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Abstract Providing anonymous communications in

mobile ad hoc networks (MANETs) is an effective coun-

termeasure against malicious traffic analysis. This paper

presents AOS, an Anonymous Overlay System for MA-

NETs, which provides provably strong source and desti-

nation anonymity under a rather strong adversary model.

AOS differs significantly from previous anonymous com-

munication systems for MANETs mainly in three aspects.

First, AOS is an overlay system independent of the

underlying MANET protocol stack. Second, AOS resolves

the conflict between anonymous communications and

secure routing in MANETs and enables providing both at

the same time. Last but not least, AOS can satisfy diverse

anonymity requirements with different communication and

computation overhead. AOS is the first system of its kind,

and its efficacy and efficiency are confirmed by detailed

qualitative and quantitative analysis.

Keywords Ad hoc networks � Anonymous

communication � Onion routing � Overlay

1 Introduction

The inherent broadcast nature of mobile ad hoc networks

(MANETs) facilitates adversarial eavesdropping on data

transmissions. In particular, an attacker can surreptitiously

intercept all the packets within the reception range of his

radio transceiver without causing attention. If there are

multiple attackers with powerful enough transceivers, they

may collaboratively record all the packets sent anytime,

anywhere in the network. A packet consists of a header and

a payload part. Packet payloads can be encrypted to pre-

vent attackers from knowing the information carried in

intercepted packets, while packet headers have to be left in

clear to enable multi-hop routing. Attackers thus can learn

packet sources and destinations in packet headers. One may

consider letting neighboring nodes establish pairwise link-

layer keys whereby to encrypt packet sources and desti-

nations. This countermeasure, however, fails in the pres-

ence of compromised nodes.

The ability of attackers to infer real packet sources and

destinations enables traffic analysis [1] run to infer the net-

work traffic pattern and its changes. A network traffic pattern

consists of triplets hsource, destination, average ratei, each

describing one flow [2]. In a tactical military MANET, an

abnormal change of the network traffic pattern may indicate

a forthcoming action, a chain of commands, or a state change

of network alertness [3]. Its disclosure to attackers may thus

lead to the failure of urgent military actions. In addition, in

many cases packet sources are VIP nodes such as captains,

while packet destinations are nodes commanded to carry out

certain critical operations. If noticing that some nodes often

act as packet source or destinations, attackers may consider

these nodes important and launch pinpoint attacks on them.

Providing communication anonymity has long been

recognized as an effective defense against traffic analysis
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[4–6]. As discussed in [5], communication anonymity has

two essential requirements, source anonymity and desti-

nation anonymity, which indicate the impossibility to

identify the source and the destination of any given packet,

respectively. Another often-mentioned anonymity require-

ment is relationship anonymity, which means that it is

untraceable who communicates with whom. It is weaker

than and can be derived from each of source and destina-

tion anonymity [7]. Traffic analysis can obviously be

thwarted in an anonymous communication system, as

attackers can no longer ascertain true sources and desti-

nations of intercepted packets.

Tremendous efforts (e.g., [8–21]) have been made on

anonymous communication in MANETs, but many chal-

lenges still remain to be tackled. First of all, previous

solutions all employ a distinct, non-standard routing pro-

tocol specifically tailored for anonymous communication.

This makes it impossible to harness the advance in non-

anonymous MANET routing protocols that focus on opti-

mizing routing efficiency. Second, as a consequence of

providing communication anonymity at the network layer,

none of previous solutions are compatible with the non-

repudiation requirement of a secure MANET routing pro-

tocol, thus vulnerable to various routing attacks such as

wormhole [22] and pushing [23] attacks. In particular,

secure MANET routing protocols (e.g., [22–26]) require

that each node be accountable for any routing packet sent

from it, while existing anonymous communication solu-

tions all require that mobile nodes avoid being identified

while participating in routing operations. Last but not least,

previous solutions fail to provide differentiated anonymity

to different MANET nodes, which is nevertheless desired

in many practical scenarios. For example, a commander

node in a military MANET may always need higher ano-

nymity protection than ordinary nodes when sending or

receiving a message. Since stronger anonymity is often

associated with larger communication and computation

overhead, previous solutions that treat all the nodes equally

must thus satisfy the highest anonymity requirement

among all the nodes. This may obviously result in con-

siderable wastage of network resources.

In this paper, we propose AOS, a novel Anonymous

Overlay System for MANETs to hide real packet sources

and destinations among crowds of nodes. In particular,

AOS organizes MANET nodes into pairwise-disjoint sets

called cliques. Members of each clique exchange encrypted

traffic of adjustable rate into which dummy and real data

packets can be inserted. To ensure strong communication

anonymity, the source, say S, no longer sends packets along

the shortest path to the destination, say D. Instead, S ran-

domly selects a tree of cliques, one of which contains

D. Each packet from S will be sent along a random path

within every clique of the chosen clique tree and can

eventually reach the intended destination D. AOS provides

provably strong source and destination anonymity against

both global eavesdroppers (external attackers) and internal

attackers at the cost of increased communication and

computation overhead, which is fortunately tunable

according to different levels of anonymity requirement.

As the first work of its kind, AOS distinguishes itself

from previous anonymous communication solutions (e.g.,

[8–21]) for MANETs in the following aspects:

– Universal applicability: AOS is an anonymous network

overlay atop the MANET substrate and has no special

requirement for the underlying MANET protocol stack.

This feature would apparently enhance its applicability.

– Coexistence with secure routing: AOS is not a network-

layer solution as compared to previous work, so it can

be built upon any MANET secure routing protocol to

ensure both communication anonymity and routing

security.

– Differentiated anonymity provision: AOS can satisfy

diverse anonymity requirements with different com-

munication and computation overhead.

The rest of this paper is organized as follows. Section 2

reviews the related work and Section 3 gives the network

and adversary models as well as our design objectives.

Section 4 presents the AOS design, followed by detailed

performance evaluation in Section 5. This paper is finally

concluded in Section 6.

2 Related work

Due to the space limitation, in this section we only discuss

the prior research closely related to our work.

The seminar work on anonymous wired communication

was done by Chaum who proposed the concept of Mix-

Nets [4] for anonymous email. In a Mix-Net, each message

is sent through a series of pre-deployed stations, called

mixes, to the final destination. The Mix-Net design has

inspired many anonymous communication systems, e.g.,

Crowds [6] and Onion Routing [27]. In Crowds, each web

request travels a random path whose length follows a given

geometric distribution to the end server. In Onion Routing

[27], a special data structure called onion is formed by the

source with multiple layers of encryption. Each interme-

diate router, only knowing its predecessor and successor,

peels off one layer of encryption, and finally the receiver

obtains the packet in plaintext. Our AOS can be considered

as a unique combination of Mix-Net [4], Crowds [6], and

Onion Routing [27, 28] specifically tailored for MANETs.

In particular, Crowds and Onion Routing are used for intra-

clique and inter-clique communications, respectively. This

design leads to another nice feature. Since each message
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may traverse a clique through different number of nodes,

each clique in fact serves as a virtual mix, through which

messages are mixed. In addition, by adopting the technique

proposed in [28], any intermediate node cannot determine

its relatively position in the whole path by observing the

message length, format, or content.

Providing anonymous communications in MANETs has

also been investigated extensively, see [8–21] for example.

As discussed in Sect. 1, all these schemes suffer from the

lack of universal applicability, the conflict with secure

routing, and the lack of differentiated anonymity provision.

In contrast, our AOS overcomes these drawbacks at the

cost of increased communication overhead because it is an

application-layer solution and not intended to optimize the

routing efficiency.

3 Models and design goals

3.1 Network model

We consider a MANET of N nodes controlled by a single

authority. MANETs of this type have long been recognized

as a major application category of wireless ad hoc net-

working techniques. Typical examples are those deployed in

military and counter-terrorist operations. Since mobile nodes

have common interests in such a network, they are not selfish

[29] and readily forward packets to and from others.

We assume that each node has limited transmission and

reception capabilities. Two nodes out of transmission range

of each other can communicate via a sequence of inter-

mediate nodes in a multihop fashion. AOS is an anony-

mous network overlay atop the MANET substrate and has

no requirement for the underlying MANET protocol stack.

We, however, do assume that a valid unicast route can be

established between any two nodes when needed, and

reestablished when it breaks due to node mobility.

3.2 Adversary model

We focus on dealing with an adversary whose sole goal is

to find out real sources and/or destinations of intercepted

packets whereby to infer the network traffic pattern and its

changes. It is beyond the scope of this paper to address

other important security issues in MANETs such as secure

routing, key management, intrusion detection, and DoS

mitigation.

The adversary consists of a global external attacker,

which does not belong to the target MANET but can pas-

sively eavesdrop on all the radio transmissions, and some

local internal attackers, which are a small fraction of

MANET nodes compromised and fully controlled by the

adversary. Moreover, the adversary is assumed to be

computationally bounded and cannot break any crypto-

graphic primitive on which we base in our design.

3.3 Design objectives

AOS is designed to provide strong source and destination

anonymity as well as relationship anonymity under the

above rather strong adversary model. In particular, AOS is

intended to satisfy the following anonymity requirements

[7]:

– Source anonymity: Given a packet, it is impossible to

identify its real source. Alternatively, given a node, it is

impossible to tell what packets it initiated.

– Destination anonymity: Given a packet, it is impossible

to ascertain its real destination. Alternatively, given

a node, it is infeasible to tell what packets are destined

to it.

– Relationship anonymity: It is impossible to tell whether

and when any two nodes communicate.

Relationship anonymity is weaker than the previous two

because it can be guaranteed as long as either or both of

source and destination anonymity are realized. Therefore,

we will focus on source and destination anonymity

hereafter.

3.4 Notations

Table 1 summarizes the notations to be used throughout

the paper.

Table 1 Some probabilistic parameters

Notation Meaning

S, D Source and destination

Ci The ith clique

Ci,j The network ID of the jth node in clique Ci

G1 An additive group of order q

G2 An multiplicative group of order q

KA The private key of node A

KAB The share key between nodes A and B

a The total number of onion layers

b The total number of onion cliques

bi The number of onion cliques in the ith layer

Ai;j The jth onion clique in the ith layer

Oi,j The onion node of Ai;j

Pi,j The proxy node of Ai;j

PS;i The pseudonyme of S for the ith layer

Ki The shared key between S and node Oi,1

KD The shared key between S node D

Qi The ith path object

Oi The onion before entering the ith layer
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4 AOS: an anonymous overlay system

In this section, we first outline the basic idea of AOS and

then present its design in detail.

4.1 An overview of AOS

In AOS, MANET nodes are divided into pairwise-disjoint sets

called cliques, and each node knows which clique any other

node belongs to. We take source S and destination D as an

example to outline the basic AOS operations. For simplicity,

we temporarily assume that S and D are in different cliques.

To anonymously send messages to D, node S randomly

selects a few distinct cliques called onion cliques hereafter,

one of which contains D. Node S then picks one node in

every onion clique which is called an onion node through

which every message will be routed. AOS adopts the idea

of mix-nets [4]. In particular, S wraps the message for D in

several layers of encryption. The wrapped message, often

referred to as an onion [27], is then routed through onion

nodes each of which peels off a layer of encryption and

then forwards the onion to the next onion node. By forming

the onion properly, we can ensure that every onion node

knows nothing more than its next onion node: it knows

neither other onion nodes nor how many onion nodes

separate it from S or D. Even the onion node prior to D

does not know that D is actually the destination. Source S

and destination D are thus hidden from all the onion nodes.

AOS integrates a number of techniques to defend against

both external and internal attackers. For example, to mask

its transmission behavior, S does not directly send the onion

to the first onion node; instead, the onion will be first sent to

a randomly chosen clique peer. Then, each node, on

receiving a onion from its clique peer, will send the onion to

the first onion clique with some probability, or randomly

choose another clique peer to which the onion is sent.

Finally, the onion will be sent to a randomly chosen proxy

node in the first onion clique other than the first onion node,

which in turn forwards the onion to the first onion node. We

will show that this simple measure helps hiding the first

onion node from external attackers. The onion will be for-

warded in subsequent onion cliques in a similar way. To

further prevent attackers from tracing the onion, AOS

requires the members of every clique to exchange encrypted

cover traffic of adjustable rate into which onions (real

packets) and dummy packets can be inserted. Furthermore, S

chooses some fake onion cliques for each true onion clique,

from each of which to select a fake onion node for the

corresponding true onion node. Destination D can then be

hidden among these fake and real onion nodes. All these

measures are intended to make it very difficult for the

adversary to determine packet sources and destinations at

the cost of tunable communication overhead.

An example is given in Fig. 1, where each real onion

clique Ai;1ð1� i� 3Þ together with some fake ones form

one onion layer. We denote by Oi,j the onion node in each

Ai;j, and only Oi;1ð1� i� 3Þ are real ones. Destination D is

in clique A2;2 and is actually O2,2. In addition, nodes Pi,j in

each clique are proxy nodes. As we can see, source S forms

an onion which is routed through four random nodes and

source S

destination D

onion nodes

3 reyaL2 reyaL1 reyaL

clique C clique A clique A clique A

clique A =C clique Aclique A
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Fig. 1 An exemplary

illustration of AOS
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then forwarded to each P1,j which in turn sends the onion to

O1,j. Only the real onion node O1,1 peels off one layer of

encryption, and then the modified onion passes three random

nodes to reach the next onion layer. This process continues

until O3,1 terminates the onion forwarding. D apparently can

receive the message while hiding in all the onion nodes.

AOS can also ensure that each onion node cannot determine

which onion layer it resides at, i.e., its distance from the

source or destination clique. This onion-forwarding process

will be more clear when we come back to it in Sect. 4.7.

In the remainder of this section, we will illustrate the

design details of AOS, including clique formation, intra-

clique cover traffic, key distribution and agreement, and

onion construction and forwarding.

4.2 Clique formation

We consider a single-authority MANET with N nodes.

Before the network deployment, the network owner divides

N nodes into M pairwise-disjoint cliques denoted by

fC0; . . .; CM�1g, that is,

Ci \ Cj ¼ /; 8i; j 2 f0; . . .;M � 1g; i 6¼ j ;
PM�1

i¼0

jCij ¼ N :

8
<

:

Note that the cliques need not have the same number of

nodes. In addition, cliques have only virtual meanings: nodes

of the same clique may be physically apart during the net-

work operations. Nodes in each clique Ci are indexed from 0

to jCij � 1. Let Ci,j denote the network ID (or address) of the

jth node in clique Ci; where 0� j� jCij � 1. The network

owner preloads each node with the information regarding the

affiliated clique 2, the index in that clique, and the network

ID of every other node.

4.3 Key distribution and agreement

Like other security schemes, AOS requires nodes to have

appropriate cryptographic keys. In this paper, we assume a

key distribution scheme (e.g., [30]) based on Identity-

Based Cryptography (IBC) [31]. AOS, however, can also

rest on other suitable key distribution schemes.

Since AOS targets a single-authority MANET, it is rea-

sonable to assume that a trusted authority (TA) will bootstrap

the network, which itself is not part of the resulting network.

The TA chooses a large prime q, a master secret j 2 Z
�
q, an

additive group G1 of order q, a multiplicative group G2 of

order q, a bilinear map ê : G1 �G1 ! G2, and a hash

function H : f0; 1g� ! G
�
1 which maps arbitrary binary

strings into nonzero points in G1. Modified Weil [31] and

Tate [32] pairings are examples of the bilinear map ê, and we

refer the readers to [31, 32] for the detailed properties of ê.

The TA equips each node with hq;G1;G2; ê;Hi while

keeping j confidential to itself.

Each node A has a unique public/private key pair, where

the public key is its unique network ID, i.e., A, and the

private key KA ¼ jHðAÞ is obtained from the TA. Note

that the master secret j cannot be recovered from any

public/private key pair like A=KA [30–32], so it is always

known only to the TA.

In AOS, any two nodes, say A and B, can establish a

shared key without interacting with each other. In partic-

ular, A and B independently compute

KAB ¼ êðKA;HðBÞÞ and KBA ¼ êðKB;HðAÞÞ: ð1Þ

It can be shown that KAB ¼ KBA are equal due to the

bilinear and symmetric properties of ê [30–32].

Each node A can also generate arbitrarily many pseud-

onyms and the corresponding private keys. For example, A

can select a random integer rA 2 Z
�
q whereby to compute a

pseudonym rAHðAÞ 2 G1 and the corresponding private

key rAKA ¼ rAjHðAÞ. Since G1 is a cyclic group of order

q, multiplying HðAÞ by rA perfectly blinds HðAÞ and A

[33]. In other words, given only the pseudonym rAHðAÞ, it

is infeasible to link it to node A. The use of such pseud-

onyms can be seen soon.

4.4 Intra-clique and inter-clique traffic

Since each MANET node serves as a router to relay

packets to and from other nodes, it seems that MANET

provides natural source anonymity because attackers are

unable to differentiate whether a target node has initiated

or just forwarded a given packet. Unfortunately, this

argument holds only when the incoming traffic rate of the

target node is not smaller than its outgoing traffic rate.

Otherwise, attackers can determine that the node has ini-

tiated some traffic. This may be dangerous even if attackers

cannot differentiate what packets were initiated by that

node. For example, a node determined to initiate more

packets than others is highly possible to be a VIP node.

AOS thus must prevent this from occurring.

AOS uses cover traffic to cloak packet sources. In par-

ticular, any two nodes in clique Ci, for all 0� i�M � 1,

exchange cover packets at a rate of k packets/second,

where k is a public system parameter. Each cover packet

might be a real data packet or a dummy packet (inserted to

maintain the constant traffic rate). To prevent attackers

from distinguishing data and dummy cover packets, we

require that cover packets be of equal length and that a

cover packet between any two nodes be encrypted using

their shared key established as in Eq. (1).

Consider as an example nodes A and B both in clique Ci

which exchange cover packets as follows.
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A$ B : fIjtjDATAgKAB
; hKAB

ðprior-dataÞ;

where f�g� denotes a length-preserving symmetric-key

encryption using the key on the subscript; KAB is the shared

key of A and B using Eq. (1); I is a one-bit indicator of

whether this packet is a dummy (I = 0) or data (I = 1)

packet; t is the timestamp for guaranteeing message

freshness; DATA of constant length contains either useful

or dummy data, hKAB
ð�Þ is a keyed hash function to ensure

message authenticity. Upon receiving the cover packet,

node A (or B) verifies the message authentication code. If

succeed, it then uses KAB to decrypt message. If I = 0

(a dummy packet), A (or B) drops the packet; otherwise, A

(or B) processes DATA using the method in Sect. 4.6.

Global external attackers cannot determine whether

node A initiated a data packet, as they cannot differentiate

data cover packets from dummy cover packets. AOS also

ensures that even node B cannot determine whether DATA

was initiated or just forwarded by node A and thus protects

A from internal attackers if any.

In addition, k determines the maximum throughput of

every node in clique Ci. In particular, the maximum traffic

rate generated by every node is kðjCijÞ packets/second,

which occurs when the cover packets to all its clique peers

are all data packets initiated by this node. The larger k, the

higher the maximum throughput, and the larger the com-

munication overhead associated with inserting dummy

cover packets to maintain the constant cover-traffic rate k
between any two nodes in Ci.

MANET nodes can dynamically adjust k to balance

between the maximum throughput and the communication

overhead. For example, k can be set small most of the time.

When some node, say A, desires higher throughput for a

certain period, it can specify its demand in a message

anonymously delivered to a random destination, say B, using

the method in Sect. 4.5. B then floods the request throughout

the network, upon receipt of which each node increases k to

the required value and changes it back after the specified

period. This measure prevents attackers from detecting A’s

intention. The downside is that attackers may infer some

information from the changes in the cover-traffic rate.

In contrast to intra-clique traffic, inter-clique traffic

consists of only real data packets which are sent on

demand. Inter-clique packets have the same format as

intra-clique cover packets with I = 1. Therefore, intra-

clique and inter-clique packets are of the same fixed length,

which can prevent attackers from inferring any useful

information from packet-length changes [1, 28].

4.5 Onion construction

Now we discuss the construction of onions. Our onion

construction differs from the original onion routing [27, 28]

in that each onion layer consists of a variable number of

onion nodes instead of only one. Assume that source S 2 Cs

intends to send a message msg to destination D 2 Cd , where

s and d might be equal or not. To construct an onion, S first

does the following.

1. Select an integer b 2 ½a;M� as the total number of

onion cliques distributed across the a onion layers,

where a is a public system parameter. How to choose a
and b will be discussed in Sect. 5.1.

2. Generate a random numbers b1; . . .; ba such that bi� 1

and
Pa

i¼1 bi ¼ b, where bi is the number of onion

cliques at onion layer i.

3. Choose the onion cliques for each onion layer. In

particular, randomly select bi cliques with consecutive

indexes as the onion cliques of each layer i, denoted by

fAi;jgbi

j¼1. Let Ai;j ¼ Cxi;j
2 fCzgM�1

z¼1 . For example, if

clique Cz is chosen uniformly at random from fCzgM�1
z¼0

as Ai;1, then we have Ai;j ¼ Cðzþj�1Þ mod M ; 2� j� bi:

Only cliques fAi;1gai¼1 are real onion cliques, while

others are fake. In addition, a clique can appear at

multiple onion layers. The only requirement is that

destination clique Cd be chosen at least once as either a

real or fake onion clique.

4. For each onion clique Ai;j; 1� i� a; 1� j� bi, choose

one onion node, denoted by Oi,j. Let Oi;j ¼ Cxi;j;yi;j

(cf. Sect. 4.2), where xi,j has been chosen in Step 3, so

only node index yi,j need be determined. Here one trick is

to select onion nodes with correlated indexes such that

the bi onion nodes at each layer i can be represented by a

triplet of constant length, which further helps maintain a

constant onion size (as will be shown later). Specifically,

since destination cliqueCd may be chosen multiple times,

assume that it first appears at layer l and is actually onion

clique Al;e (i.e., xl,e = d). Then destination D should

be chosen as the onion node Ol,e of Al;e. Assume that

the index of Ol,e in clique Al;e is yl,e, where 0�
yl;e� jAl;ej � 1. The onion nodes are selected as follows.

– For each layer i = l, i.e., the one does not contain

Cd , first randomly select yi;1 2 ½0; jAi;1j � 1� and an

integer vi. Then compute

yi;j ¼ viyi;1 mod jAi;jj; 2� j� bi :

– For layer l, there are two cases:

– If e = 1, i.e., Cd is the first onion clique in layer

l, randomly select an integer vl. Then compute

yl;j ¼ vlyl;1 mod jAl;jj; 2� j� bl :

– If e = 1, first randomly select yl;1 2 ½0;
jAi;1j � 1� and an integer vl such that

yl;e ¼ vlyl;1 mod jAl;ej. Then compute

848 Wireless Netw (2011) 17:843–859

123



yl;j ¼ viyl;1 mod jAl;jj; 2� j� bl :

By doing so, given a triplet hOi;1; vi; bii, the node indexes

of all the onion nodes in layer i can be derived as

yi;j ¼ viyi;1 mod jAi;jj; 2� j� bi. In other words, the bi

onion nodes at each layer i can be represented with the

triplet hOi;1; vi; bii, which is of constant length.

5. Select a unique random integer ri 2 Z
�
q for each

onion layer i whereby to compute a pseudonym

PS;i ¼ riHðSÞ 2 G1 and the corresponding private

key riKS ¼ rijHðSÞ ¼ sPS;i (cf. Sect. 4.3). PS;i is

used to hide source S from onion nodes at layer i, as

will be shown soon.

6. Calculate a shared key with each Oi;1; i 2 ½1; a�; as

Ki ¼ êðriKS;HðOi;1ÞÞ ¼ êðr1jHðSÞ;HðOi;1ÞÞ, which

will be used to add (by S) or strip off (by Oi,1) a

layer of encryption.

To prevent each onion node from knowing its distance

from source S or destination D, i.e., which onion layer it is

at, we use the following approach. Assume that destination

D is chosen as the onion node Ol;e; l 2 ½1; a�.1 Source S

calculates a shared key with D as KD ¼ êðrdKS;HðDÞÞ and

then computes

M¼
fmsggKD

l ¼ 1 ;
ffmsggKD

gK1
l ¼ 2 ;

ff. . .ffmsggKD
gKl�1

. . .gK2
gK1

2\l� a:

8
<

:
ð2Þ

Source S proceeds to derive

Qi ¼
TAG1 i ¼ 1 ;
fTAG2gK1

i ¼ 2 ;
f. . .ffTAGigKi�1

gKi�2
. . .gK1

3� i� a ;

8
<

:
ð3Þ

where TAGi ¼ FlagjPS;ijOi;1jvijbi. Here, Flag is a prede-

termined public string that indicates the legitimacy of the

TAGi, which will be more clear later. In addition, since f�g�
is a length-preserving symmetric-key cipher, we have

jQ1j ¼ jQ2j ¼ � � � ¼ jQaj: Each Qi is called a path object

that carries information about the onion path.

Finally, S forms the onion as

O1 ¼ hM;Qa;Qa�1; . . .;Q2;Q1i : ð4Þ

If S has another message for the same destination D, it

can form a new onion by just changing the message part

M. In other words, the same set of onion nodes can be

used in multiple messages between S and D. S, however,

still needs to update the set of onion nodes periodically if it

has a large number of messages for D to prevent the

predecessor attack [34].

4.6 Onion forwarding and processing

Onion O1 takes a random path in source clique Cs before

entering onion layer 1. Specifically, source S picks a ran-

dom node from Cs (possibly itself) and sends O1 to it in a

cover packet (cf. Sect. 4.4). When the chosen node receives

O1, it forwards O1 with probability g 2 ½0; 1Þ to a random

node in Cs (possibly itself) and with probability 1 - g
directly to onion layer 1. g, called the mixing probability, is

a public system parameter whose choice will be discussed

in Sect. 5. Borrowed from Crowds [6], this random-for-

warding technique helps preventing the adversary from

identifying source S, whose optimality has recently been

proved in [35]. In particular, every onion forwarder (except

S) cannot tell whether the clique peer sending O1 is the

onion source or just another random onion forwarder. We

will show in Sect. 5 that this measure can provide strong

source anonymity against both external and internal

attackers.

Once some node in Cs, say G, decides to forward O1 to

onion layer 1, it first deduces the first-layer onion nodes

L1 ¼ fO1;1; . . .;O1;b1
g from hO1;1; v1; b1i in Q1 ¼ Flagj

PS;1jO1;1jv1jb1. If G directly sends O1 to them, the

adversary might easily ascertain L1 by passive eaves-

dropping. To prevent this, G picks a random node P1,j

(called a proxy node) in each A1;j; j 2 ½1; b1�; to which the

following onion modified from O1 is sent.

G! P1;j : O1;j ¼ hM;Qa; . . .;Q2;FlagjPS;1jO1;jj0j0i:

Note that vi and bi are replaced with zeros of equal length

to hide them from P1,j (possibly compromised) and also

maintain a constant onion length (jO1j ¼ jO1;jj). O1;j

should be sent in an encrypted inter-clique packet (cf. Sect.

4.4) to P1,j which then directly forwards it in a cover packet

to O1,j after checking O1,j. Since external attackers cannot

differentiate this onion cover packet from others between

P1,j and O1,j, they cannot immediately decide that O1,j is

the onion node in clique A1;j. It is also possible that P1,j

itself happens to be O1,j, in which case O1;j is directly

processed as follows. The adversary cannot notice this

either. If P1,j is a compromised node, then the adversary

knows O1,j as the onion node, but he still cannot determine

whether O1,j is the onion destination or identify other onion

nodes at the same layer without knowing v1 if other onion

cliques have different sizes.

On receiving O1;j, each O1,j assumes that O1;j was ini-

tiated by node PS;1 with which to calculate a shared key as

K1;j ¼ êðKO1;j
;PS;1Þ. There are four cases:

– If O1,j is the real onion node, i.e., j = 1, then K1;j ¼
êðKO1;1

;PS;1Þ ¼ êðsHðO1;1Þ; r1HðSÞÞ which can be eas-

ily shown to be exactly K1 [30–32].

1 If D is chosen as an onion node at multiple layers, we select l as the

smallest layer.
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– If O1,j is destination D, then K1;j ¼ êðKD;PS;1Þ ¼
ðsHðDÞ; r1HðSÞÞ which can be easily shown to be

exactly KD [30–32].

– If the previous two conditions are both meet, then we

have K1;j ¼ K1 ¼ KD.

– Otherwise, K1,j is equal to neither K1 nor KD.

Each O1,j then attempts using K1,j to decryptM in O1;j,

i.e., removing a layer of encryption. If the decryption result

follows a predefined message format, then O1,j knows itself

as the destination; otherwise, the decryption result can be

ignored. Let infox:y denote the result of decrypting info

using shared keys Kx;Kxþ1; . . .;Ky�1;Ky sequentially,

which is performed by nodes Ox;1;Oxþ1;1. . .;Oy�1;1;Oy;1

sequentially. For example, M1:1 and M1:2 are the results

of decrypting M using the shared key K1 by O1,1, and

using K1 and K2 by O1,1 and O2,1 sequentially, respectively.

According to Eq. (2), we have

M1:1 ¼

random string l ¼ 1;O1;1 6¼ D
msg l ¼ 1;O1;1 ¼ D
fmsggKD

l ¼ 2

f. . .ffmsggKD
gKl�1

. . .gK2
2\l� a :

8
>><

>>:

ð5Þ

In addition, each O1,j uses K1,j to decrypt Q2 ¼
fFlagjPS;2jO2;1jv2jb2gK1

. Since K1;1 ¼ K1, only O1,1 can

do a successful decryption, which determines this after

seeing Flag. In contrast, others know that they are fake

onion nodes after not seeing Flag in the decryption result

and then stop processing O1;j. Node O1,1 continues using

K1 to decrypt Q3;Q4; . . .;Qa, and obtain Q1:1
3 ;Q1:1

4 ;

. . .;Q1:1
a . According to Eq. (3), we have Q1:1

a ¼ f. . .

ffTAGagKa�1
gKa�2

. . .gK2
; 8a 2 ½3; a�. Finally, O1,1 forms a

new onion

O2 ¼ hM1:1;R1;Q1:1
a ; . . .;Q1:1

3 ;Q1:1
2 i ; ð6Þ

where Q1:1
2 ¼ FlagjPS;2jO2;1jv2jb2, and R1 is a random

string of length jQ1j inserted to compensate for the

removal of Q1 so that O2 and O1 are of the same length

and format. R1 will be treated as a path object by sub-

sequent onion nodes. Similar to O1, onion O2 takes a

random path (starting from O1,1) in clique A1;1 before

reaching onion layer 2.

In general, each real onion node Oi;1; i 2 ½1; a� 1�,
generates onion Oiþ1 in which a random string Ri is

inserted after the message part to maintain a constant onion

length. Ris are indistinguishable from and will be processed

as real path objects by subsequent onion nodes. In this way,

each onion node (either real or fake) cannot determine at

which onion layer it is. Our onion construction method is

an adaptation of the one in [28] which we refer to for a

formal security proof.

The onion forwarding is terminated at the last real onion

node Oa,1 which receives the following onion:

Oa;1 ¼ hM1:ða�1Þ;Ra�1; . . .;R
2:ða�1Þ
1 ;Q01:ða�1Þ

a i :

Here, Q01:ða�1Þ
a ¼ FlagjPS;ajOa;1j0j0. Then Oa,1 processes

Oa;1 similarly as before. After using the shared key Ka to

decrypt the rightmost ‘‘path object’’ R1
2:(a-1), it does not find

Flag there and thus considers itself a ‘‘fake’’ onion node.

Each fake onion node Oa;j; j 2 ½2; ba� also processes the

received onion Oa;j as before and makes the same decision.

Note that all these nodes Oa;j; j 2 ½1; ba� cannot determine

that they are at the last onion layer unless they collaborate

to know that none of them further forwards the onion.

Now let us consider the processing of the message part

M. The case of l = 1 has been considered in Eq. (5), so we

focus on the more general case of 2� l� a. From Eq. (2),

we can derive that M1:ðl�1Þ ¼ fmsggKD
. Same as before,

each node Ol;j; j 2 ½1; bl� will attempt using a shared key to

decrypt M1:ðl�1Þ, and only destination D can correctly

recover msg which has a predefined message format. If

l \ a, each M1:ði�1Þði 2 ðl; a�Þ will be determined by each

onion node Oi;jðj 2 ½1; bi�Þ as useless information after the

decryption and thus simply ignored.

Since the same set of onion nodes is used in transmitting

multiple messages from S to D, we can utilize this to

reduce the computation overhead. In particular, each Oi,j

knows whether it is the destination or a real or fake onion

node after processing the first message and can buffer the

corresponding source pseudonym PS;i. If PS;i appears in a

later onion, only the destination and the real onion nodes

process the onion using established shared keys, while

other fake onion nodes simply ignore it.

4.7 An example

To shed more light on AOS, we continue the example in

Fig. 1, where a ¼ 3;b1 ¼ 2; b2 ¼ 3; b3 ¼ 3, and destina-

tion D is actually the fake onion node O2,2 in clique A2;2.

For simplicity, all the cliques have the same size 6.

Source S generates O1 ¼ hM;Q3;Q2;Q1i ; where

M¼ ffmsggKD
gK1

Q3 ¼ ffFlagjPS;3jO3;1jv3j3gK2
gK1

Q2 ¼ fFlagjPS;2jO2;1jv2j3gK1

Q1 ¼ FlagjPS;1jO1;1jv1j2

8
>><

>>:

Here vi; i 2 ½1; 3� can be any integer due to the modulation.

O1 passes through four nodes before leaving clique Cs. Node

O1,j (j = 1, 2) receives from its proxy node P1,j an onion

O1;j ¼ hM;Q3;Q2;FlagjPS;1jO1;jj0j0i and computes a

shared key K1,j based on the source pseudonym PS;1. It is
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obvious that only K1;1 ¼ K1 with which O1,1 generatesO2 ¼
hM1:1;R1;Q1:1

3 ;Q1:1
2 i; where

M1:1 ¼ fmsggKD

Q1:1
3 ¼ fFlagjPS;3jO3;1jv3j3gK2

Q1:1
2 ¼ FlagjPS;2jO2;1jv2j3 :

8
<

:

O1,2 knows itself as a fake onion node after decrypting Q2

with K1,2 and not finding Flag there. Then it uses K1,2 to

decrypt M. Since K1;2 6¼ KD, the decryption result is a

random string which does not follow a predefined message

format. So O1,2 considers itself not the message destination.

O2 passes through three nodes before leaving clique

A1;1: Node O2,j receives from its proxy node P2,j an onion

O2;j ¼ hM1:1;R1;Q1:1
3 ;FlagjPS;2jO2;jj0j0i and then com-

putes a shared key K2,j based on PS;2. This time we have

K2;1 ¼ K2 and K2;2 ¼ KD. O2,1 then uses K2,1 to generate

O3 ¼ hM1:2;R2;R
2:2
1 ;Q1:2

3 i; where Q1:2
3 ¼ FlagjPS;3jO3;1j

v3j3. In contrast, O2,2 and O2,3 know that they are both fake

onion nodes after decrypting Q1:1
3 with K2,2 and K2,3,

respectively. Then they attempt decryptingM1:1 using K2,2

and K2,3, respectively. Node O2,2 knows that it is the

message destination, as the decryption result msg follows

a predefined message format.

O3 passes through two nodes before leaving clique A2;1:

Node O3,j receives from its proxy node P3,j an onion O3;j ¼
hM1:2;R2;R

2:2
1 ;FlagjPS;3jO3;jj0j0i and then computes a

shared key K3,j based on PS;3. Each O3,j decrypts R1
1:2 using

K3,j and considers itself a fake onion node because Flag

does not appear in the decryption result. Then it decrypts

M1:2 with K3,j and knows that it is not the destination

because the decryption result does not follow a predefined

message format. Therefore, none of O3;1=O3;2=O3;3 gener-

ates a new onion, so the onion forwarding stops. However,

none of them can find out the termination of onion for-

warding, i.e., that they are at the last onion layer, unless

they collaborate.

Due to the use of pseudonyms, each Oi,j thinks that it

receives the onion Oi,j from source PS;i. In addition, due to

the insertion of R1 by node O1,1 and R2 by O2,1, the onion

length keeps constant all the time. Therefore, each Oi,j

cannot determine which onion layer it resides in or how

far it is from the source or destination: it could be at any

layer i 2 ½1; a� with equal probability.

5 Performance analysis and evaluation

Although there has been a significant amount of work (e.g.,

[8–21]) on communication anonymity in MANETs, none of

them has any of the three key good properties AOS has, i.e.,

differentiated QoA provision, universal applicability, and

coexistence with secure routing (cf. Sect. 1). It is thus both

unfair and less meaningful to conduct a performance com-

parison between AOS and existing work. Due to space

limitations, we instead focus on thoroughly analyzing and

evaluating the performance of AOS itself in this section. In

particular, we first analyze its communication and compu-

tation overhead and then its security with regard to source

and destination anonymity. Finally, we use numerical

results to demonstrate the tradeoff between communication/

computation overhead and source/destination anonymity.

5.1 Overhead analysis

5.1.1 Communication overhead

In AOS, a constant onion size L is used to prevent the

adversary from deducing any useful information from

onion-length changes. Each onion contains a fixed-length

message part followed by a path objects of equal length. If

the message is not long enough, it need be padded to

maintain the fixed length. For simplicity, we choose O1 ¼
hM;Qa;Qa�1; . . .;Q2;Q1i to evaluate the onion overhead

defined as the ratio of the total length of the non-message

part to the onion length len. Since jQ1j ¼
jQ2j ¼ � � � ¼ jQaj, we just need to calculate jQ1j, where

Q1 ¼ FlagjPS;1jO1;1jv1jb1.

We first discuss the length of PS;1, which is an element

in group G1 (cf. Sect. 4.5) and more precisely a point on an

elliptic curve over Fp [30–33]. If the prime p is of 171 bits

and other pairing parameters are chosen properly, we can

achieve a security level equivalent to that of 1024-bit RSA

[33]. In addition, only the x-coordinate of PS;1 need be

transmitted because the y-coordinate can be easily derived

by solving the elliptic curve equation. This is known as the

point compression technique. So we have jPS;1j ¼ 171 bits.

Assume that each node ID is of lID bits, each vi is of lv
bits, and each bi is of n bits. We can derive the onion

overhead as

onionOverhead ¼ ajQ1j
len

¼ aðjPS;1j þ jFlagj þ jO1;1j þ jv1j þ jb1jÞ
len

¼ að171þ jFlagj þ lID þ lv þ nÞ
len

¼ að171þ jFlagj þ lID þ lv þ nÞ
jMj þ að171þ jFlagj þ lID þ lv þ nÞ

¼ 1

qþ 1
;

ð7Þ

where q ¼ jMj
að171þjFlagjþlIDþlvþnÞ. In AOS, jMj is fixed and

cannot be changed. Since jFlagj; lID; lv and n are also fixed,
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the onion overhead is in direct ratio to a, the number of

onion layers or path objects.

Now we examine totalTran, the total number of end-to-

end packet transmissions incurred by each message from S

to D, as AOS is an overlay system over the MANET

substrate. For simplicity, we assume that no two consecu-

tive onion forwarders are the same and that no onion node

is chosen as a proxy node. Let Li be the number of times for

which onion Oið8i 2 ½1; a�Þ is forwarded before reaching

layer i. According to Sect. 4.6, Li follows the geometric

distribution PrðLi ¼ kÞ ¼ ð1� gÞgk�1; 8k� 1; with mean
�Li ¼ 1

1�g. Each Oi also involves bi inter-clique transmis-

sions, each for one proxy node in layer i. Referring to the

onion forwarding process in Sect. 4.6, we can easily

calculate

totalTran ¼
Xa

i¼1

ð �Li þ biÞ ¼
a

1� g
þ b : ð8Þ

Note that totalTran consists of a
1�gþ b intra-clique

transmissions and b inter-clique transmissions. The former

are cloaked by intra-clique cover traffic at the rate of k
packets/second which can be dynamically adjusted as

needed (cf. Sect. 4.4). Therefore, each message only incurs

b additional inter-clique transmissions. In addition, the

larger a
1�gþ b, the fewer concurrent sessions can be

supported at a given value of k, and vice versa.

In Sect. 5.3, we will use numerical results to show the

tradeoff between communication overhead and source/

destination anonymity.

5.1.2 Computation overhead

Now we discuss the computation overhead of AOS.

The relatively most expensive cryptographic operation is

the pairing ê evaluation for shared-key establishment,

which however can still be efficiently computed even on

low-end devices. For example, the pairing evaluation on a

Compaq iPaq 3660 PDA powered by a 206 MHz 32-bit

StrongARM processor took just 355 ms [36]. Since AOS

targets security-sensitive MANETs often with much more

powerful mobile nodes, the pairing evaluation is expected

to be completed within a few milliseconds [36].

The pairing function is also executed relatively rarely. In

particular, each pair of nodes only need to execute ê once

on demand to establish a shared key whereby to encrypt

and authenticate inter-clique or intra-clique traffic using

efficient symmetric-key ciphers. Moreover, if source S

intends to transmit a number of messages to destination D,

each onion node (real or fake) only need compute ê once to

calculate a shared key when transmitting the first message.

All subsequent onion processings are carried out based on

the shared keys using efficient symmetric-key ciphers.

Therefore, the computation overhead of AOS is quite

acceptable in practice.

5.2 Security analysis

Packets in AOS no longer carry true source and destination

IDs in the network-layer headers. In addition, packet

sources use pseudonyms instead of their real IDs in onions

so that onion nodes can not ascertain the initiators of

received onions. Note that even the destination (an onion

node as well) cannot determine who sends it the message if

the source does not leak its true ID in the message for the

destination. This means that the adversary can no longer

directly ascertain packet sources and destinations. The

adversary, however, may still be able to assign a proba-

bility to each node for being the source or destination of a

given packet. In this section, we resides in investigate the

resilience of AOS against such probabilistic attacks [1].

In the following, we first introduce two entropy-based

metrics that we will use to measure source and destination

anonymity. Then we will show how the random forwarding

technique helps prevent internal attackers from finding out

true onion nodes. Subsequently, we evaluate the capability

of AOS providing source and destination anonymity under

both the worst-case scenario and the more general scenario.

5.2.1 Anonymity metrics

In [7], Pfitzman and Hansen defined anonymity as ‘‘the

state of being not identifiable within a set of subjects, the

anonymity set,’’ in which the anonymity set is ‘‘the set of

all possible subjects.’’ Later, anonymity set has long been a

popular metric to measure the anonymity provided by

anonymous communication systems. The larger the ano-

nymity set, the better anonymity in general. Anonymity set

unfortunately fails to reflect the possibly different proba-

bilities assigned by the adversary to each node as being the

source or destination of a packet. This issue was overcome

by an entropy-based metric proposed in [37]. Let X denote

a set of N nodes (jXj ¼ N) in an anonymous communica-

tion system. Briefly speaking, its anonymity entropy is

defined by

! ¼ �
X

X2X
PX log2ðPXÞ ; ð9Þ

where PX is the probability of node X being the source (or

destination) of a packet assigned by the adversary after he

observes the system. ! measures the uncertainty that the

adversary has about which node is the source or destination

of a packet. One can also interpret ! as the number of bits

of additional information that the adversary needs to

precisely identify the packet source (or destination). It

follows that 0�!� log2ðNÞ [38]. The lower bound is
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achieved when source S (or destination D) is assigned

a probability of one, while each X 2 X n fSg (or

X 2 X n fDg) is assigned a probability of zero; the upper

bound is attained when each X 2 X is assigned an equal

probability of 1/N, meaning that they are equal likely to be

the source (or destination) as viewed by attackers (the ideal

case). Further, Diaz et al. [39] defined degree of anonymity

as

t ¼ !
log2ðNÞ

; ð10Þ

which measures how far the real anonymity entropy of a

system is from the maximum anonymity entropy it can

provide.

5.2.2 Efficacy of intra-clique random forwarding

For convenience, we call source clique Cs also an onion

clique denoted by A0;1 and source S a real onion node

denoted by O0,1. It is critical in AOS to prevent the

adversary from ascertaining real onion nodes Oi,1

(0� i� a� 1). As discussed in Sect. 4.6, each onion Oiþ1

takes a random path starting from onion node Oi,1 before

entering onion layer i ? 1. This helps preventing global

external attackers from identifying Oi,1. Unfortunately,

there might be compromised nodes (internal attackers) on

the forwarding path. Below we show the efficacy of the

random-forwarding technique against such internal

attackers.

Consider a set of c 2 ½1; jAij � 1�2 internal attackers in

clique Ai;1 (0� i� a� 1), among which at least one

appears on the forwarding path of onion Oiþ1. The internal

attackers aim to determine which non-compromised node

in Ai;1 is Oi,1 that initiated Oiþ1. Let U be the first internal

attacker which received Oiþ1 from a non-compromised

node V. From the viewpoint of the internal attackers, all the

non-compromised nodes in Ai;1 other than V are each

equally likely to be Oi,1, but they are also obviously less

likely to be Oi,1 than V. We now analyze how confident the

internal attackers can be that V is indeed Oi,1 or equiva-

lently the probability that they assigned to V being Oi,1.

Theorem 1 Assuming that the first internal attacker U in

clique Ai;1; 8i 2 ½0; a� 1�; received onion Oiþ1 from node

V, the probability that the internal attackers assigned to V

as the onion node Oi,1 is n�ðn�c�1Þg
n , where n ¼ jAi;1j and c

is the number of internal attackers in clique Ai;1.

Proof Denote by VU
�!

the event that U received onion

Oiþ1 from node V. The probability of V being Oi,1 is

PrðV ¼ Oi;1jVU
�!Þ ¼ PrðV ¼ Oi;1; VU

�!Þ
PrðVU
�!Þ

; ð11Þ

where

PrðVU
�!Þ ¼ PrðV ¼ Oi;1; VU

�!Þþ PrðV 6¼ Oi;1; VU
�!Þ

¼ PrðV ¼ Oi;1Þ � PrðVU
�!jV ¼ Oi;1Þ

þ PrðV 6¼ Oi;1Þ � PrðVU
�!jV 6¼ Oi;1Þ : ð12Þ

Denote by Pos(U) = k the event that U occupies the kth

position in the path. Then p0k ¼ PrðVU
�!

;PosðUÞ ¼ kjV ¼
Oi;1Þ means the probability that V is indeed Oi,1 and Oiþ1

passed k - 1 non-compromised nodes before V. There are

three cases:

– k = 1: This means that V chose U as the first onion

forwarder, which occurs with probability p01 ¼ 1
n

because each onion forwarder is chosen uniformly at

random from clique Ai;1ðjAi;1j ¼ nÞ.
– k = 2: This means that V chose itself as the first onion

forwarder and then U as the second one. This occurs

with probability p02 ¼
g
n2.

– k [ 2: This means that onion Oiþ1 passed k - 2 non-

compromised nodes, among which the last one chose

V as the (k - 1)th onion forwarder which in turn

selected U as the kth onion forwarder. This case

happens with p0k ¼ gk�1 � ðn�c
n Þ

k�2 � 1
n2 ¼ g

n2

ðn�cÞg
n

� �k�2

.

It follows that

PrðVU
�!jV ¼ Oi;1Þ ¼

1

n
þ g

n2

X1

j¼0

ðn� cÞg
n

� �j

¼ n� ðn� c� 1Þg
n2 � nðn� cÞg :

ð13Þ

Similarly, we have

PrðVU
�!jV 6¼ Oi;1Þ ¼

X1

k¼1

PrðVU
�!

;PosðUÞ ¼ kjV 6¼ Oi;1Þ

¼ 0þ
X1

k¼2

gk�1 � n� c

n

� �k�2

� 1
n2

¼ g
n2 � nðn� cÞg :

ð14Þ

Finally, if U has no other information, all the non-

compromised nodes in clique Ai;1 are each equally

probable to be the onion node Oi,1. So we have2 The real onion node Oi,1 is not compromised.
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PrðV ¼ Oi;1Þ ¼
1

n� c
and PrðV 6¼ Oi;1Þ ¼

n� c� 1

n� c
:

ð15Þ

Substituting Eq. (13), Eq. (14), and Eq. (15), into Eq.

(12) and then Eq. (11), we finally get

PrðV ¼ Oi;1jVU
�!Þ ¼ n� ðn� c� 1Þg

n
: ð16Þ

h

From Eq. (16), we can see that

– When n = c ? 1, which means that all the nodes

in Ai;1 other than V are compromised, PrðV ¼
Oi;1jVU

�!Þ ¼ 1, so the adversary can ascertain that V is

indeed Oi,1.

– When n [ c ? 1, the larger g, the smaller Pr

ðV ¼ Oi;1jVU
�!Þ, the better the onion node is hidden

from the internal attackers, and the larger the commu-

nication overhead totalTran (cf. Eq. (8)).

Also note that all the other n - c - 1 non-compromised

nodes equally share the residue probability of being Oi,1. In

summary, the probability distribution of each node in Ai;1

being Oi,1 as viewed by the adversary is given by

PrðX ¼ Oi;1Þ ¼
n�ðn�c�1Þg

n X ¼ V
g
n X 2 Ai;1 and X 6¼ V
0 else :

8
<

:
ð17Þ

5.2.3 Anonymity measurement: the worst-case scenario

We first consider the worst scenario in which there is only

one communication session from source S to destination D in

the whole network. The adversary with global eavesdropping

capability can thus easily differentiate between inter-clique

and intra-clique packets and identify the source clique Cs and

all the onion cliques Ai;j; 8i 2 ½1; a�; j 2 ½1; bi�. We also

assume that there is at least one internal attacker acting as the

onion forwarder for each onion Oi so that all the b onion

nodes are known to the adversary.

Let us examine the source anonymity. We just need to

consider the first internal attacker in clique Cs participating

in forwarding O1 because it is in the best position to

identify source S. The probability of every node being the

source as viewed by the adversary follows the distribution

in Eq. (17), based on which we can derive the source-

anonymity entropy using Eq. (9) and the source-anonymity

degree using Eq. (10).

To evaluate the destination anonymity, we assume that

the adversary compromised b out of the b onion nodes, but

not yet finding the destination. Therefore, the remaining

b - b onion nodes, denoted by Bb�b, are each equally

likely to be the destination with probability 1/(b - b). The

probability of every network node being the destination as

viewed by the adversary thus follows the distribution

PrðX ¼ DÞ ¼
1

b�b if X 2 Bb�b;
0 else :

�

ð18Þ

Then we can derive the destination-anonymity entropy

using Eq. (9) and the destination-anonymity degree using

Eq. (10).

5.2.4 Anonymity measurement: the general scenario

In more general cases, there would be multiple concurrent

communication sessions in the network involving different

source-destination pairs. To enable theoretical analysis, we

assume that the network traffic is active and uniform in the

sense that there are both incoming and outgoing traffic at

every clique as a whole within every sufficiently small time

interval. It is, therefore, infeasible for the adversary to

precisely differentiate communication sessions or, equiva-

lently identify all the cliques associated with every session

via timing analysis or other external attacks [1]. This

allows us to focus on the impact of internal attackers.

Without loss of generality, we still consider the session

from source S to destination D.

Let us first consider the impact of consecutively com-

promised real onion nodes. Assume that the adversary

compromised C out of the overall N nodes. Due to the

layered encryption, the same message appears entirely

different across onion layers so that only real onion nodes

Oi;1ð1� i� a� 1Þ that peel off one layer of encryption can

link messages across two adjacent layers. Note that the last

real onion node Oa,1 is excluded here because it does not

further forward the onion. We refer to a chain of a

(1� a� a� 1) compromised real onion nodes serving the

same communication session as an a-chain. Each a-chain

can link the same message across a ? 1 consecutive onion

layers. In particular, if a = 1, there are no consecutively

compromised real onion nodes; if a = a - 1, then the

adversary can trace the message from clique A1,1 to Aa,1.

There might be multiple disjoint chains, but the adversary

cannot correlate them together. So we just need to consider

the longest a-chain, called the a�-chain, which reveals the

most information the adversary. The a�-chain can start at

any of the first a� a� real onion nodes, and consequently,

the probability of it starting from O1,1 is simply 1=ða� a�Þ.
Or equivalently, assuming that the a�-chain starts from

Oi;1ð1� i� a� 1Þ and that there is at least one internal

attacker in clique Ai�1;1 participating in random onion

forwarding, Ai�1;1 is the source clique A0;1 ¼ Cs with

probability 1=ða� a�Þ.
To enable the quantitative analysis, we also consider an

extreme case in which there is at least one internal attacker
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participating in random onion forwarding in each onion

clique Ai;1; 0� i� a� 1. For simplicity, we also assume

that the same parameter b is used in all communication

sessions, that each onion layer i has the same number

bi = b/a of onion nodes, that the adversary knows both b
and a, and that each clique contains the same number n of

nodes (i.e., N = Mn). Note that all these assumptions are in

favor of the adversary. For example, it is possible that no

a-chains exist, in which case the anonymity of S and D will

be certainly better than what we will evaluate below.

We have the following theorem about the source

anonymity.

Theorem 2 Assuming that the a�-chain starting from

Oi;1ði 2 ½1; a�Þ and that the first internal attacker U in

clique Ai�1;1 received onion Oi from node V, the proba-

bility that the adversary assigned to V as the source is
n�ðn�c�1Þg

nða�a�Þ , where c is the number of compromised nodes in

Ai�1;1.

Proof The proof follows immediately that of Theorem 1.

Since the probability of U in source clique Cs is 1/(a - a),

the probability of U’s immediate predecessor V in the

random-forwarding path being source S is then given by

PrðV ¼ SjVU
�!Þ ¼ PrðV ¼ SjVU

�!
;U 2 CsÞ � PrðU 2 CsÞ

¼ n� ðn� c� 1Þg
n

� 1

ða� a�Þ

¼ n� ðn� c� 1Þg
ða� a�Þn : ð19Þ

h

Similarly, every non-compromised nodes other than V in

Ai�1;1 has the equal probability g
ða�a�Þn of being the source.

Assuming that there are C compromised nodes (not

including source S and destination D) among all the N

nodes in the network, all the other (M - 1)n - (C - c)

non-compromised nodes not in Ai�1;1 equally share the

residue probability a�a��1
a�a� of being the source. In summary,

the probability distribution of every node being the source

as viewed by the adversary is given by

PrðX ¼ SÞ ¼

n�ðn�c�1Þg
ða�a�Þn X ¼ V
g

ða�a�Þn X 2 Ai�1;1;X 6¼ V
a�a�1

ða�a�ÞðMn�n�CþcÞ else :

8
><

>:

ð20Þ

Then we can derive the source-anonymity entropy using

Eq. (9) and the source-anonymity degree using Eq. (10).

The following theorem is about the destination

anonymity.

Theorem 3 Assuming that the a� þ 1 onion layers linked

by the a�-chain in the path contain b0 onion nodes, among

which b are compromised, then the probability of being the

destination assigned by the adversary to each of the b0 - b

remaining non-compromised onion nodes is 1/(b - b).

Proof It is obvious that b 2 ½a�; b0�. Since the adversary

knows that there are b onion nodes in total and b of them

cannot be the destination, then every non-compromised

onion node, if known, has the same probability 1/(b - b)

of being the destination. h

Since the adversary cannot identify the remaining

b - b0 onion nodes from the N - C - (b0 - b) non-

compromised nodes (denoted by W), all these nodes

equally share the probability of b�b0

b�b of being an onion node

or equivalently the destination. Therefore, the probability

distribution of every node being the destination as viewed

by the adversary is

PrðX ¼ DÞ ¼

1
b�b X 2 Bb0�b

b�b0

ðb�bÞðN�C�b0þbÞ W
0 else :

8
><

>:
ð21Þ

Similarly, we can derive the destination-anonymity entropy

and degree using Eq. (9) and using Eq. (10), respectively.

5.3 Numerical results

In this subsection, we use concrete numerical results to

demonstrate the effectiveness of AOS as well as the rela-

tionship between source/destination anonymity and multi-

ple related parameters.

5.3.1 The probability distribution of a�

As shown in Sect. 5.2, source anonymity is largely related

to the a�-chain or a� a� (cf. Eq. (20)). Table 2 shows the

probability distribution of a� under different value of a,

where we assume that each node is compromised inde-

pendently with probability 0.1, which is considered a

severe situation. Due to the space limitation, we omit the

straightforward calculation details.

As shown in Table 2, larger a can lead to larger a� a�

with overwhelming probability. For example, when a ¼

Table 2 Probability distribution of a� vs. a

a The probability of a� ¼ X

X = 0 X = 1 X = 2 X = 3 X = 4 X = 5

2 0.8100 0.1900 0 0 0 0

3 0.7290 0.2520 0.0190 0 0 0

4 0.6561 0.3159 0.0261 0.0019 0 0

5 0.5905 0.3726 0.0341 0.0026 0.0002 0

6 0.5314 0.4228 0.0420 0.0034 0.0003 \10-4
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4; a� a� � 3 with probability 0.972. Note that destination

anonymity also depends on a� because the larger a�, the

more candidate destinations the adversary might know

(cf. Eq. (21)).

5.3.2 Source anonymity

Figure 2 shows the source-anonymity degree varying with

g, a, and a� (cf. Eq. (20)), where the network size

N = 400, the number of cliques M = 20, and C = 40

nodes are compromised. Since the expected number of

hops in intra-clique random forwarding is 1/(1 - g) (cf.

Sect. 5.1), we use 1/(1 - g) instead of g as the x-axis to

demonstrate the relationship between communication

overhead (cf. Eq. (8)) and source anonymity.

As we can see, besides the fact that increasing a can

effectively enhance source anonymity, an average of 3* 4

hops of random forwarding can also lead to a significant

increase in source anonymity. Also note that with g[ 0, it

is impossible for the adversary to pinpoint the source even

when the first a - 1 real onion nodes are all compromised.

These results demonstrate the efficacy of intra-clique ran-

dom forwarding in improving source anonymity.

5.3.3 Destination anonymity

Figure 3 shows the destination-anonymity degree (cf. Eq.

(21)), where again N = 400, M = 20, and C = 40. For

simplicity, we assume that bi ¼ b=a; 8i 2 ½1; a�, i.e., the

same number of onion nodes at each onion layer. In

practice, however, bi should be chosen randomly to prevent

the adversary from linking packets across different onion

layers.

We can see that increasing a and/or b can generally

enhance destination anonymity. Generally speaking, with

bi� 1, it is much more difficult for the adversary to pre-

cisely identify the destination, as it has to compromise

all the other b - 1 onion nodes. One may notice that

increasing a may occasionally reduce destination ano-

nymity, e.g., when a ¼ 4; a� ¼ 2, and bi increases from 1

to 2. This can be explained as follows. Referring to the

measurement of destination anonymity in Sect. 5.2.4, when

bi = 1, the adversary knows ða� þ 1Þbi ¼ 3 onion nodes,

among which a� ¼ 2 have been compromised and are not

the destination. So there is only one candidate destination

with probability 1=ðb� a�Þ ¼ 0:5 being the destination,

and all the other non-compromised nodes equally share the

residue probability 0.5 of being the destination. When

(a) (b) (c)

Fig. 2 Source anonymity vs. a=g=a�

(a) (b) (c)

Fig. 3 Destination anonymity vs. a=b=a�
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bi = 2, the adversary knows ða� þ 1Þbi ¼ 6 onion nodes,

among which a� ¼ 2 have been compromised and are not

the destination. So there are four candidate destinations

with probability 1=ðb� a�Þ ¼ 1=6 being the destination,

and all the other non-compromised nodes equally share the

residue probability 1/3 of being the destination. The des-

tination-anonymity entropy of the latter case is slightly less

than that of the first case, so does the destination anonymity

degree.

5.3.4 The impact of the number of compromised nodes

Figure 4 illustrates the impact of the number of compro-

mised nodes, where N = 400, M = 20, a = 4, g = 0.75,

and bi = 2. As we can see, the more compromised nodes,

the lower source and destination anonymity, which coin-

cides with the intuition. In particular, when c = 200, i.e.,

half of the nodes are compromised, the source and desti-

nation anonymity degrees are still higher than 0.9 and 0.75,

respectively. The results demonstrate that AOS is resilient

to node compromise.

5.3.5 The impact of the clique size

The source anonymity is also related to the clique size

n (cf. Eq. (20)). Figure 5 shows the source anonymity

varying with the clique size, where N = 1000 and

C = 100. It is obvious that a larger clique size will lead to

higher source anonymity.

5.4 Discussion

5.4.1 The choice of parameters

As shown in Sect. 5.3, AOS has a number of parameters

that influence not only source and destination anonymity

but also the communication overhead (including

onion Overhead and totalTran). We discuss the choice of

these parameters here.

– The larger a, the higher source and destination

anonymity, the fewer concurrent sessions can be

supported, and vice versa. In practice, a can be chosen

conservatively, i.e., a = 3 or 4.

– The larger g, the higher source anonymity, the fewer

concurrent sessions can be supported, and vice versa.

The gain from increasing g is most significant when 1/

(1 - g) = 3 or 4, which corresponds to g& 0.67 or

0.75, respectively.

– The larger b, the higher destination anonymity, the

larger the communication overhead, and vice versa. To

provide differentiated destination anonymity, we can

use larger bs for nodes with higher anonymity require-

ments and smaller bs for those with lower anonymity

requirements.

– The larger k, the larger the communication overhead,

the more concurrent sessions can be supported, and

vice versa.

– The larger the clique size, the higher source anonym-

ity, the heavier the total intra-clique cover traffic

(larger communication overhead), and vice versa. To

provide differentiated source anonymity, we can hide

VIP nodes with higher anonymity requirements in

larger cliques while letting most cliques be of smaller

sizes.
Fig. 4 Source/destination anonymity vs. the number of compromised

nodes

Fig. 5 Source anonymity vs. the clique size
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5.4.2 The placement of the destination

In general, the destination should be placed at a randomly

chosen onion layer such that adversary cannot get any

empirical information. Otherwise, for example, if the desti-

nation is placed near the source for the majority of sessions,

the adversary might directly rule out some candidates in the

far end of an a-chain. For fewer time-critical sessions,

however, the source can intentionally place the destination at

the first onion layer to minimize the latency. So AOS also

provides differentiated communication latency.

6 Conclusion

In this paper, we presented the design and evaluation of AOS,

a novel anonymous overlay system for MANETs. In contrast

to previous research, AOS is independent of the underlying

MANET protocol stack, can coexist with indispensable

secure MANET routing schemes, and can provide differen-

tiated anonymity protection to MANET nodes with diverse

anonymity requirements. The efficacy of AOS in offering

strong source and destination anonymity has been theoreti-

cally proved and thoroughly evaluated via numerical results.

As the future work, we intend to evaluate AOS using network

simulations and experiments. We will also seek to analyze

the security of AOS under other adversary models.
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