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Abstract—Photo sharing is an attractive feature which popularizes Online Social Networks (OSNs). Unfortunately, it may leak users’
privacy if they are allowed to post, comment, and tag a photo freely. In this paper, we attempt to address this issue and study the
scenario when a user shares a photo containing individuals other than himself/herself (termed co-photo for short). To prevent possible
privacy leakage of a photo, we design a mechanism to enable each individual in a photo be aware of the posting activity and participate
in the decision making on the photo posting. For this purpose, we need an efficient facial recognition (FR) system that can recognize
everyone in the photo. However, more demanding privacy setting may limit the number of the photos publicly available to train the
FR system. To deal with this dilemma, our mechanism attempts to utilize users’ private photos to design a personalized FR system
specifically trained to differentiate possible photo co-owners without leaking their privacy. We also develop a distributed consensus-
based method to reduce the computational complexity and protect the private training set. We show that our system is superior to
other possible approaches in terms of recognition ratio and efficiency. Our mechanism is implemented as a proof of concept Android

application on Facebook’s platform.

Index Terms—Saocial network, photo privacy, secure multi-party computation, support vector machine, collaborative learning

1 INTRODUCTION

SNs have become integral part of our daily life

and has profoundly changed the way we interact
with each other, fulfilling our social needs-the needs
for social interactions, information sharing, appreciation
and respect. It is also this very nature of social media
that makes people put more content, including photos,
over OSNs without too much thought on the content.
However, once something, such as a photo, is posted on-
line, it becomes a permanent record, which may be used
for purposes we never expect. For example, a posted
photo in a party may reveal a connection of a celebrity
to a mafia world. Because OSN users may be careless
in posting content while the effect is so far-reaching,
privacy protection over OSNs becomes an important
issue. When more functions such as photo sharing and
tagging are added, the situation becomes more compli-
cated. For instance, nowadays we can share any photo
as we like on OSNs, regardless of whether this photo
contains other people (is a co-photo) or not. Currently
there is no restriction with sharing of co-photos, on the
contrary, social network service providers like Facebook
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are encouraging users to post co-photos and tag their
friends in order to get more people involved. However,
what if the co-owners of a photo are not willing to share
this photo? Is it a privacy violation to share this co-
photo without permission of the co-owners? Should the
co-owners have some control over the co-photos?

To answer these questions, we need to elaborate on
the privacy issues over OSNs. Traditionally, privacy is
regarded as a state of social withdrawal. According to
Altman’s privacy regulation theory [1][15], privacy is
a dialectic and dynamic boundary regulation process
where privacy is not static but “a selective control of access
to the self or to ones group”. In this theory, “dialectic”
refers to the openness and closeness of self to others
and “dynamic” means the desired privacy level changes
with time according to environment. During the process
of privacy regulation, we strive to match the achieved
privacy level to the desired one. At the optimum privacy
level, we can experience the desired confidence when
we want to hide or enjoy the desired attention when we
want to show. However, if the actual level of privacy
is greater than the desired one, we will feel lonely or
isolated; on the other hand, if the actual level of privacy
is smaller than the desired one, we will feel over-exposed
and vulnerable.

Unfortunately, on most current OSNs, users have no
control over the information appearing outside their
profile page. In [21], Thomas, Grier and Nicol examine
how the lack of joint privacy control can inadvertently
reveal sensitive information about a user. To mitigate
this threat, they suggest Facebook’s privacy model to
be adapted to achieve multi-party privacy. Specifically,
there should be a mutually acceptable privacy policy
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determining which information should be posted and
shared. To achieve this, OSN users are asked to specify
a privacy policy and a exposure policy. Privacy policy is
used to define group of users that are able to access a
photo when being the owner, while exposure policy is
used to define group of users that are able to access when
being a co-owner. These two policies will together mutu-
ally specify how a co-photo could be accessed. However,
before examining these policies, finding identities in co-
photos is the first and probably the most import step. In
the rest of this paper we will focus on a RF engine to
find identities on a co-photo.

FR problems over OSNs are easier than a regular
FR problem because the contextual information of OSN
could be utilized for FR[20]. For example, people show-
ing up together on a co-photo are very likely to be
friends on OSNSs, and thus, the FR engine could be
trained to recognize social friends (people in social circle)
specifically. Training techniques could be adapted from
the off-the-shelf FR training algorithms, but how to
get enough training samples is tricky. FR engine with
higher recognition ratio demands more training sam-
ples (photos of each specific person), but online photo
resources are often insufficient. Users care about privacy
are unlikely to put photos online. Perhaps it is exactly
those people who really want to have a photo privacy
protection scheme. To break this dilemma, we propose
a privacy-preserving distributed collaborative training
system as our FR engine. In our system, we ask each
of our users to establish a private photo set of their
own. We use these private photos to build personal FR
engines based on the specific social context and promise
that during FR training, only the discriminating rules are
revealed but nothing else.

With the training data (private photo sets) distributed
among users, this problem could be formulated as a
typical secure multi-party computation problem. Intu-
itively, we may apply cryptographic technique to protect
the private photos, but the computational and commu-
nication cost may pose a serious problem for a large
OSN. In this paper, we propose a novel consensus-
based approach to achieve efficiency and privacy at
the same time. The idea is to let each user only deal
with his/her private photo set as the local train data
and use it to learn out the local training result. After
this, local training results are exchanged among users to
form a global knowledge. In the next round, each user
learns over his/hers local data again by taking the global
knowledge as a reference. Finally the information will be
spread over users and consensus could be reached. We
show later that by performing local learning in parallel,
efficiency and privacy could be achieved at the same
time.

Comparing with previous works, our contributions are
as follows.

1) In our paper, the potential owners of shared items
(photos) can be automatically identified

with/without user-generated tags.

2) We propose to use private photos in a
privacy-preserving manner and social contexts to
derive a personal FR engine for any particular
user.

3) Orthogonal to the traditional cryptographic
solution, we propose a consensus-based method
to achieve privacy and efficiency.

The rest of this paper is organized as follows. In
Section 2, we review the related works. Section 3 presents
the formulation of our problem and the assumptions in
our study. In Section 4, we give a detailed description
of the proposed mechanism, followed by Section 5,
conducting performance analysis of the proposed mech-
anism. In Section 6, we describe our implementation on
Android platform with the Facebook SDK and the exten-
sive experiments to validate the accuracy and efficiency
of our system. Finally, Section 7 concludes the paper.

2 RELATED WORK

In [12], Mavridis et al. study the statistics of photo
sharing on social networks and propose a three realms
model: “a social realm, in which identities are entities,
and friendship a relation; second, a visual sensory realm,
of which faces are entities, and co-occurrence in images
a relation; and third, a physical realm, in which bod-
ies belong, with physical proximity being a relation.”
They show that any two realms are highly correlated.
Given information in one realm, we can give a good
estimation of the relationship of the other realm. In
[19], [20], Stone et al., for the first time, propose to use
the contextual information in the social realm and co-
photo relationship to do automatic FR. They define a
pairwise conditional random field (CRF) model to find
the optimal joint labeling by maximizing the conditional
density. Specifically, they use the existing labeled photos
as the training samples and combine the photo co-
occurrence statistics and baseline FR score to improve
the accuracy of face annotation. In [6], Choi et al. discuss
the difference between the traditional FR system and the
FR system that is designed specifically for OSNs. They
point out that a customized FR system for each user is
expected to be much more accurate in his/her own photo
collections. A similar work is done in [5], in which Choi
et al. propose to use multiple personal FR engines to
work collaboratively to improve the recognition ratio.
Specifically, they use the social context to select the suit-
able FR engines that contain the identity of the queried
face image with high probability.

While intensive research interests lie in FR engines
refined by social connections, the security and privacy
issues in OSNs also emerge as important and crucial
research topics. In [17], the privacy leakage caused by
the poor access control of shared data in Web 2.0 is
well studied. To deal with this issue, access control
schemes are proposed in [13] and [4]. In these works,
flexible access control schemes based on social contexts
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are investigated. However, in current OSNs, when post-
ing a photo, a user is not required to ask for permis-
sions of other users appearing in the photo. In [2],
Besmer and Lipford study the privacy concerns on photo
sharing and tagging features on Facebook. A survey
was conducted in [2] to study the effectiveness of the
existing countermeasure of untagging and shows that
this countermeasure is far from satisfactory: users are
worrying about offending their friends when untagging.
As a result, they provide a tool to enable users to
restrict others from seeing their photos when posted as
a complementary strategy to protect privacy. However,
this method will introduce a large number of manual
tasks for end users. In [18], Squicciarini et al. propose a
game-theoretic scheme in which the privacy policies are
collaboratively enforced over the shared data. Each user
is able to define his/her privacy policy and exposure
policy. Only when a photo is processed with owner’s
privacy policy and co-owner’s exposure policy could
it be posted. However, the co-owners of a co-photo
cannot be determined automatically, instead, potential
co-owners could only be identified by using the tagging
features on the current OSNs.

3 PROBLEM STATEMENT AND HYPOTHESES
3.1 Privacy policy and exposure policy

In this paper, we assume that each user ¢ has a privacy
policy P;(z) and a exposure policy V;(z) for a specific
photo z. The privacy policy P;(z) indicates the set of
users who can access photo = and exposure policy V;(z)
indicates the set of users who can access « when user ¢
is involved. After people on co-photo z are recognized
with our algorithm as a set Z, the set of users who follow
both the privacy policy and exposure policy could be
calculated by:

S =Pi(x) [ Vilx) (1)

kel

We assume that our users have defined their privacy
policy and exposure policy and these policies are mod-
ifiable. The exposure policy is treated as a private data
that shall not be revealed, and a secure set intersection
protocol [11] is used to find the access policy S in 1.
After the access policy S is established, the co-photo z
will be shared with users in S.

3.2 FR with social contexts

An FR engine for a large-scale social network may
require discriminating millions of individuals. It seems
to be a daunting task that could never be accomplished.
However, when we decompose it into several personal
FR engines, the situation will change for better. Social
contexts contains a large amount of useful informa-
tion which could be utilized as a priori knowledge to
help the facial recognition[19]. In [12], Mavridis, Kazmi
and Toulis develop a three-realm model to study facial

Fig. 1: A friendship graph in visual sensory realm

recognition problems on OSN photos. The three realms
include a social realm, in which identities are entities,
and friendship a relation; a visual sensory realm, of
which faces are entities and occurrence in images a
relation; and a physical realm, in which bodies belong,
with physical proximity being a relation. It is shown
that the relationship in the social realm and physical
realm are highly correlated with the relationship in the
visual sensory realm. In this manner, we can use the
social context to construct a priori distribution P; over
the identities on the co-photos for user ¢. With this priori
distribution, while trying to recognize people on the co-
photos, the FR engine could focus on a small portion
of “close” friends (friends who are geographically close
and interacting frequently with user 7).

Fig.1 shows a relational graph in the visual sensory
realm. We assume that for user i, we can define a thresh-
old on the priori distribution P; to get a small group of
identities consisting of i and his one-hop neighbors (e.g.,
close friends), denoted as the neighborhood B;. Then our
goal for the personal FR at user ¢ is to differentiate users
in B;. For example, in Fig.1, if Bob has a co-photo, we
assume that users appear in the photo are among the set
of {Divid, Eve, Tom, Bob}.

3.3 FR system

We assume that user; has a photo set of size N, of
himself/herself as his/her private training samples (say,
stored on his/her own device such as smart phone).
From the private photo set, a user detects and extracts
the faces on each photo with the standard face detection
method [23]. For each face, a vector of size p is extracted
as the feature vector. Then, for user ¢, his/her private
training set could be written as x; of size N; x p. In
the rest of this paper, we use one record and one photo
interchangeably to refer one row in x;.

With the private training set, each user will have a
personal FR engine to identify his/her one-hop neigh-
bors. The personal FR can be constructed as a multi-class
classification system, where each class is corresponding
to one user (himself/herself or one friend). In the rest
of this paper, we use one class interchangeably with the
appearance of one user. In the realm of machine learning,
usually a multi-class classification system is constructed
by combining several binary classifiers together with the
one of the following strategies[7]:

o One-against-all method uses winner-take-all strat-
egy. It constructs n binary classifiers for each of
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n classes. The goal of each binary classifier is to
distinguish one class from the rest with a deci-
sion function. Hence, the ith decision function f;
is trained by taking records from user i as positive
samples and the records from all the other users
as the negative samples. When a testing record x
comes, if f; concludes that it belongs to class i, x is
labeled as class i.

o One-against-one method uses max-voting-win
strategy. It constructs n(n — 1)/2 binary classifiers,
in which each classifier is aimed to distinguish two
classes. The idea is that if we can distinguish any
two classes, then we can identify any of them.
Hence, classifier u;; is constructed by taking records
from ¢ as positive samples and records from j as
negative ones. Later on when we are trying to
identify a test record z, if u;; concludes that z is in
class i, then the vote of class i is added by one. After
testing all the n(n — 1)/2 classifiers, z is assigned to
the class with the largest voting value.

However, no matter which method we use, it requires
a centralized node to access all the training samples
from each class, which is conflicting with our promise
that the private training samples will not be disclosed
during the whole process. In the rest of this paper we
will focus on how to build the personal FR engines
without disclosing the private photo sets. Notice that
the identification criterion could be asymmetric between
different personal FR engines, which means that the way
how David finds out Bob and how Bob finds out David
are not the same as shown in Fig. 1. The reason is that,
for Bob, his personal FR engine only knows how to find
out David from the candidate set ("suspects” for short)
of {Bob, David, Eve, Tom}, while for David, his personal
FR only knows how to find out Bob from the suspects of
{Alice, Bob, David, Tom}. In other words, with different
friend sets (friendship graph) at each node, the personal
FR engines are trained with different negative training
samples.

4 SYSTEM OVERVIEW

In this section, we present the detailed description of our
system. Generally speaking, the consensus result could
be achieve by iteratively refining the local training re-
sult: firstly, each user performs local supervised learning
only with its own training set, then the local results
are exchanged among collaborators to form a global
knowledge. In the next round, the global knowledge is
used to regularize the local training until convergence. In
this section, firstly, we use a toy system with two users
to demonstrate the principle of our design. Then, we
discuss how to build a general personal FR with more
than two users. Finally, we discuss the scalability of our
design at the large scale of OSNSs.

4.1 A toy system

Suppose there are only two users user; and user, with
private training data z; and x2. In order to distinguish

them, we only need to find a binary decision function
f(-). When a probing sample = comes, if f(z) > 0,
x belongs to user; and vice versa. In this paper, the
decision function is determined by the support vector
machine as f(z) = K(w,z) + b, where K(-,-) is the
kernel function and we use linear kernel for the ease of
presentation. For the training samples x; of size N; x p,
where N; is the number of training samples, and p is the
number of features in each training sample. Denote u as
u = [w,b] of size (p+1) x1, X; as X; = [x;,1] of size
N; x (p+1) and Y; is a N; x N; diagonal matrix indicating
class labels of samples in X; on its diagonal elements.
Let X, denote the positive sample set, X, the negative
sample set and a diagonal matrix II is constructed as
a(p+1) x(p+ 1) diagonal matrix with II(é,4) = 1 for
i=1,2,...,pand II(p+1,p+ 1) = 0. Then, the decision
function f(-) can be obtained by solving the following
problem:

1 T
i —u' II C C
wein o pu Tt €]l + Cll&2]|

s.t. Y1X1U Z 1-— 51, (2)
YoXou >1—&.

In problem (2), by minimizing 1u”Tu, we find u that
maximizes the margin between the positive and negative
training set. The constraints are used to ensure that the
decision function satisfies the training set. ¢; is a set
of slack variables in case the training samples are not
separable. If a certain positive sample X;;, cannot make
Xiru > 1, a positive slack variable &;; is assigned so
that Xq,u > 1 — &,. Meanwhile, a penalty of C¢y, is
assigned to the objective function, where C is the user-
chosen penalty parameter and vice versa for the negative
samples. Notice that the constraints are private training
data which are not available for a centralized SVM
solver. Our approach is to split (2) into two subproblems
with their own constraints and an additional constraint
U1 = Ug as:

1
T T+ Clé|

16120
st ViXius > 1— &,
Uy = Usg, (3a)
uz‘rgizgo iugHuQ + C||&|
st. YoXous > 1 — &,
uy = us. (3b)

We can easily show that problem (3) is an identical
transformation of problem (2) by substituting v = u; =
ug and putting together the constraints[8]. Problem (3a)
and (3b) could be assigned to user; and usery accord-
ingly and be solved by alternatively optimize u; and
ug. u} and ub might be very different at the first few
iterations, however, they will slowly reach the consensus
as t grows.
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To solve this problem, firstly, we need to find the
augmented Lagrange function with the Language mul-
tipliers of {\;} and {«;} as:

L({ui}, {Ai}, {ei}) = Z wl T + > o (u; — uy)
i=1,2 1,j=1,2
P
*E:AﬂEprﬂ%fﬁ+'Z:§Wmwa-
i=1,2 1,j=1,2
@)

In Eq. (4), we omit the Language multipliers of the
slack variables, which can be canceled out in the Wolfe
dual problem. Here, 4| u; — u;||* is the regularization
term, which has two roles: (1) It eliminates the condition
that £ is differentiable such that the solution converges
under far more general conditions. (2) By adjusting the
parameter of p, we can trade off the speed of conver-
gence for better steady-state approximation[8].

L could then be minimized in a cyclic fashion: at each
iteration, £ is minimized with respect to one variable
while keeping all other variables fixed. According to
Alternating Direction Method of Multipliers (ADMM)[3],
update of the variables at each iteration ¢ + 1 could be
summarized as follows,

up Tt = argmin £(u;, {ufi}, (A} {a});

t+1 Lt ©®)
a; " =ai + ply u;).

In (5), u; is calculated through the Wolfe dual problem.
User i is could compute u}"" locally, because it is only
related to X;, Y;, Al and u§ but have nothing to do with
X; and Yj. This data isolation property is the essence
of our secure collaborative learning model and the de-
tailed security analysis will be presented in Section 5).
With KKT conditions and Wolfe dual, detailed iterative
updates are listed in Eq. (6).

AT = argmax {-A]Y; X, (I + 4pI) ' X[ Y\
1+ 2Y; X (T + 4pI) (o — o — 2pul)] "\ }
uith = 21+ 4pD) T X YVIXT! — (af — af) + 2puf]
ol = a4 pult — ),
(6)

Generally, the proposed distributed training scheme
of a toy system could be summarized in Algorithm 1.
In this Algorithm, u;; = F(X;, X;) is the computation
of classifier u;; with X; as positive training samples and
X; as negative training samples. qd(A, B) is a standard
quadratic programming solver that gives the optimal
solution of max{—12" Az + BTz}, and notice that we
omit the constraint of 0 < A < C for brevity. threshold
is the user-defined stopping criteria, a larger threshold
results with fewer iterations while a larger discrepancy
between u; and u;. Theorem 4.1 asserts the convergence
of Algorithm 1.

Theorem 4.1: By following Algorithm 1, the resulting
u;; will converge to the feasible solution u of problem
(2) after a certain number of iterations.

Algorithm 1: Iterative Method to Compute u;;

Input: Positive samples X;, Negative samples X
Output: The classifier u;;(-)

w0 b a0
Initial A, uY, uj, a5, o

; as vectors of all zeros;
A=2X,(I +4pI) ' XT;
fort=0,1, 2. do
B=1+2X;(I + 4pI)~
)\t“ = qd(4, B);
= (I1 + 4pI) L [XT AL —
1f |utJrl ul| <threshold then
break;
else
t+1 =al + pu t+1 _
send ut+1 and at“
request u}*! and o
end
end
return u!";

Yaf — af —2pul);

(af —al) + 2pul];

§_+1);

to user j;
1 from user j;

Proof: For the toy system, problem (2) could be
written in a general form as follows:

min Fy(up) + Fo(us)

s.t. Aui = uo, )
uy € 81, U € 82.

In problem (7), Fi(-) is the local problem for user; and
F5(-) is the local problem for users. A is an identity
matrix to ensure that u; = wug. It is proved in [8] and
[3] that the convergence of problem (7) is guaranteed as
long as one of the following two conditions is true: S;
is bounded; or AT A is nonsingular. In our scheme, A is
an identity matrix, hence, u; and ug will converge to the
same optimal value. O

4.2 OSNs with social contexts

In the previous subsection, we show how to build a
binary classifier in a toy system with two users. When
considering the practical scenario, each user may have
more than one friend, and thus multi-class classifiers
are required. Generally speaking, a multi-class classi-
fier is achieved by using one of the two strategies to
combine several binary classifiers: one-against-all and
one-against-one. In this section, we analyze their perfor-
mance and present mechanisms with the proper strategy.

4.2.1 Two strategies and classifier reuse

First, let us introduce some notations: we denote user i
as the initiator when X, is used as the positive training
samples and user j as the cooperator when X; is used
as negative samples. We denote a node i in friendship
graph and its one-hop neighbors as ;: the neighborhood
of i. A personal FR engine for user i should be trained to
distinguish users in B;. We use a node i on the friendship
graph interchangeably with user .

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record isavailable at http://dx.doi.org/10.1109/TDSC.2015.2443795

pav=
Guf'w‘ ﬁv’) Ko,
s

=

N (97

(a) In the neighborhood of David

O
Alice @ —

‘David Vév’ " /\
&

(b) In the neighborhood of Bob

Fig. 2: A one-hop neighbor could also be a two-hop
neighbor

For the strategy of one-against-all, each user j in 5;
are associated with a binary classifier f;(-) by making j
initiator and {k € B;,k # j} cooperators. Denote D; the
degree of user i, there will be D; + 1 classifiers and each
classifier involves D; + 1 users. The cost to build one
classifier is hence O(n7,D), where O(n) is the cost of
local SVM training with n training items, 7, is number
of iterations to converge and D is the average degree
for a node in friendship graph. Hence, total cost in one
neighborhood is O (n“7,D?).

For the strategy of one-against-one, D(D + 1) toy
systems need to be trained. The cost for each toy system
with 2 users is O(n°T,), where O(n¢) is the cost of local
SVM training with n training items, 7, is number of iter-
ations to converge. Hence, total cost in one neighborhood
is O(n°7,D?).

Comparing these two strategies, we can see that the
only difference is the term of 7, and 7,, average number
of iterations needed to converge for systems with D
users and 2 users, respectively. Intuitively, 7, should be
much smaller than 7,, because less data is considered.
Another factor makes one-against-one strategy appear-
ing is that we could reuse classifiers among mutual
friends. For example, in Fig. 2, Tom, Bob and David are
mutual friends. When working in David’s neighborhood,
we need to build classifier of {Tom, Bob} and later on,
when working in Bob’s neighborhood, we need to build
another classifier of {Tom, Bob}. We know that these two
classifiers are identical and hence could be reused. The
factor of classifier reuse is highly depend on number of
complete subgraphs, which seems to be very common
over OSNs. According to the data research team from
Facebook, the degrees of separation on Facebook is 3.74,
meaning that the average distance between any two
people is only 3.74 hops on friendship graph. This means
friendship graph contains large numbers of complete
subgraphs. In comparison, classifiers cannot be reused
in the one-against-all strategy because they are trained
with different cooperators. The procedure to establish

classifiers considering classifier reuse is summarized in
Algorithm 2.

Algorithm 2: Classifier Computation Algorithm

Initial as C; = 0,Vi € N ;
for i € M do
for j € B, do
if Ui {@ Cz then
ui; = F(Xi, X;);

Uji = —Uij;
Ci = {wij, Ci}; Cj = {u;,Cs};
end
end
end
for i ¢ N do

fork,jeB; || k#j do
if U5 ,:Q_ Ck then
ukj = F(Xk,Xj),'
else
Request ;) from user j;
end
Ci = {u;r,Ci};
end
end

According to Algorithm 2, there are two steps to build
classifiers for each neighborhood: firstly find classifiers
of {self, friend} for each node, then find classifiers of
{friend, friend}. Notice that the second step is tricky,
because the friend list of the neighborhood owner could
be revealed to all his/her friends. On the other hand,
friends may not know how to communicate with each
other. For this consideration, when building classifiers
of {friend, friend}, all the local training results are
send to the neighborhood owner, who will coordinate
the collaborative training processes by forwarding local
training results to right collaborators. In this manner,
friends need not to know who they are working with
and how to talk with them.

4.2.2 Stranger detection

When Algorithm 2 is done, user i is able to differentiate
all his friend with classifiers in C;. The only thing remains
to assemble binary classifiers to be a multi-class classifier.
In this paper, we construct a decision tree by arrang-
ing binary classifiers similarly to the DAGSVM[16]. In
the original DAGSVM, the tree nodes contains binary
classifiers. Decisions of left or right is made based on
output of the tree nodes and class labels are stored at leaf
nodes. But a limitation of DAGSVM is that it is based
on a strong assumption: users on a co-photo are friends, in
other words, DAGSVM will always classify = to be one
of the friends. In reality, this is not the case, we should be
prepared of strangers. For example, Bob has a co-photo
with him and Alice at a popular attraction spot. It is
very likely that random people could be captured in the

Copyright (c) 2015 |IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Thisisthe author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record isavailable at http://dx.doi.org/10.1109/TDSC.2015.2443795

Fig. 3: Improved decision tree

photo. False positive errors could be generated if we try
to classify random people as if we know them.

However, detection of strangers (or outliers) is a well-
known difficult problem, because there is no such a class
of stranger has been involved in training. Intuitively,
this stranger class includes everyone other than these
in a certain neighborhood. It requires tons of training
samples to construct such a all-embracing class and we
simply cannot afford to it. However, we observed that
a photo of a stranger could make the binary classifiers
to output contradictory decisions. For example, in Fig.3,
a test sample = of Alice cannot make fap(z) > 0 and
fra(z) > 0 at the same, otherwise, = belongs to Alice
and doesn’t belongs to Alice at the same time. Basically,
we propose a stranger rejection mechanism based on
the following two assumptions: (1) If a certain class
participates in the training process, its probing samples
never generate contradictory decisions. (2) If a certain class
does not participate in the training process, its probing
samples will make the classifiers to output unpredictable
decisions and may result with contradictory decisions.

Fig.3 illustrate how DAGSVM is extended to capture
contradictory decisions by adding more tree nodes. In this
extended decision tree, if a probing sample passes all
the classifiers of one class, it is assigned to this class,
otherwise, it is classified to be a stranger. Theorem 4.2
states correctness of this design.

Theorem 4.2: Assuming a probing sample z is
traveling through the DAG decision tree and gets the
destination class i, then the only possible class for x to
pass all its tests is i.

Proof: The DAG decision tree is based on the exclu-
sive method. Each tree node test will rule out a wrong
class. Then, at the leaf node, only one possible class
remains. If a sample z exists such that the DAG decision
is ¢ while it could pass all the tests of class j, we will
get the conflicting result that f;;(z) > 0 and f;;(z) < 0.
Hence, the only possible class of  is the DAG decision
class 1. O

Notice that the proposed stranger detection scheme
brings trivial extra storage cost and computation cost to
travel through the tree, which are still O(D?) and O(D),
respectively.

4.3 Scalability

To make our system design scalable, we need to consider
the following two cases: (1) The private photo set X; and
the corresponding labels Y; may change over time as X/
and Y. This happens when the appearance of user i has
changed, or the photos in the training set are modified
(adding new images or deleting existing images). (2) The
friendship graph may change over time. For example,
when a user moves to another city for work or study,
new friends should be added to friendship graph.

For the first case, when X; is changing, then all the
classifiers related to X; in Algorithm 2 should change.
We can modify the iterations in (6) as

M = argmax {—N Y/ T XD+ 4pl) 7P XYL,
+ [+ 2V XTI+ 4pI) 7 (af — of — 2puf)]T A}

uftt = 2(I + 4pI) YT XTI — (af — o) + 2pul]

ottt ALY

= a; + p(y j

®)

In Eq.(8), the private training set X; now is a variable
over time. At each iteration ¢, local training results are
calculated with the current training set X!. Intuitively,
the training set X; varies in a much slower rate than
the iterative updates of parameters. In other words,
we assume that X; remain invariant across a sufficient
number of iterations, during which the resulting u;; will
closely track the optimal classifier between the training
sets.

If the social circle of a user is changed, his/her per-
sonal FR engine should also be modified. If this modifi-
cation is made by adding a new friend, new classifiers
should be computed or reused by following Algorithm.
2. After that, the existing decision tree could be extended
by adding tree nodes with these new classifiers. If the
modification is generated by removing the friendship,
one just need to remove all the corresponding classifiers
and reassemble his/her decision tree.

5 PERFORMANCE ANALYSIS

In this section, we present the performance analysis
of our scheme. In the first subsection, we analyze the
computational complexity of our FR system and compar-
isons with other two possible approaches. In the second
subsection, the detailed privacy analysis is presented.

5.1

In this subsection, we describe the expected computa-
tional complexity of three approaches: centralized so-
lution, one-against-all strategy and our approach. The
notations involved are: N is the number nodes and D
is the average degree of friendship graph, n and p are
parameters of private training data X, denote number
of training records and length of each training record,

respectively.
o Centralized approach has a centralized FR engine
in charge of recognizing all users over a large OSN.

Benefits of our design
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To protect the training photos, a privacy-preserving
SVM training method [25] is used. In this approach,
Yu et al. use secure dot product protocols [9] to
evaluate kernel matrix of SVM. The computational
cost for the secure dot product protocol based on
homomorphic encryption is O(plogm), where m is
the value of the exponent. SVM kernel matrix is
composed of (Nn)? dot products, hence the total
cost is O(Nt'nf) + O(N3n?plogm), where € is a
factor between 2 and 3.

o One-against-all approach decompose the friend-
ship graph and use our proposed consensus-based
training method to perform collaborative training.
As we discussed in the previous section, at each
iteration, local SVM problem only deals with a
training set of size n x p. Hence, computational cost
is O(7a(n + n?p)) ~ O(n72c). There are D? local
training problems to find D classifiers for one neigh-
borhood. Hence the total cost for /N neighborhoods
is O(ND*T,n°).

o One-against-one: The analysis of this approach is
similar to the one-against-all approach, except that
the average rounds in one training process should
be much less, due to the fact that there are only two
participants instead of D + 1 ones. If we consider
the complete subgraph in the friendship graph, the
expected cost should be less than O(ND?T,n¢).

A theoretical comparison of the three approaches are
listed in Table. 1. We can see that the distributed so-
lutions with context information can greatly reduce the
computation. Meanwhile, among the two distributed
approaches, the proposed approach should be much
more efficient than using the one-against-all approach.
In Section 6, we will further demonstrate one-against-
one strategy is much more efficient than one-against-all
strategy with numerical results.

complexity Privacy- Stranger
preserving | detection
Centralized O(N<t1ne) v X
OVA O(ND2Tan®) v X
Our approach | O(ND?Tone) v v

TABLE 1: Theoretical comparison of the three
approaches

5.2 Security analysis

In this paper, private information of a user is considered
as his/hers privacy and exposure policies; friend list
and the private training data set X,. In the rest of this
subsection, we show how these private information are
protected from a semi-honest adversary.

Privacy and exposure policies: In 1, access policy of
x is determined by the intersection of owner’s privacy
policy and co-owners’ exposure policy. In [10], Kissner
and Song proposed privacy-preserving set operations in-
cluding set intersection by employing the mathematical

properties of polynomials. We can directly adopt their
scheme to find the access policy S.

Friend list: Basically, in our proposed one-against-one
strategy a user needs to establish classifiers between
{self, friend} and {friend, friend} also known as the two
loops in Algorithm. 2. During the first loop, there is no
privacy concerns of Alice’s friend list because friendship
graph is undirected. However, in the second loop, Alice
need to coordinate all her friends to build classifiers
between them. According to our protocol, her friends
only communicate with her and they have no idea of
what they are computing for.

Friend list could also be revealed during the classifier
reuse stage. For example, suppose Alice want to find
up: between Bob and Tom, which has already been
computed by Bob. Alice will first query user k to see
if uy; has already been computed. If this query is made
in plaintext, Bob immediately knows Alice and Bob are
friends. To address this problem, Alice will first make
a list for desired classifiers use private set operations in
[10] to query against her neighbors’ classifiers lists one
by one. Classifiers in the intersection part will be reused.
Notice that even with this protection, mutual friends
between Alice and Bob are still revealed to Bob, this
is the trade-off we made for classifiers reuse. Actually,
OSNs like Facebook shows mutual friends anyway and
there is no such privacy setting as “hide mutual friends”.

Private training sets: We assume that Alice and Bob in
a toy system are semi-honest. They will follow the pro-
tocol but are so curious that they store all the exchanged
data and try to trace back others” private training sets.
The analysis is done on behalf of Alice (Alice stores all
the data and tries to find the private photo set of Bob
X3) and the analysis for Bob is similar. To show the
private training sets are secure, we only need to show
that during the 7, rounds of parameter exchanges, an
adversary cannot reverse engineer X of the other user.
After 7, rounds of parameter exchange, information
available to Alice is {u}, )}, for t = 1...7,. Her goal is
to find an Ny x (p+ 1) matrix X, with N, x p unknowns.
Alice is familiar with the training mechanism and she
knows that the parameters at hand have the relationship
as follows:

A=2X,ctX], )

XEN = cul +d, (10)

B =1+ Xyc !4, (11)
1

A=arg min  =ATAN+ BT\ (12)
0<A<g 2

where ¢ = 2(Il + 4pI)~!, d = of — ol — 2pul could
be computed accordingly for each iteration. Notice that
the value of A comes from the quadratic optimization
problem (12), in which A is a fixed matrix determined
by X;, B is changing by iterations. We need to show
that, with multiple {B,u,} tuples, Alice cannot get any
information of Xj. To solve the quadratic optimization
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problem (12), we need to first find its Lagrange function:

L= %)\TAA +BTA+7T(\ - %) v, (13)

where 7 and v are Lagrange multipliers. The solution
of problem (12) could be obtained through the KKT
conditions:

—AN—7+v=B" (14)
(A — %) =0 (15)
vIA=0 (16)
ogAgg,umzo.
With (9) and (10), (14) can be written as
~Xy(c-up+d)—7+v=B. (17)

If the parameters {c,u},d, B, 7,v} are known to Alice,
she can get N, equations, one for each training sample
at Bob. With more than p iterations, she should be able to
recover X;, by having enough equations to find out N, xp
unknowns. However, the Lagrange multipliers 7 and v
are calculated when Bob is trying to solve problem (12)
at each iteration and he will not reveal these parameters
to Alice. 7 and v are easy to compute for Bob with matrix
A, but it is hard to make a reasonable guess for Alice.
In this way, at each iteration, by revealing [V, equations,
2N, unknowns are introduced. Alice could never have
enough equations to find out X,.

From another point of view, the information available
to Alice is that support vectors of Bob are sitting on a p
dimension hyperplane (up). One support vector could be
found by intersecting p such hyperplanes. However, Bob
will never tell Alice which hyperplane contain which
support vectors, hence, Alice could not form the proper
linear equations to solve a support vector. For these non-
support vector training samples, the only information
for Alice is that those samples are laying on the opposite
side of the hyperplane, Alice have no clue of where they
are.

6 EVALUATION

Our system is evaluated with two criteria: network-wide
performance and facial recognition performance. The
former is used to capture the real-world performance of
our design on large-scale OSNs in terms of computation
cost, while the latter is an important factor for the
user experience. In this section, we will describe our
Android implementation first and then the experiments
to evaluate these two criteria.

6.1

Our prototype application is implemented on Google
Nexus 7 tablets with Android 4.2 Jelly Bean (API level
17) and Facebook SDK. We use OpenCV Library 2.4.6
to carry out the face detection and Eigenface method to

Implementation
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Fig. 4: System structure of our application
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carry out the FR. Fig.4 shows the graphical user interface
(GUI). A log in/out button could be used for log in/out
with Facebook. After logging in, a greeting message and
the profile picture will be shown. Our prototype works
in three modes: a setup mode, a sleeping mode and a
working mode.

Running in the setup mode, the program is working
towards the establishment of the decision tree. For this
purpose, the private training set X; and neighborhood
B; need to be specified. X; could be specified by the
user with the button “Private training set”. When it is
pressed, photos in the smart phone galleries could be
selected and added to X;. To setup the neighborhood 5;,
at this stage, a user needs to manually specify the set of
“close friends” among their Facebook friends with the
button “Pick friends” as their neighborhood. According
to the Facebook statistics, on average a user has 130
friends, we assume only a small portion of them are
“close friends”. In our application, each user picks up
to 30 “close friends”. Notice that all the selected friends
are required to install our application to carry out the
collaborative training. With X, and B; specified, the
setup mode could be activated by pressing the button
“Start”. Key operations and the data flow in this mode
are enclosed by a yellow dashed box on the system
architecture Fig.4.

During the training process, a socket is established
exchange local training results. After the classifiers are
obtained, decision tree is constructed and the program
switches from the setup mode to the sleeping mode.
Facebook allows us to create a list of friends such as
“close friends” or “Acquaintances”. We can share a
photo only to friends on list. According to the proposed
scheme, this friend list should be intersection of owner’s
privacy policy and co-owners’ exposure policies. How-
ever, in Facebook API, friend lists are read-only items,
they cannot be created or updated through the current
API. That means we cannot customize a friend list
to share a co-photo. Currently, when the button “Post
Photo” is pressed, co-owners of x are identified, then
notifications along with z are send to the co-owners to
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request permissions. If they all agree to post =, x will be
shared on the owner’s page like a normal photo. In this
sense, users could specify their privacy policy but their
exposure policies are either everybody on earth or nobody
depending on their attitude toward z. The data flow for
a photo posting activity is illustrated by the solid red
arrows. After the requests are sent out, the program will
go back to the sleeping mode. If X; or B; is modified,
the program will be invoked to the setup mode. In this
case, the operations in the yellow dashed box will be
performed again and decision tree will be updated.

6.2 Network-wide performance

At this stage, a large number of users are absent for
us to carry out the network-wide evaluation. We sim-
ulate a real-life social network with the small-world
network[24]. The simulations are conducted on a desk-
top with Intel i3 550 3.4 GHz and 4.0 GB memory. We
use the database of “Face Recognition Data, University
of Essex, UK” to assign training set for each simulated
users. The database contains photos for 395 individuals
and 20 images per individual with varying poses and
facial expressions. Users are assigned with photos from
the same individual randomly.

In a small world network, there are three input pa-
rameters: the total number of vertex N, the average
node degree D and rewire probability p. In the rest of
this section, we use D and the number of neighbors
interchangeably to denote the average number of users
in one’s neighborhood. To construct a small-world net-
work, first we arrange the vertices and connect them in
a ring. Then we connect every vertex with its D nearest
neighbors. Finally, for each vertex, with probability p, its
existing edge is rewired with another randomly selected
vertex. It is shown in [14] that the rewire probability
is highly related to the geodesic distance (the average
shortest distance between any two vertices). We want
to show that in a small-world network, there exist a
lot of complete subgraphs, which greatly reduces the
setup time by reusing the existing classifiers. Due to
resource limitations, we simulate on a network with 3000
vertices. The the computation cost is measured by total
computation time.

Fig.5 and Fig.7 plot our simulation results in a network
of 3000 nodes with a fixed rewire probability of 0.3 and
a varying D from 6 to 18. Specifically, as in Fig.5, the
one-against-all (OVA) approach and our proposed one-
against-one (OVO) approach are compared in terms of
total computation cost. We can see that the computation
cost of the proposed OVO approach is much lower
and the efficiency gain is increasing with number of
neighbors. In the previous section, we argued that this
phenomenon is caused by two reasons: first, the average
number of iterations to converge in our OVO approach
should be much smaller; second, the classifiers could be
reused with the existence of complete subgraphs.

Fig.6 illustrates the results for the computation cost

10

Total training time
Efficiency gain

6 8 10 12 14 16 18
Number of neighbors
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and the average number of iterations, which are increas-
ing with the number of participants. In this simulation,
each user has 20 training samples and each sample is
a vector of 20 features. The stopping criteria is set to
be 5%, which means the algorithm will return w; if its
variation is less than 5% between two adjacent iterations.
On the one hand, we can see from Fig.6 that for 2 users,
it only takes less than 5 iterations to converge, while
for 30 users, it takes more than 30 iterations. Moreover,
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for 30 users, each iteration involves 30 users, both the
computation and communication cost are much higher
than the case where there are only 2 users. As a result,
the training time in total for 30 users is 100 times more
than that for 2 users.

The probability of classifier reuse is studied in Fig.7, in
which we plot the probability of reuse together against
the average shortest distance. By reusing a classifier, we
mean that when user ¢ and user j attempt to compute
a classifier u;;, instead of conducting the iterative algo-
rithm immediately, they first try to look up at the local
table. If u;; exists in the table, this classifier could be
reused. Fig.7 shows that with a small average shortest
distance, the reuse probability is high because a smaller
distance between vertices means the vertices are “well
connected”, in which a complete subgraph is more likely
to exist.

6.3 Facial recognition performance

In this subsection, we study the recognition ratio against
the number of friends and the number of strangers. Stan-
dard face detection in [23] is used for face detection and
eigenface [22] is used to extract features and vectorize the
training image. However, the standard eigenface method
is a centralized approach, it may not be applicable to our
distributed case. To address this, we assume principle
components have already been extract to form a vector
space S. User’s facial photos are projected into this
space as feature vectors. Based on our simulation results,
we find that this modification is reasonable due to the
fact that the important features on human face lie on
only a few directions. Facial feature extraction is beyond
the scope of this paper. Better facial feature extraction
method can be applied to our system to obtain a better
recognition ratio.

In Fig.8, we show the recognition ratios of our pro-
posed scheme and the scheme with DAG decision tree.
As in Fig.8(a), when there are no strangers, both our
proposed scheme and the DAG scheme could achieve
very high recognition ratio of more than 80% when the
number of users is fewer than 30. While in Fig.8(b),
among the users, 10% of them are strangers, we can see
that the recognition ratio of our scheme has a higher
recognition ratio than the DAG scheme by 5%. The
reason is that our scheme is able to reject strangers.
The solid line on each figure represents recognition ratio
of strangers p,, which is increasing with number of
users. Intuitively, if there are more users, there will
be more classifiers and the chance that a stranger gets
contradictory decisions will be higher. Fig.8(c) shows a
similar case where there are 30% strangers. In this case,
our scheme outperforms the DAG scheme by 10% in
terms of recognition ratio. This is achieved by the ability
of identifying strangers. With 30 users, the probability of
identifying a stranger is around 35%.

Another criterion to measure the performance is the
false positive rate. In the previous section we argued
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that a false positive recognition will reveal the test image
to the wrong person. Thus, a low false positive rate is
desirable. If there are no strangers, the false positive rate
is only determined by the recognition accuracy. If there
are strangers, the false positive is also determined by
misclassification of the strangers. Fig. 9 illustrates both
false positive rate and false negative rate of our scheme
and the DAG scheme. We observe that false positive rate
of our scheme is 10% lower than original DAG scheme
on average. Notice that false negative recognitions could
also be introduced by our stranger detection scheme,
according to Fig. 9, the more users, the higher chance
a user is recognized as a stranger.

7 CONCLUSION AND DISCUSSION

Photo sharing is one of the most popular features in
online social networks such as Facebook. Unfortunately,
careless photo posting may reveal privacy of individuals
in a posted photo. To curb the privacy leakage, we
proposed to enable individuals potentially in a photo
to give the permissions before posting a co-photo. We
designed a privacy-preserving FR system to identify
individuals in a co-photo. The proposed system is fea-
tured with low computation cost and confidentiality of
the training set. Theoretical analysis and experiments
were conducted to show effectiveness and efficiency
of the proposed scheme. We expect that our proposed
scheme be very useful in protecting users’ privacy in
photo/image sharing over online social networks. How-
ever, there always exist trade-off between privacy and
utility. For example, in our current Android application,
the co-photo could only be post with permission of all
the co-owners. Latency introduced in this process will
greatly impact user experience of OSNs. More over, local
FR training will drain battery quickly. Our future work
could be how to move the proposed training schemes to
personal clouds like Dropbox and/or icloud.
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