wireless
communications, and distributed computing.

Dr. Chen is an Associate Editor for the IEEE/ACM TRANSACTIONS ON
NETWORKING, Computer Networks, and IEEE TRANSACTIONS ON VEHICULAR

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

TECHNOLOGY. He has been serving in the steering committee of IEEE IWQoS
since 2010. He received the IEEE Communications Society Best Tutorial Paper
Award in 1999 and an NSF CAREER Award in 2007.

Ying Jian received the B.E. and M.E. degrees in
computer science from Tsinghua University, Beijing,
China, in 2001 and 2004, respectively, and the Ph.D.
degree in computer engineering from the University
of Florida, Gainesville, in 2008.

After graduation, he worked with Microsoft for
two years and then joined Google, Mountain View,
CA, in 2010. His research interests include QoS and
security in multihop wireless networks and sensor
networks.

Yuguang ”Michael” Fang (S’92-M’97-SM’99—
F’08) received the Ph.D. degree in systems engi-
neering from Case Western Reserve University,
Cleveland, OH, in 1994, and the Ph.D. degree
in electrical engineering from Boston University,
Boston, MA, in 1997.

He was an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering, New
Jersey Institute of Technology, Newark, from 1998
to 2000. He then joined the Department of Electrical
and Computer Engineering, University of Florida
(UF), Gainesville, in 2000 as an Assistant Professor, got an early promotion to
an Associate Professor with tenure in 2003, and to a Full Professor in 2005.
He holds a University of Florida Research Foundation (UFRF) Professorship
from 2006 to 2009, a Changjiang Scholar Chair Professorship with Xidian
University, Xi’an, China, from 2008 to 2011, and a Guest Chair Professorship
with Tsinghua University, Beijing, China, from 2009 to 2012. He has published
over 300 papers in refereed professional journals and conferences.

Dr. Fang is a member of the Association for Computing Machinery (ACM).
He served as the Editor-in-Chief for IEEE Wireless Communications from
2009 to 2012 and serves or has served on editorial boards of technical journals
including the IEEE TRANSACTIONS ON MOBILE COMPUTING (2003-2008,
2011-present), IEEE Network (2012—present), IEEE TRANSACTIONS ON
COMMUNICATIONS (2000-2011), IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS (2002-2009), IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS (1999-2001), IEEE Wireless Communications Magazine
(2003-2009), and Wireless Networks (2001—present). He served on the Steering
Committee for the IEEE TRANSACTIONS ON MOBILE COMPUTING from 2008 to
2010. He has been actively participating in professional conference organiza-
tions such as serving as the Technical Program Co-Chair for [IEEE INOFOCOM
2014, the Steering Committee Co-Chair for QShine (2004-2008), the Technical
Program Vice-Chair for IEEE INFOCOM 2005, the Technical Program Area
Chair for IEEE INFOCOM (2009-2013), Technical Program Symposium
Co-Chair for IEEE GLOBECOM 2004, and a member of Technical Program
Committee for IEEE INFOCOM (1998, 2000, 2003-2008). He received
the National Science Foundation Faculty Early Career Award in 2001 and
the Office of Naval Research Young Investigator Award in 2002. He is the
recipient of the Best Paper Award in IEEE GLOBECOM 2011 and the IEEE
International Conference on Network Protocols (ICNP, 2006) and the recipient
of the IEEE TCGN Best Paper Award in the IEEE High-Speed Networks
Symposium, IEEE GLOBECOM 2002. He has also received a 2010-2011
UF Doctoral Dissertation Advisor/Mentoring Award, a 2011 Florida Blue
Key/UF Homecoming Distinguished Faculty Award, and the 2009 UF College
of Engineering Faculty Mentoring Award.

Zhen Mo received the B.E degree in information
security engineering and M.E. degree in theory
and new technology of electrical engineering from
Shanghai Jiao Tong University, Shanghai, China,
in 2007 and 2010, and is currently pursuing the
Ph.D. degree computer and information science
engineering at the University of Florida, Gainesville.

His research interests include network security and
cloud computing security.

