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Abstract—Mobile devices have increasingly been used to run multi-
media applications which are extremely downlink-intensive. The con-
ventional rate adaptive and/or margin adaptive approach for radio re-
source allocation may result in unnecessary energy consumption on
mobile devices, which will not be energy efficient for mobile multimedia
applications. In this paper, we develop an energy adaptive approach
and design an energy-efficient downlink resource allocation scheme to
support multimedia applications. The objective is to minimize the total
energy consumption of mobile devices for data reception while meeting
the data rate requirements at mobile devices and the transmit power
constraint at the base station. We show that the optimization problem
is NP-hard and then propose an efficient algorithm that has a provable
performance guarantee under a certain condition. We have conducted
extensive simulations to evaluate the efficacy of the proposed algorithm
and our results provide useful insights into the design of energy-efficient
resource allocation for wireless systems.

Index Terms—Downlink resource allocation, energy efficiency, mobile
devices, wireless systems.

1 INTRODUCTION
Advances in wireless communications have enabled
ubiquitous personal computing and facilitated the de-
velopment of various mobile services. Wireless systems
have experienced three phases of growth. The first phase
(e.g., the first generation cellular systems) focused on
voice traffic and the second phase (e.g., the second
generation cellular systems) added the support of data
traffic [1]. In the third phase, video traffic became the
main focus and has been anticipated to account for about
60 percent of mobile data traffic by 2017 [2]. One of
the salient features of multimedia applications such as
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video is their asymmetry, i.e., the data delivery is ex-
tremely downlink-intensive in the sense that the amount
of downlink data of mobile devices is considerably
larger than that of uplink data for such applications [3].
As indicated in some studies, mobile devices require
significantly higher power consumption for data recep-
tion [4, 5], and thus, energy-efficient system design has
become an important issue for future wireless systems.
This motivates us to study the energy-efficient downlink
resource allocation for mobile devices in wireless cellular
systems.

The orthogonal frequency division multiple access
(OFDMA) technology is adopted by the fourth-
generation (4G) wireless systems, e.g., LTE [6] and
WiMAX [7], for downlink transmissions. The downlink
resource allocation problem for power and channel in
OFDMA-based networks has already been extensively
studied, which can roughly be classified into rate
adaptive (RA) and margin adaptive (MA) [8]. With respect
to power and channel allocation, attention was first
paid to maximizing the data rate for all devices with
a constraint on the transmit power at the base station,
e.g., [8–13], referred to as the RA scheme. However,
data rate maximization is not appropriate for real-time
multimedia data whose bit rate is generally constant and
determined by the adopted compression algorithm [14].
Therefore, some papers aimed at minimizing the
transmit power at the base station while meeting
devices’ data rate requirements, e.g., [14–19] known
as the MA scheme. Nevertheless, the transmit power
only occupies about 5 percent of the operating power
consumption at a base station [20], which will not
significantly help the design.

More importantly, we observe that the RA and MA
schemes may increase the energy consumption on mo-
bile devices for data reception, and, thus, put further
burden on mobile devices with limited battery capacity.
This is because the design objectives for both schemes
tend to distribute the radio resource for the same device
over different time slots, thereby causing a mobile device
to stay in the receiving mode for a longer time and
consume more energy (we will use a simple example to
illustrate this later). Thus, downlink resource allocation
in wireless cellular systems should minimize the energy
consumption on mobile devices for data reception as the
primary objective.
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In this paper, we introduce an alternative design,
called energy adaptive (EA), into downlink resource al-
location for wireless cellular systems. The contributions
of this paper are as follows. First, we study the conven-
tional RA and MA, and discover that these two schemes
consume unnecessary energy on mobile devices for data
reception. This may hinder the development of mobile
multimedia applications. Next, we propose EA as an
alternative and formulate the energy-efficient downlink
resource allocation as an optimization problem to min-
imize the total energy consumption on mobile devices
for data reception while simultaneously meeting the
data rate requirement at every device and the transmit
power constraint at the base station. Then, we show that
the target optimization problem is NP-hard, and then
develop a polynomial-time optimal algorithm based on
dynamic programming for a special case where only one
device and one time slot are considered. For the general
case, based on the dynamic-programming algorithm,
we develop an efficient algorithm to find approximate
solutions and show that, its energy consumption based
on the solution derived by the algorithm will be no
more than twice of that of the optimal allocation under
a certain condition.

Finally, we conduct extensive simulations, with real
video sequences encoded by H.264 and the parameters
set according to LTE [6], to evaluate the performance
of the proposed algorithm. To provide further insights,
we compare our algorithms with the two algorithms de-
veloped, respectively, based on RA [13] and MA [19], as
well as a lower bound estimated for the optimal solution.
The RA algorithm proposed in [13] is a greedy heuristic,
while the MA algorithm is a dynamic-programming
algorithm proposed in [19]. The simulation results agree
with what we have observed that RA and MA tend
to consume significantly more energy at mobile devices
than EA. In addition, the simulation results show a
tradeoff between the energy consumption at a base
station and that at mobile devices. The tradeoff explains
why EA is an alternative for downlink radio resource
allocation.

The remainder of this paper is organized as follows.
Section 2 reviews related work on radio resource al-
location in OFDMA-based networks. In Section 3, we
describe the system model and formulate the optimiza-
tion problem. In Section 4, we show that the problem
is NP-hard and propose an efficient algorithm with
performance guarantee. The simulation results and some
useful insights are discussed in Section 5. Section 6
contains some concluding remarks.

2 RELATED WORK

Radio resource allocation has been considered as one
of the most important issues in OFDMA-based wireless
networks [21]. In recent years, many researchers have
developed effective algorithms to allocate limited radio
resources (i.e., power and channel) with various optimiz-
ing objective functions (system performance metrics), es-
pecially the rate-adaptive scheme (RA) and the margin-
adaptive scheme (MA).

RA attempts to maximize the total data rate of all
devices under a given transmit power constraint of their
base station, e.g., [8–13]. In particular, Jang et al. [9]
showed that the data rate in one single symbol can be
maximized when each subcarrier is assigned to only
one device which has the best channel gain for that
subcarrier and the transmit power is distributed over
the subcarriers by water-filling policy. In order to reduce
the computational complexity of the water-filling policy,
Yu et al. [10] proposed a constant-power water-filling
scheme, and showed that the maximum difference be-
tween the respective data rates achieved by the constant-
power water-filling and the original water-filling policy
is bounded by a constant of 1.44 b/s/Hz. Furthermore,
Lee et al. [11] proposed a suboptimal subcarrier algo-
rithm with equal power allocation, while Zaki et al. [12]
developed optimal and suboptimal algorithms based
on graph theory and Lagrangian relaxation. However,
devices with poor channel gains (e.g., those far away
from the base station) may suffer from starvation. To
achieve the fairness of data rates among devices, some
studies considered the proportional rate constraint [8]
or individual rate constraint [12]. Additionally, Biagioni
et al. [13] considered multiple symbols for each resource
allocation and provided the ”max-min fair” data rate for
devices.

On the other hand, because the data rate requirements
of some applications (e.g., video streaming) are fixed,
Wong et al. [14] proposed a MA scheme to minimize the
total transmit power of the base station while satisfying
every device’s data rate requirement. In [14], a subcarrier
allocation algorithm with a lower bound on the total
transmit power was proposed, leading to the launch
of several studies on the resource allocation problem
based on MA. Zhang [15] proposed a heuristic algo-
rithm and demonstrated that the the heuristic algorithm
outperforms the suboptimal algorithm proposed in [14]
by simulation results. Seong et al. [16] employed the
Lagrange dual decomposition method to efficiently solve
both the weighted sum rate maximization and weighted
sum power minimization problems. In order to reduce
the computational complexity for devising an optimal
solution, dynamic programming and branch-and-bound
based algorithms were proposed in [17–19]. However,
the resource allocation algorithms based on RA or MA
do not consider the battery capacity of mobile devices
and tend to increase the energy consumption on mobile
devices for data reception.

Recently, some studies aimed at minimizing the down-
link energy consumption for video streaming appli-
cations on mobile devices in cellular systems. Video
streaming services send traffic at a fixed rate, resulting
in mobile devices operating continuously in the active
mode and depleting their energy quickly. Siekkinen et
al. [22] evaluated the energy saving potential of shaping
streaming traffic into bursts before transmitting the traf-
fic over cellular networks to mobile devices. Their results
confirmed that traffic shaping is an effective way to save
the mobile device’s energy, since, in between the bursts,
the device has sufficient time to switch from the high-
power active state to low-power states. Thus, a number
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of researchers, e.g., Hoque et al. [23] and Hefeeda et
al. [24], explored how to determine an optimal burst
interval or minimize the total number of bursts, while
maintaining the video stream’s smooth playback. An
essential problem behind this research direction is to
determine when a data burst should be transmitted for a
mobile device.

In another direction, researches explored how a data
burst should be transmitted by allocating OFDMA radio
resources appropriately, because the energy consumed
by a device is considered to be proportional to the num-
ber of symbols it receives. In [25], assuming that mobile
devices have been allocated with specific subchannels, a
heuristic algorithm was proposed to determine the allo-
cation of symbols so as to minimize the total number of
symbols received by all mobile devices. In [26], Chu et al.
proposed an optimal algorithm only when the data rate
requirements of mobile devices can be partitioned into
several sets and each set can be satisfied by exactly one
symbol. In our previous work [27], we proposed approx-
imation algorithms for energy-efficient video multicast
in OFDMA-based wireless networks. Nevertheless, the
above algorithms have not considered the situation that
a device may have different channel gains on different
subchannels, and have not addressed how to allocate
the available transmit power of the base station among
the subchannels, which is an essential issue of EA in
minimizing the downlink energy consumption while
meeting every device’s data rate requirement.

3 SYSTEM MODEL AND PROBLEM FORMULA-
TION

3.1 System Model
The OFDMA-based multi-carrier technology has been
widely adopted by 4G wireless cellular networks for
downlink transmissions. In 4G wireless systems, data is
transmitted with OFDMA frames. A frame consists of
slots in the time domain and subchannels in the frequency
domain, as shown in Fig. 1. A slot comprises one or
multiple symbols, and a subchannel consists of multiple
subcarriers. Because the fast fading effect may not be
the same for different subchannels, a device may have
different levels of channel gains on different subchan-
nels [12]. A base station can collect the information about
the channel gain either by the measurement reports of
devices or by the estimation of the base station itself [12].
In LTE, for example, the base station can set the channel
state information (CSI) request field [28] to trigger CSI
reporting, in which each device will report a channel
quality indicator (CQI) for each subchannel. For WiMAX,
a similar configuration can be set for mobile devices to
feedback each sub-band CQI [7].

In the OFDMA frame structure, a combination of a slot
and a subchannel, referred to as a resource block (RB),
is the basic unit for resource allocation. For resource
allocation, the base station has to determine which RB
should be allocated to which device, referred to as RB
allocation. Moreover, because modulation-coding schemes
are adopted in wireless communications, the base station
needs to determine the power level allocated to each
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Fig. 1. The OFDMA frame structure.

RB so as to adopt the corresponding modulation-coding
scheme, referred to as power allocation. For instance, when
a higher-rate modulation-coding scheme (e.g., QAM64-
3/4) is selected for a device, the base station must
allocate a higher power level to the RB in order to
meet the required signal-to-noise ratio (lowering the bit
error rate). Notice that the available transmit power of
a base station is limited. Once the resource allocation is
determined, the power consumed by the transceivers at
devices during data reception may be different although
the transceiver’s power level during data reception can
be deemed constant [29, 30]. Consequently, the energy
consumption for data reception depends on the recep-
tion time and is proportional to the number of slots the
device needs to receive [25–27]1. If a mobile device can
receive its data in a shorter time, it can save power [7,
26]. As a result, an appropriate resource allocation, i.e.,
power and RB allocation, can reduce the energy con-
sumption at mobile devices while satisfying their data
rate requirements.

3GPP TS23.203 defines a set of QoS class identifier (QCI)
values with different priorities for different kinds of
services [32]. The base station needs to fulfill the demand
of higher-priority services, such as VoIP calls and on-
line gaming, before allocating radio resources for video
streaming. Then, the remaining radio resources can be
used to serve video streaming based on our proposal, as
well as other lower-priority applications. Regarding the
information about the data rate requirement of the video
stream requested by each mobile device, the base station
can acquire the information from the streaming service
provider, based on a QoS rule, called policy and charging
control (PCC), specified in [32].

3.2 Problem Formulation
In this paper, we study joint power and RB allocation
for downlink transmissions in 4G wireless systems. The
objective is to minimize the total energy consumption at
mobile devices when receiving downlink data, provided
that the data rate requirement of every device is satisfied
and the available power of the base station is limited.
For the sake of brevity, we omit “∀” when the meaning
is clear from the context.

1. In addition to the energy consumption for data reception, there
is an extra energy cost, known as tail energy, spent by each mobile
device in active state after each data transfer [23, 31]. The tail energy
is not considered in our system because it cannot be reduced by allo-
cating radio resources appropriately. However, our algorithms remain
applicable and the proofs still hold when the tail energy is considered.
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For each resource allocation, we consider a set of
frames with S · C available RBs to be allocated to N
devices, where S is the number of slots and C is the
number of subchannels. The channel gains of a device on
different subchannels may be different. Let the channel
gain of device n on subchannel c be denoted as g(n,c).
Every device can have a preferred data rate requirement.
Let the data rate requirement of device n be denoted
as Rn. The base station has L transmit power levels,
denoted by ℓ = 1, 2, . . . , L, where a larger index indicates
a higher transmit power level. The power of each level
is increased by a constant δ. In other words, the base
station consumes power ℓδ when the power level ℓ
is used to transmit an RB. Moreover, the base station
has M possible modulation-coding schemes, denoted
by m = 1, 2, . . . ,M , where a larger index indicates a
modulation-coding scheme with a higher data rate. A
single RB applied with modulation-coding scheme m
can provide a data rate of dm, but the base station has
to use a power level that can meet the corresponding
signal-to-noise ratio, denoted as SNRm, where SNR1 <
SNR2 < . . . < SNRM . Consequently, if modulation-
coding scheme m is used for the RB comprising slot s
and subchannel c allocated to device n, the minimum
transmit power required for the RB can be calculated by

pnm(s, c) = min
1≤ℓ≤L

{
ℓδ|ℓδ ≥ (2(SNRm/10) − 1)× σ

g(n,c)

}
, (1)

where σ is the noise power. The transmit power of the
base station available for each slot is limited, i.e., Lδ.
Moreover, we define χn

m(s, c) as an indicator function,
which is 1 if the RB comprises slot s and subchannel c
is allocated to device n with modulation-coding scheme
m, and 0 otherwise. If any RB in slot s is allocated
to device n, the device has to consume an amount of
energy, denoted as Jn, for reception during the time
slot. A resource allocation is feasible if all the following
constraints are satisfied.

Resource constraint: Equation (2) ensures that each RB
can be modulated with at most one modulation-coding
scheme and only be allocated to a device at a time.

N∑
n=1

M∑
m=1

χn
m(s, c) ≤ 1, ∀ s, c (2)

Requirement constraint: Equation (3) states that every
device’s requirement must be satisfied with the desired
data rate.

M∑
m=1

S∑
s=1

C∑
c=1

dm · χn
m(s, c) ≥ Rn, ∀ n (3)

Available transmit power constraint: The total transmit
power cannot exceed the available power at the base
station.

N∑
n=1

M∑
m=1

C∑
c=1

χn
m(s, c) · pnm(s, c) ≤ Lδ, ∀ s (4)

We now define the target problem formally as follows.

TABLE 1
Summary of Notations

N The number of devices
S The number of available slots
C The number of available subchannels
L The number of transmit power levels
δ The power of each level is increased by a

constant power δ

M The number of modulation-coding schemes
SNRm The corresponding signal-to-noise ratio for us-

ing modulation-coding scheme m

dm The data rate provided by a single RB with
modulation-coding scheme m

Lδ The available transmit power of the base sta-
tion

σ The noise power
Rn The data rate requirement of device n

Jn The energy consumption of device n for data
reception during a slot

g(n,c) The channel gain of device n on subchannel c
pnm(s, c) The power required to transmit the RB, com-

prised of slot s and subchannel c, to device n
with modulation-coding scheme m

χn
m(s, c) An indicator function, which is 1 if the RB

comprised of slot s and subchannel c is ap-
plied with modulation-coding scheme m and
allocated to device n, and 0 otherwise

The Energy-Efficient Downlink Resource Allocation
Problem
Input instance: Consider S · C available RBs to be
allocated to N devices. Device n has a channel gain
g(n,c) on subchannel c and a data rate requirement
Rn. The base station has L transmit power levels
and M modulation-coding schemes. Each power level
ℓ consumes power ℓδ, while each modulation-coding
scheme has a corresponding signal-to-noise ratio SNRm.
The RB, comprised slot s and subchannel c, applied
with modulation-coding scheme m, can support a data
rate of dm for device n, but requires at least transmit
power pnm(s, c) calculated according to Equation (1). The
available power of the base station for each slot is Lδ.
The noise power is σ.
Objective: Let Jn be the energy consumption of device
n for data reception during a slot. Our objective is
to find a feasible resource allocation, χn

m(s, c), such
that the total energy consumption of all the devices is
minimized. The objective function is expressed as

Minimize
N∑

n=1

Jn ×
S∑

s=1

(
M∨

m=1

C∨
c=1

χn
m(s, c)

)
,

subject to constraints (2)-(4), where
∨M

m=1

∨C
c=1 χn

m(s, c)
indicates whether device n needs to receive data during
slot s, and

∑S
s=1(

∨M
m=1

∨C
c=1 χn

m(s, c)) represents the
number of slots during which device n needs to receive
data. Table 1 summarizes the notations used in the
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(a) Rate adaptive
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(b) Margin adaptive
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(c) Energy adaptive

Fig. 2. An illustrative example for the resource allocation problem with different objectives.

problem formulation.

3.3 An Illustrative Example
We use an example, as shown in Fig. 2, to explain our
observation on the impact of different resource allocation
strategies (i.e., with different objectives) on the energy
consumption of mobile devices for data reception. Con-
sider four devices (i.e., N = 4), each of which has a data
rate requirement of 90 Kbps (i.e., Rn = 90K, ∀ n). The
numbers of slots and subchannels are set, respectively,
at 3 and 4 (i.e., S = 3 and C = 4). The channel gains of
each device on the four subchannels are set to be some
permutation of 0.4, 0.3, 0.2, and 0.1, as shown in the
figure. The base station has 20 transmit power levels (i.e.,
L = 20), and the power of each level is increased by 0.5
W (i.e., δ = 0.5). The power available for each slot is
10 W (i.e., Lδ = 10). There are two modulation-coding
schemes (i.e., M = 2) with corresponding signal-to-noise
ratios 6 dB and 10 dB (i.e., SNR1 = 6 and SNR2 = 10),
respectively. According to Equation (1), the respective
power levels required to use the two modulation-coding
schemes are 1.5 W and 2.5 W. A single RB modulated
with the two schemes can support a data rate of 30 Kbps
and 60 Kbps (i.e., d1 = 30K and d2 = 60K), respectively.
The noise power is set at 1 W (i.e., σ = 1). We assume
that the energy consumption required for data reception
during any slot is set at 320 µJ (i.e., Jn = 320µ). Then,
the base station determines the power and RB allocation
under RA, MA, and EA, respectively.

Fig. 2(a) shows an optimal solution for the resource
allocation problem with RA. In order to maximize the
data rate, the base station always allocates each RB to
the device with the highest channel gain. As a result,
each RB is allocated to a device with channel gain 0.4.
Moreover, modulation-coding scheme 2 is used and each
RB is allocated equally with 2.5 W since the available
transmission power is 10 W. Consequently, each device
needs to receive data during all the three slots, and the
total energy consumption for data reception is 3 × 4 ×
320 µJ = 3840 µJ. Fig. 2(b) shows an optimal solution for
MA. To minimize the transmit power, the base station
also tries to allocate each RB to a device with the highest
channel gain 0.4. However, it uses modulation-coding

scheme 1 and allocates only 1.5 W to each RB so that
all devices’ requirements can be satisfied at least. In this
example, the four devices consume 3840 µJ as well.

With the EA objective, as shown in Fig. 2(c), the base
station tends to allocate RBs in the same slot to each
device. As a result, some RBs are allocated to devices
with channel gain 0.4, while some RBs allocated to de-
vices with channel gain 0.3. Moreover, 2.5 W and 1.5 W
are, respectively, allocated to the RBs using modulation-
coding schemes 2 and 1 associated with channel gain
0.4 and 0.3. Based on the allocation, each device can be
satisfied with a data rate of 60 Kbps + 30 Kbps = 90 Kbps,
and the total transmit power in a slot is 2×(2.5 W+1.5
W) = 8 W, which is less than the available power 10 W.
More importantly, the total energy consumption for data
reception is only 4 × 320 µJ = 1280 µJ. Comparing Fig.
2(b) and Fig. 2(c), we observe an interesting phenomenon
that, in order to save the transmit power of the base
station, each mobile device will stay in receive mode for
a longer time and consume more energy to achieve the
required data rate.

4 ENERGY-EFFICIENT DOWNLINK RESOURCE
ALLOCATION
In this section, we consider the energy-efficient downlink
resource allocation problem. In Section 4.1, we show
that the problem is NP-hard. To simplify the prob-
lem, in Section 4.2, we consider a special case with
one device in one slot and propose a polynomial-time
optimal algorithm based on dynamic programming to
maximize the data rate received by the device during a
single slot. Then, in Section 4.3, we present an efficient
algorithm, which relies on the algorithm presented in
Section 4.2, for the general case and prove that it is a
2-approximation algorithm under a certain condition.

4.1 Problem Hardness
In this subsection, we show that the target problem is
NP-hard by a reduction from the partition problem, which
is known to be NP-complete [33].

Theorem 1: The energy-efficient downlink resource alloca-
tion problem is NP-hard.
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Fig. 3. An illustration of the NP-hard proof

Proof: The input instance of the partition problem
is a set of Z integers, A = {a1, a2, . . . , aZ}. The output
is Y ES if and only if A can be partitioned into two
subsets A′ and A\A′ with the same sum, i.e.,

∑
ai∈A′ ai =∑

ai ̸∈A′ ai =
1
2

∑
ai∈A ai, as illustrated in Fig. 3(a).

Given an instance ⟨A⟩ of the partition problem, we
explain how to construct an instance ⟨N , S, C, L, δ, M ,
SNRm, dm, σ, Rn, g(n,c)⟩ of our problem in polynomial
time such that A can be evenly partitioned if and only
if there exists a resource allocation whose total energy
consumption is not more than Z. The construction is as
follows. As illustrated in Fig. 3(b), consider Z devices
(i.e., N = Z), and each device i requires a data rate of ai
bps (i.e., Ri = ai, ∀1 ≤ i ≤ Z). The numbers of available
slots and subchannels are, respectively, set as S = 2 and
C = 1

2

∑
ai∈A ai. There are 1

2

∑
ai∈A ai transmit power

levels (i.e., L = 1
2

∑
ai∈A ai) and the power of each level

is increased by 1 W (i.e., δ = 1). There is only one
modulation-coding scheme (i.e., M = 1) whose corre-
sponding signal-to-noise ratio is 10 dB (i.e., SNR1 = 10).
Each RB modulated with the modulation-coding scheme
can provide a data rate of 1 bps (i.e., d1 = 1). The channel
gain of all devices on any subchannel is set at 1 (i.e.,
g(n,c) = 1, ∀ 1 ≤ c ≤ C, 1 ≤ n ≤ 2). Let the noise
power be σ = 1. According to Equation (1), the power
required for a single RB allocated to any device is 1 W
(i.e., pnm(s, c) = 1,∀1 ≤ n ≤ Z, 1 ≤ s ≤ 2, 1 ≤ c ≤ C).
Moreover, we set the energy consumption of any device
for date reception during one slot at 1 (i.e., Jn = 1, ∀1 ≤
n ≤ Z).

To complete the proof, we show that two partitioned
subsets can be used to derive a resource allocation whose
total energy consumption is not more than Z, and vice
versa. In one direction, if A can be evenly partitioned
into two subsets, we explain how the two subsets can be
used to derive a resource allocation whose total energy
consumption is not more than Z. Because each subset
corresponds to a slot and each integer corresponds to a
device’s data rate requirement, the assignment of integer
ai to a subset implies that ai RBs in the corresponding
slot are allocated to device i such that the device’s
requirement can be satisfied. For example, as shown in
Fig. 3, the assignment of integer a1 to subset 2 implies the
allocation of a1 RBs in slot 2 to device 1. In this resource
allocation, every device needs to receive data during

exactly one slot and its energy consumption is 1. Because
there are Z devices, the total energy consumption is Z.

In the other direction, if there exists a resource allo-
cation whose energy consumption is not more than Z,
we describe how the resource allocation can be used to
partition A evenly into two subsets. Because the total en-
ergy consumption is not more than Z and every device’s
requirement must be satisfied, no device should receive
data during more than one slot. By a similar argument,
the allocation of ai RBs in a slot to satisfy the requirement
of device i implies the assignment of integer ai to the
corresponding subset. Therefore, the set can be evenly
partitioned by assigning the integers into two subsets in
accordance with the resource allocation. The existence of
a polynomial-time algorithm for the partition problem
implies the same for ours, which completes the proof.

4.2 A Special Case
4.2.1 A Polynomial Time Optimal Algorithm
Next, we consider a special case of the target problem
when there is only one device and one slot (i.e., N = 1
and S = 1). Since there is only one slot, the total energy
consumed by the only device is Jn, and the problem is
thus to determine whether the data rate requirement Rn

can be satisfied by the single slot. In other words, an
algorithm is optimal if it can derive the maximum data
rate provided by the single slot for the device.

To solve this special case, we propose a polynomial-
time optimal algorithm based on dynamic programming.
It determines which subchannel should be allocated to
the device and with which modulation-coding scheme so
that the data rate provided by the slot is maximized. The
proposed algorithm is based on the recursive formula
given in Equation (5). Let f(c,m, ℓ) be the maximum
data rate achieved by the first c subchannels, where
subchannel c can be applied with one of the first m
modulation-coding schemes and any other subchannel
can be applied with one of the M modulation-coding
schemes, when the transmit power available for the slot
is ℓδ. We delineate three possible cases in Equation (5):

(1) If c = 0 or m = 0, f(c,m, ℓ) is set at 0. That is,
no data rate can be provided because there is no
subchannel or modulation-coding scheme.

(2) If ℓδ − pnm(s, c) < 0, then f(c,m, ℓ) is set as
max(f(c,m − 1, ℓ), f(c − 1,M, ℓ)). That is, it is im-
possible to apply subchannel c with modulation-
coding scheme m when the available power is only
ℓδ. Therefore, the maximum data rate is achieved
by one of the two possible selections: 1) subchannel
c is applied with one of the first m−1 modulation-
coding schemes; or 2) subchannel c is not used, and
the maximum data rate is provided by the first c−1
subchannels, each of which can be applied with
any of the M modulation-coding schemes.

(3) Otherwise, subchannel c is either applied or not
applied with modulation-coding scheme m. If it
is applied with modulation-coding scheme m, the
base station has to consume power pnm(s, c) and
the device can obtain a data rate of dm. Then, the
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f(c,m, ℓ) =


0, if c = 0 or m = 0;

max

(
f(c,m− 1, ℓ), f(c− 1,M, ℓ)

)
, else if ℓδ − pnm(s, c) < 0;

max

(
f(c− 1,M, ℓ− pnm(s,c)

δ
) + dm, f(c,m− 1, ℓ), f(c− 1,M, ℓ)

)
, otherwise.

(5)

remaining transmit power, i.e., ℓδ−pnm(s, c), can be
used for the first c− 1 subchannels, each of which
can be applied with one of the M modulation-
coding schemes. Thus, the maximum data rate
achieved by this selection is f(c−1,M, ℓ− pn

m(s,c)
δ )+

dm. In contrast, if subchannel c is not applied with
modulation-coding scheme m, the maximum data
rate can only be achieved by the two possible
selections as discussed in Case (2). Thus, f(c,m, ℓ)
is set as the maximum of the data rates achieved
by the three selections.

Algorithm 1
Require: N = 1, S = 1, C, L, δ, M , SNRm, dm, σ, R1, g(1,c)
Ensure: χn

m(s, c)
1: χn

m(s, c)← 0, ∀m, c
2: FILL-TABLE(C,M,L)
3: BACK-TRACE(C,M,L)
4: return χn

m(s, c), ∀ m, c

Algorithm 1 implements the dynamic-programming
formula in Equation (5). First, an indicator function
χn
m(s, c), indicating whether subchannel c is applied with

modulation-coding scheme m and allocated to the de-
vice, is initialized as 0, ∀m, c. Then, the algorithm main-
tains a 3-dimensional table f [], each entry of which stores
the solution derived by f(c,m, ℓ). When Procedure FILL-
TABLE() is invoked, it simply fills in the corresponding
table f [] according to Equation (5). After the table is
completed, Procedure BACK-TRACE() is invoked to se-
lect the subchannels and the corresponding modulation-
coding schemes such that the data rate provided in
the slot is maximized by back tracing the table, and
set the corresponding χn

m(s, c), ∀ m, c, as 1. Finally, the
algorithm return the solution χn

m(s, c).

Procedure FILL-TABLE(C,M,L)
1: for c← 0 to C do
2: for m← 0 to M do
3: for ℓ← 0 to L do
4: if c = 0 or m = 0 then
5: f [c,m, ℓ]← 0
6: else if ℓδ − pnm(s, c) < 0 then
7: f [c,m, ℓ]← max(f [c,m− 1, ℓ], f [c− 1,M, ℓ])
8: else
9: f [c,m, ℓ]← max(f [c− 1,M, ℓ− pnm(s,c)

δ
] + dm,

f [c,m− 1, ℓ], f [c− 1,M, ℓ])

Procedure FILL-TABLE() takes C, M , and L as inputs.
It fills in each table entry f [c,m, ℓ] with the value derived
based on Equation (5) (Lines 4-9). Because filling in a
table energy may refer to some other entries, the table
entries are computed in sequence, i.e., the dimension

from ℓ = 0 to L first, then the dimension from m = 0 to
M and, finally, the dimension from c = 0 to C.

Procedure BACK-TRACE(C,M,L)
1: c← C
2: m←M
3: ℓ← L
4: while c > 0 do
5: if f [c,m, ℓ] = f [c− 1,M, ℓ] then
6: c← c− 1
7: m←M
8: else if f [c,m, ℓ] = f [c,m− 1, ℓ] then
9: m← m− 1

10: else
11: χn

m(s, c)← 1
12: c← c− 1
13: m←M
14: ℓ← ℓ− pnm(s,c)

δ

Procedure BACK-TRACE() also takes C, M , and L
as inputs. It selects subchannels and modulation-coding
schemes to provide the maximum data rate for the
device by back tracing table f []. We begin with the
last entry (i.e., f [C,M,L]) by setting three indexes c, m,
and ℓ as C, M , and L respectively. During Procedure
FILL-TABLE(), f [c,m, ℓ] is set as the maximum among
f [c−1,M, ℓ], f [c,m−1, ℓ], and f [c−1,M, ℓ− pn

m(s,c)
δ ]+dm.

We discuss the three cases. If the maximum is the first
term, then subchannel c is not used for transmission, so
c is updated to c− 1 and m is updated to M (Lines 5-7).
If the maximum is the second term, then subchannel c is
not applied with modulation-coding scheme m but one
of the first m− 1 modulation-coding schemes; thus m is
updated to m− 1 (Lines 8-9). Otherwise, the maximum
is the third term, and c is applied with modulation m.
Therefore, χn

m(s, c) is set as 1, and the three indexes
are updated to their corresponding values (Lines 10-14).
Then, we start with the entry indexed by the updated
c, m, and ℓ, and repeat the above process until all the
subchannels have been examined.

4.2.2 The Properties of Algorithm 1
In this section, we analyze the time complexity of
Algorithm 1, and prove that it is a polynomial-time
optimal algorithm.

Lemma 1: The time complexity of Algorithm 1 is
O(CML).

Proof: The time complexity of the algorithm de-
pends on the number of table entries and the time
required to derive the value of each entry. The 3-
dimensional table comprises CML table entries. More-
over, deriving the value of each entry f [] by referring
to at most three other entries takes O(1) time. Since a
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derived value will never be changed, the table can be
completed in O(CML). On the other hand, construct-
ing the corresponding allocation by back tracing the
table has to examine at most O(CM) entries, and each
examination takes constant time O(1). Thus, the time
complexity of Algorithm 1 is O(CML).

Theorem 2: Algorithm 1 yields the maximum data rate
for a device during a slot.

Proof: We prove this theorem by two-dimensional
mathematical induction on the indexes c and m. As the
induction basis, m = 0, there is no modulation-coding
scheme that can be used to provide any data rate. Thus,
the maximum data rate is 0, i.e., f(c, 0, ℓ) = 0, ∀c, ℓ. For
the induction hypothesis, suppose that f(0,m− 1, ℓ), ∀ℓ,
is correct for some positive integer m. We show that the
formula f(0,m, ℓ), ∀ℓ, is also correct. When c = 0, there is
no subchannel and it is impossible to provide any data
rate. Thus, the maximum data rate is 0, i.e., f(0,m, ℓ) =
0, ∀m, ℓ. The theorem is correct when c = 0.

Next, let us consider the case when c = 1. For the
induction hypothesis, we also suppose that the formula
f(0,m − 1, ℓ), ∀ℓ, is correct for some positive integer
m. We show that the formula f(1,m, ℓ),∀ℓ, is also cor-
rect. If the available transmit power ℓδ is less than
pnm(s, 1), it is impossible to apply subchannel 1 with
modulation-coding scheme m. Then, the maximum data
rate must be achieved by subchannel 1 applied with
one of the first m − 1 modulation-coding scheme or
the first 0 subchannels. By the induction hypothesis and
the correctness proved when c = 0, the maximum data
rate f(1,m, ℓ) = max(f(1,m − 1, ℓ), f(0,M, ℓ)) if ℓδ −
pnm(s, 1) < 0. Otherwise, if subchannel 1 is applied with
modulation-coding scheme m, the maximum data rate
f(1,m, ℓ) = f(0,M, ℓ− pn

m(s,1)
δ )+dm. In contrast, if it is not

applied with modulation-coding scheme m, the maxi-
mum data rate f(1,m, ℓ) = max(f(1,m−1, ℓ), f(0,M, ℓ)).
Because subchannel 1 is either applied or not applied
with modulation-coding scheme m, the maximum data
rate is the larger one of the two values. Thus, the theorem
is correct when c = 1. The validity of the theorem when
c ≥ 2 can be proved similarly. Thus, we conclude that
the formula f(c,m, ℓ), ∀c,m, ℓ, is correct.

4.3 The General Case

4.3.1 Algorithm Description
In this section, we propose an efficient algorithm to
solve the general case with multiple devices in multiple
slots. It relies on the dynamic-programming algorithm
presented in Section 4.2 to derive an indicator function
that maximizes the data rate for each device during a
single slot. Then, based on the indicator functions, it
allocates RBs in column-major order to all the devices
one by one to reduce the energy consumption for data
reception.

The algorithm, as shown in 2, starts with initializa-
tion. An indicator function χn

m(s, c) registers if an RB,
comprised of slot s and subchannel c applied with
modulation-coding scheme m, is allocated to device n,

Algorithm 2
Require: N , S, C, L, δ, M , SNRm, dm, σ, Rn, g(n,c)

Ensure: χn
m(s, c)

1: χn
m(s, c)← 0,∀n,m, s, c

2: ŝ← 1
3: PBS ← Lδ
4: for n̂← 1 to N do
5: χ̂n̂

m(ŝ, c),∀m, c← Algorithm 1 (n̂, ŝ)

6: if χ̂n̂
m(ŝ, c) = 0, ∀m then

7: χ̂n̂
1 (ŝ, c)← 1, ∀c

8: while Rn̂ > 0 and ŝ ≤ S do
9: ĉ←argmax

c
{m̂|χ̂n̂

m̂(ŝ, c)=1 and χn
m(ŝ, c)=0, ∀n,m}

10: PBS ← PBS − pn̂m̂(ŝ, ĉ)
11: if PBS ≥ 0 and ĉ ̸= ∅ then
12: Rn̂ ← Rn̂ − dm̂
13: χn̂

m̂(ŝ, ĉ)← 1
14: else
15: ŝ← ŝ+ 1
16: PBS ← Lδ
17: return χn

m(s, c), ∀ n,m, s, c

and is initialized at 0, ∀ n,m, s, c (Line 1). A variable ŝ
initialized at 1 is employed to index the currently used
slot (Line 2); and PBS maintains the remaining transmit
power for the currently used slot and initialized at Lδ
(Line 3). Then, the algorithm attempts to minimize the
total energy consumption, while satisfying each device’s
requirement sequentially (Line 4). For each device n̂,
the algorithm uses Algorithm 1 to derive χ̂n̂

m(ŝ, c), ∀m, c,
which indicates the modulation-coding scheme for each
subchannel such that the data rate at slot ŝ is maximized
for the device n̂ (Line 5). In the indicator function
derived by Algorithm 1, some subchannels may not be
applied with any modulation-coding scheme due to the
limited transmit power. Those subchannels are assigned
with the lowest-rate modulation-coding scheme by de-
fault (Lines 6-7). This design is to further improve the
radio resource utilization of a partially used slot because
some subchannels that can be allocated to device n̂ may
have already been allocated to other devices.

Next, the algorithm starts to allocate RBs to device n̂
until its data rate requirement is satisfied or the radio
resources are exhausted (Line 8). In order to minimize
the energy consumption for data reception, RBs are
allocated one by one in column-major order. Based on
the indicator function derived by Algorithm 1 in Line
5, Algorithm 2 finds an unused subchannel ĉ applied
with the highest modulation-coding scheme m̂ so as to
allocate as few RBs in the current slot ŝ as possible to
device n̂ (Line 9). Note that the tie is broken by selecting
the subchannel that requires the least transmit power.
To apply subchannel ĉ with modulation-coding scheme
m̂, the transmit power at the base station has to be
decreased by pn̂m̂(ŝ, ĉ) (Line 10). For the current slot ŝ,
if there are remaining transmit power (i.e., PBS ≥ 0)
and any unused subchannel (i.e., ĉ ̸= ∅ ), the subchannel
ĉ can be allocated to device n̂ and provides a data
rate of dm̂; moreover, the counterpart of the indicator
function χn̂

m̂(ŝ, ĉ) is set as 1 accordingly (Lines 11-13).
Otherwise, the variable ŝ moves to the next slot and
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the transmit power available for this new slot is reset at
Lδ (Lines 14-16). Finally, after all the devices have been
considered, the algorithm returns the derived resource
allocation χn

m(s, c) (Line 17). Based on the returned
χn
m(s, c), the base station can examine whether all the

devices’ requirements are satisfied by the available radio
resources2.

4.3.2 The Properties of Algorithm 2

Lemma 2: The time complexity of Algorithm 2 is
O(NCML+ SC2).

Proof: For each device, Algorithm 1 is invoked once
and takes O(CML) time to derive an indicator function
for the device, as analyzed in Lemma 1. Thus, it takes
O(NCML) time for power allocation. Moreover, when
allocating an RB to the device, Algorithm 2 finds an
unused subchannel ĉ and an appropriate modulation-
coding scheme m̂ for the slot (see Line 9). In other
words, we have to ensure subchannel ĉ is unused (i.e.,
χn
m(ŝ, ĉ) = 0, ∀n,m), and search for the indicator function

derived by Algorithm 1 to determine the modulation-
coding scheme m̂ that can be applied to ĉ (i.e., χ̂n̂

m̂(ŝ, ĉ) =
1). To this end, we can employ two additional variables
for each subchannel to indicate whether it is unused
or not and which modulation-coding scheme is applied,
so that finding an unused subchannel with the highest
modulation-coding scheme can be done in O(C) time.
Because there are S ×C RBs to be allocated one by one,
it takes O(SC2) time for RB allocation.

Theorem 3: Algorithm 2 is a 2-approximation algorithm

when
∑N

n=1

⌈
Rn

r∗n

⌉
≤ S, where r∗n is the maximum data rate

provided by a single slot for device n.
Proof: We prove this theorem by showing that,

based on the allocation χn
m(s, c) returned by Algorithm

2, each device needs to receive at most one slot more
than that it receives in any optimal solution. For any
device n in the network system, following the column-
major order for resource allocation, Algorithm 2 starts to
allocate RBs to device n in the same (current) slot as the
previous device if there is any vacant subchannel in that
slot. Let Ĉn denote the set of vacant subchannels in the
current slot, where 1 ≤ |Ĉn| ≤ C. If all the subchannels
in Ĉn are allocated to device n, the device can obtain
a data rate of at most ρn. We delineate two possible
cases: 1) If the data rate requirement of device n is less
than or equal to ρn, it only needs to receive data during
the current slot. 2) Otherwise, the remaining requirement
must be satisfied by other slots. If all the subchannels in
a new slot are allocated to device n, it can obtain a data
rate of at most r∗n, where r∗n denotes the maximum data
rate provided by a slot for device n. Note that r∗n can be
achieved by Algorithm 1, as proved in Theorem 2. Let
βn denote the number of slots during which device n

2. We investigate the probability of returning a feasible solution via
extensive simulations, and discuss how to handle the circumstance that
some devices’s requirements cannot be satisfied in Section 5.

TABLE 2
Modulation-Coding Schemes with SNR Ranges

m Modulation Coding rate dm (kbps) SNR range (dB)

1 QPSK 0.438 3.95 3

2 QPSK 0.588 5.29 5

3 QAM16 0.476 8.61 8.5

4 QAM16 0.602 10.82 10

5 QAM64 0.455 12.29 11.5

6 QAM64 0.554 14.95 13.5

needs to receive data. Then, we have

βn =

{
1, if 1 ≤ Rn ≤ ρn,

1 +
⌈
Rn−ρn

r∗n

⌉
, otherwise. (6)

On the other hand, let β∗
n denote the number of slots

during which device n needs to receive data in an
optimal solution. Since r∗n is the maximum data rate
provided by a single slot for device n, the requirement
Rn must be associated with at least ⌈Rn

r∗n
⌉ slots, in the

sense that

β∗
n ≥

⌈
Rn

r∗n

⌉
≥ 1. (7)

Based on (6) and (7), we have

βn ≤ 1 +

⌈
Rn

r∗n

⌉
≤ 1 + β∗

n.

Now, we compute the total energy consumption of
all devices for data reception in the allocation χn

m(s, c)
derived by Algorithm 2.

N∑
n=1

Jn ×
S∑

s=1

(
M∨

m=1

C∨
c=1

χn
m(s, c)

)
=

N∑
n=1

Jn × βn

≤
N∑

n=1

Jn × (1 + β∗
n) ≤ 2×

N∑
n=1

Jn × β∗
n

Notice that when
∑N

n=1

⌈
Rn

r∗n

⌉
≤ S, all the devices can

be satisfied by the available radio resources. Thus we
can conclude that under the condition, Algorithm 2 can
derive a feasible solution whose energy consumption is
no more than twice that of any optimal solution.

5 PERFORMANCE EVALUATION

In this section, we carry out the evaluation of our
proposed allocation scheme by conducting simulation
study.

5.1 Simulation Setup
We develop a simulation model to evaluate the perfor-
mance of the proposed algorithm, i.e., Algorithm 2. The
parameter settings are based on the LTE specification
for a 10 MHz spectrum [6]. The number of available
slots for the resource allocation was set at 40, with each
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TABLE 3
Data Rates of Video Sequences Encoded by H.264

Video sequence Data rate requirement
Akiyo 23.69Kbps

Grandma 29.51Kbps
Container 32.65Kbps

Hall monitor 46.62Kbps
News 71.1Kbps

slot time 0.5 ms. The number of available subchannels is
set to 50. The network consists of one base station and
multiple mobile devices (MDs), each of which is placed
randomly in the coverage area of the base station with a
distance between 100 to 300 meters from the base station.
The base station supports a number of discrete transmit
power levels, where the difference in power between two
adjacent levels is 1 W. Moreover, the base station has
six modulation-coding schemes. The corresponding data
rate and the signal-to-noise (SNR) required to overcome,
listed in Table 2, are based on the LTE specification [28].
The power consumption of each device in receive mode
is assigned randomly at 620mW [4] or 1400mW [5] to
consider heterogeneous mobile devices. Accordingly, the
energy consumed by a device to receive data during
one slot is 310µJ or 700µJ. Path loss, shadowing, and
multipath fading are taken into consideration in the
simulation model. We adopt the log-distance path loss
model with propagation loss exponent of 3 for cellular
networks [34, 35] and a reference distance of 100 meters.
The shadowing follows a log-normal distribution with
zero mean and standard deviation of 8 dB. Moreover,
the subchannels are assumed to suffer from multipath
Rayleigh fading.

We use five standard video test sequences with QCIF
resolution, namely Akiyo, Grandma, Container, Hall
Monitor, and News, all of which can be downloaded
from [36]. Each device randomly selects a test sequence.
The video sequences are encoded by H.264 with JM,
version 18.4, and the IBBP encoding structure is used.
The other encoding parameters are set at the default
values of H.264 with JM. The data rate of each video
sequence encoded is listed in Table 3.

We compared the proposed algorithm, denoted as EA,
with two algorithms. The first algorithm was developed
for the RA objective [13], denoted as RA, which attempts
to maximize the total data rate of all devices under a
given transmit power constraint. Initially, the transmit
power available for each slot is allocated equally to all
the RBs in the slot; meanwhile, such power allocation
ensures that the transmit power constraint will not be
violated. Then, the device with the lowest data rate is
selected and an RB is allocated to it. Among those avail-
able RBs, the RB to be allocated is selected to provide
the best signal-to-noise ratio (which implies the highest
data rate) to that device. Ties are broken at random. The
above process is repeated until all the RBs are allocated.

The second algorithm, denoted as MA, was proposed
in [19] and intended to minimize the total transmit

power of the base station while satisfying every de-
vice’s data rate requirement. Because the MA algorithm
considers only one single slot, we divide each device’s
requirement by S, and apply the resource allocation
determined for one slot to all the S slots. Firstly, the
algorithm sorts the C RBs in the slot in a descending
order according to their maximum channel gains (recall
that an RB is associated with one of N channel gains).
Then, it allocates all the RBs temporarily to every de-
vice, and makes a series of C decisions. For the jth
decision, the jth RB is given to one of the N devices
and simultaneously removed from all the others. Based
on the specific RB allocation, a modified water-filling
power allocation algorithm is employed to calculate
the minimum transmit power required to satisfy each
device’s data rate requirement. By considering all the N
possible allocations, the jth RB is actually allocated to the
device such that the total transmit power is minimized.
After the C decisions made in sequence, each RB in the
slot will be allocated to only one device.

In addition to the three algorithms, a lower bound
estimated based on Equation (7) for the optimal solu-
tion, denoted as OPT-LB, is adopted as a baseline for
comparison. The performance metrics are the respective
amounts of energy consumed by mobile devices and by
the base station, as well as the sum of the two amounts.
The metrics including the percentage of unallocated RBs
and the total data rate of mobile devices are further
considered. We investigate the impacts of the available
transmit power of the base station in the range 10 to 20
W when the number of devices is set at 40, as well as
the impacts of the number of devices in the range 5 to
50 when the available transmit power is set at 20 W [20].

All of the simulations were run on a platform with an
Intel i5 Dual-Core 1.6 GHz CPU and a 6GB DDR3 RAM.
The simulation results reported are the average values of
1000 independent runs. In addition to the above studies,
we evaluate the average running time required by each
of the three algorithms per run. We also investigate the
percentage of the feasible solutions derived over the
1000 runs to demonstrate the feasibility of the proposed
algorithm. Note that MA and RA always return feasible
solutions (in terms of their objectives) because RA does
not ensure that every device’s requirement is satisfied
while MA does not limit the base station’s available
transmit power.

5.2 Energy Consumption

Fig. 4(a) shows the impact of the available transmit
power of the base station on the energy consumption
of mobile devices. The energy consumption decreases
slightly as the available transmit power increases under
EA and OPT-LB. The result is as expected because an
RB allocated with larger power can be applied with a
higher rate modulation-coding scheme. As a result, the
requirement of each device can be satisfied with fewer
RBs and, consequently, the device needs to receive data
during fewer slots. In contrast, the available transmit
power does not have a significant impact on the energy
consumption of mobile devices under RA and MA. It
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(c) Mobile Devices and Base Station

Fig. 4. The impacts of the available transmit power on the energy consumption under 40 devices.
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Fig. 5. The impacts of the number of devices on the energy consumption under the available transmit power of 20 W.

implies that both RA and MA do not leverage the
available transmit power to reduce the energy consumed
by mobile devices. The simulation results show that the
mobile devices consume 14 to 26 times more energy
under RA and MA than under EA. Moreover, the energy
consumption of mobile devices under EA is close to that
under OPT-LB.

We are also interested in the energy consumption
of the base station under different objective functions.
As shown in Fig. 4(b), the energy consumption of the
base station increases as the available transmit power
increases under EA and RA, and the increase is more
obvious under RA than under EA. This is because RA
tends to exhaust the available power over all the slots to
improve the data rate, while EA attempts to use as few
slots as possible to satisfy the data rate requirements.
On the other hand, the base station consumes 1.2 to 1.4
times more energy under EA than under MA. Comparing
Fig. 4(a) with Fig. 4(b), we observe an interesting tradeoff
between the energy consumption of the base station
and that of mobile devices. If the base station attempts
to save the transmit power, then mobile devices may
consume more energy for data reception, and vice versa.
This tradeoff also explains why we use energy adaptive
to represent the new concept raised in this paper for
resource allocation. More importantly, when the total
energy consumption of the base station and mobile

devices is considered, EA is more energy efficient than
MA by 3.7 times, as shown in Fig. 4(c).

Fig. 5(a) shows the impact of the number of devices
on the energy consumption of the mobile devices. The
energy consumption increases as the number of devices
increases under all the algorithms. The reason for the
increase under EA is that, as the number of devices
increases, the amount of the data rate requirements
increases. The more the RBs allocated to satisfy the
requirements, the larger the energy the mobile devices
consume. The increase is much more evident under
RA and MA. This is because they usually scatter the
RBs allocated to the same device over different slots;
consequently, the total energy consumption increases, in
general, proportionally to the number of devices. The
simulation results show that the mobile devices consume
14 to 26 times more energy under RA and MA than under
EA; moreover, the energy consumption under EA is close
to that under OPT-LB. The result is similar to that in
Fig. 4(a) and also demonstrates that both RA and MA
cause mobile devices to consume more energy for data
reception.

As shown in Fig. 5(b), the energy consumption of the
base station increases as the number of devices increases
under MA and EA. This is because there are more data
rate requirements, so the base station has to consume
more energy to transmit adequate RBs to satisfy the
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Fig. 6. The respective impacts of the available transmit power and the number of devices on the percentage of
unallocated RBs.
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Fig. 7. The respective impacts of the available transmit power and the number of devices on the total data rate of
mobile devices.

requirements. In contrast, the number of devices does
not have a significant impact on the energy consumption
of the base station under RA, because RA always tries
to maximize the data rate regardless of the devices’
requirements. The simulation results show that the base
station consumes 1.4 to 1.6 times more energy under EA
than under MA. As shown in Fig. 5(c), however, EA is
still more energy efficient than MA by 3.4 times in terms
of the total energy consumption of the base station and
mobile devices.

5.3 Data Rate and Unallocated RBs

Fig. 6 shows the impacts of the available transmit
power and the number of devices on the percentage
of unallocated RBs to the total RBs. As shown in
Fig. 6(a), the percentage of unallocated RBs under EA
increases as the available transmit power increases.
This is because an RB can be applied with a higher-rate
modulation-coding scheme to provide a higher data

rate when larger transmit power is allocated to the
RB. Consequently, the data rate requirement of each
device can be satisfied with fewer RBs. In contrast,
the percentage under EA decreases as the number of
devices increases, as shown in Fig. 6(b). The result can
be expected because the base station has to use more
RBs to satisfy more devices. When EA is adopted, the
unallocated RBs can be used to serve other application
services. On the other hand, both the number of devices
and the available transmit power have no impact on
the percentage of unallocated RBs under RA and MA.
This is because RA always exhausts the available RBs
to maximize the total data rate of mobile devices, while
MA always exhausts the available RBs to minimize the
transmit power of the base station.

Fig. 7 shows the impacts of the available transmit
power and the number of devices on the total data rate
of mobile devices. Under RA, as the available transmit
power increases, the total data rate of mobile devices
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algorithm per run.

increases, as shown in Fig. 7(a). This is because RA
attempts to exhaust all the available RBs and transmit
power to maximize the total data rate of mobile devices.
However, data rate maximization is not beneficial for
real-time multimedia data whose bit rate is generally
constant. By contrast, the available transmit power does
not have any impact on the total data rate under MA
and EA, because they just utilize radio resources, i.e.,
transmit power and RBs respectively, exactly to satisfy
the devices’ data rate requirements. As shown in Fig.
7(b), under all the three algorithms, the total data rate
increases with the number of devices. The increase is
more evident under RA because it always utilizes all
the available radio resources; moreover, when there are
more devices, more diverse channel gains lead to a
higher chance that an RB can be allocated to a device
with a better channel gain, and, thus, a higher data rate
provided by the RB can be achieved. On the other hand,
MA and EA just provide the data rates exactly required
by mobile devices. This explains why the total data rate
under MA and EA is similar and increases slightly with
the number of devices.

5.4 Running Time and Feasibility

Fig. 8 shows the impact of the number of devices
on the average running time required by each of the
three algorithms per run. The running times required
by MA and RA increase significantly with the number
of devices. In contrast, the number of devices does not
have an obvious impact on the average running time
required by EA. The reason is that EA allocates RBs to
each device individually, while MA and RA involve a
complex search on the other devices when allocating
RBs to each device. The simulation results show that the
average running time required by EA on our experiment
platform for each resource allocation is shorter than 8.2
ms when the number of devices is smaller than 50.
Thus, EA outperforms MA and RA in terms of the time
complexity and is more applicable to resource allocation
that requires timely computation.
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Fig. 9. The percentage of feasible solutions derived by
EA under the available transmit power of 20 W.

Fig. 9 shows the impact of the number of devices
on the percentage of feasible solutions derived by EA.
The simulation results show that the percentage remains
over 99.4% when the number of devices is smaller than
42; however, the percentage drops dramatically when
the base station has to serve more than 47 devices. The
reason for the dramatic drop is that radio resources are
fixed and become insufficient for the devices’ data rate
requirements when the number of devices reaches the
critical point. A recent study on unicast video services
over LTE networks indicated that the average number
of mobile devices that a base station can serve is ap-
proximately 10, and up to 42, according to the available
bandwidth [1]. The simulation results, in conjunction
with the study, could justify that EA is applicable to
the application scenarios considered in this work. When
EA returns a solution in which some devices’ data rate
requirements cannot be satisfied, the base station’s ad-
mission control mechanism should not admit the devices
into the network. The devices could be associated to
other base stations nearby (if any) with lighter workloads
instead.

6 CONCLUDING REMARKS
In this paper, we study energy efficient downlink re-
source allocation in 4G wireless networks and develop
energy adaptive (EA) mechanisms with the objective of
minimizing the total energy consumption of mobile de-
vices for multimedia services, such as video streaming,
with fixed data rates. With energy adaption in mind, we
model the energy-efficient downlink resource allocation
problem with two respective constraints to meet mobile
devices’ data rate requirements while limiting the base
station’s transmit power. We have shown that the prob-
lem is NP-hard and then develop an heuristic algorithm
to search for energy-efficient downlink resource allo-
cation with theoretically provable performance guaran-
tee. Through extensive simulations based on real video
sequences, we have demonstrated that the algorithm
proposed based on EA objective is very effective in
reducing the energy consumption of mobile devices,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TMC.2014.2369016

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

compared with two previously known two algorithms.
We have also observed that the efficacy is more evident
when a base station serves either a larger number of
mobile devices or the devices have higher data rate
requirements.
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