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Abstract Connected coverage, which reflects how well a
target field is monitored under the base station, is the most
important performance metric used to measure the quality of
surveillance that wireless sensor networks (WSNs) can pro-
vide. To facilitate the measurement of this metric, we propose
two novel algorithms for individual sensor nodes to identify
whether they are on the coverage boundary, i.e., the bound-
ary of a coverage hole or network partition. Our algorithms
are based on two novel computational geometric techniques
called localized Voronoi and neighbor embracing polygons.
Compared to previous work, our algorithms can be applied
to WSNs of arbitrary topologies. The algorithms are fully
distributed in the sense that only the minimal position infor-
mation of one-hop neighbors and a limited number of simple
local computations are needed, and thus are of high scalabil-
ity and energy efficiency. We show the correctness and effi-
ciency of our algorithms by theoretical proofs and extensive
simulations.
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1 Introduction

Wireless sensor networks (WSNs) are ideal candidates for
monitoring the physical space and enabling a variety of
applications such as battlefield surveillance, environmen-
tal monitoring and biological detection. In such a network,
a large number of sensor nodes are deployed over a geo-
graphic area (called the region of interest or ROI) for the
purpose of monitoring certain events (e.g., emergence of the
enemy’s tanks). Typically, each sensor node has a very lim-
ited sensing range within which it is able to perform sensing
operations. The sensed data will be transmitted to a base
station (BS) over a multi-hop wireless path. The BS collects
data from all connected nodes, concludes the activities in the
ROI, and serves as a bridge to connect the WSN with outside
users [2, 19].

As a consequence of this special network architecture,
from the user’s point of view, a position in the ROI is really
under the surveillance of the WSN if and only if this position
is within the sensing range of at least one of the sensor nodes
connected to the BS. We define the collection of all these
positions in the ROI as the connected coverage, or coverage
in short, and argue in this paper that the continuous moni-
toring of the connected coverage is a must be functionality
for all mission-critical WSNs to provide, regardless of their
specific applications or focus.

First of all, connected coverage is the most important per-
formance metrics used to measure the quality of service a
WSN can provide in a certain time, and should be an in-
separable complementarity of the report about the observed
events in the ROI. For example, in the battlefield surveil-
lance scenarios, the report from the BS that “none of the
enemy’s tanks have been observed in the ROI” is misleading
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if it is not reinforced with the description of the current con-
nected coverage. As sensors running out of energy, or being
physically destroyed by natural or intended attacks, there is
an inevitable devolution of the WSN characterized by the
shrink of connected coverage or the growth of coverage hole
in the ROI, and the WSN should continuously self-monitor
the change of its coverage performance.

Secondly, the information of the connected coverage can
also be used to facilitate many basic operations of WSNs.
Some important ones are listed as follows:

Routing. If all the coverage boundaries can be identi-
fied beforehand, routing in a WSN can be very efficient,
especially geographic routing [11]. The reason is that over-
looking coverage boundaries may cause problems in com-
munications, as routing along shortest paths tends to put an
increased load on boundary nodes, thus quickly exhausting
their energy supply and growing the coverage hole.

Topology control. In a densely deployed WSN, it is often
suggested to allow sensor nodes to alternatively sleep to con-
serve energy while meeting the coverage requirement [21].
If a sensor node can self-identify its position on a coverage
boundary, it can automatically tune its strategy to wake up
neighboring nodes to fill in the coverage hole. Furthermore,
in a WSN with both static and mobile sensors [32], identi-
fying coverage boundaries among randomly deployed static
nodes would help determine movement strategies of mobile
sensors to improve connected coverage.

Self-diagnosis of network health. Self-diagnosing the
health status of a WSN can keep sensor nodes aware of
the probability of system failures, and help to launch many
other network management activities. The current status of
connected coverage is a very important input for such self-
diagnosis. Also note that, instead of having all nodes to send
their positions or health conditions to the sink, we only need
a few nodes on coverage boundaries to do so. By doing so, we
can not only reduce competitions for the wireless channel,
but also save precious energy.

Re-deploying or repairing WSNs. For mission-critical ap-
plications, it may be necessary to repair or even re-deploy
the WSN when the coverage performance is unsatisfactory.
The details of coverage information can help decide when
and how to perform the network repair or re-deployment. For
example, we can know where the best places are for adding
new nodes to reduce or eliminate the coverage holes and how
many new nodes are needed.

In this paper, we develop two novel algorithms for cover-
age boundary detection in WSNs. In particular, we propose
two novel computational geometric techniques, called local-
ized Voronoi polygon (LVP) and neighbor embracing poly-
gon (NEP), based on which two complementary algorithms
are designed. The LVP-based algorithm requires both the di-
rectional information (the orientation of each neighbor) and
the distance information (the distance to each neighbor), and

theoretically can detect all the boundary nodes no matter how
the nodes are distributed. By contrast, the NEP-based algo-
rithm merely needs directional information, but can only find
the local (or global) convex points of the coverage boundary.
As compared to previous proposals, both algorithms can be
applied to WSNs of arbitrary topologies. They are also truly
distributed and localized by merely needing one-hop neigh-
bors’ information and a few simple local computations, and
thus are of high scalability and energy efficiency. We show
the correctness and efficiency of our algorithms by theoreti-
cal proofs and extensive experimental results.

The remainder of the paper is organized as follows.
Section 2 provides the network model, problem definition
and a concise overview of the existing proposals for cover-
age boundary detection. In Sections 3 and 4, we present the
LVP-based and NEP-based algorithms and prove their cor-
rectness, respectively. Section 5 evaluates the performance of
our algorithms by theoretical analysis and simulation results,
and this paper is finally concluded in Section 6.

2 Preliminaries

In this section, we first give the notation, assumptions and
the network model used in the paper, and then present the
formal problem statement. The existing proposals for the
coverage boundary detection will be summarized briefly at
last.

2.1 Notation, assumption and network model

We use the following notation throughout the paper:

� ‖u − v‖ or ‖uv‖: the Euclidean distance between two
points u and v, where u, v ∈ R

2.
� ∂ A: the topological boundary of a set A ⊂ R

2.
� A�: the complement of set A ⊂ R

2, i.e. A� = R
2 − A.

� uv: the line segment from point u to v where u, v ∈ R
2.

� n: the total number of sensor nodes in the network, or
network size.

� si : the position of node i for 1 ≤ i ≤ n, i ∈ N.
� rc: the communication range of sensor nodes.
� rs : the sensing range of sensor nodes.
� Disk (u, r ): the closed disk of radius r and centered at point

u. Let 0 indicate the origin and we have

Disk0 = Disk(0, rs) = {v : ‖v − 0‖ ≤ rs, v ∈ R
2}.

We define two operations on subsets of the Euclidean
space:

� Translation: Au = A + u = {v + u : v ∈ A} for u ∈ R
2

and A ⊂ R
2.

� Minkowski-addition: A ⊕ B = {u + v : u ∈ A, v ∈ B}
for A, B ⊂ R

2 . Obviously Au = A ⊕ {u}.
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Throughout this paper, we assume that any two sensor
nodes can directly communicate via bi-directional wireless
links if their Euclidean distance is not greater than rc, the
communication range; and a position in the plane can be
perfectly monitored (or covered) by a sensor node if their
Euclidean distance is not greater than rs , the sensing range.
Although we use a simplified “disk model” here, our schemes
are applicable to more general and practical scenarios. The
impact of the disk model on the performance of our schemes
is discussed in Appendix A. Similar to [3, 21, 33], we also
assume that sensor nodes are homogeneous in the sense that
rc and rs are the same for all nodes, and keep constant in
each node’s lifetime.

Instead of considering all the possible combinations of rc

and rs , we focus on the case of rc = 2rs in this paper. There
are two reasons for doing so. First, as pointed out in [35],
the specification of rc ≥ 2rs holds for most commercially
available sensors such as Berkeley Motes and Pyroelectric
infrared sensors. Second, as shown in Appendix B, for ar-
bitrary spatial distributions of sensor nodes, rc ≥ 2rs is the
sufficient and necessary condition for the existence of local-
ized boundary node detection algorithms.1 Therefore, we set
rc = 2rs to reduce communication energy consumption and
interference. However, it should be noted that our algorithms
are still applicable to the scenarios of rc > 2rs without any
changes.

For simplicity, we assume that the ROI is a 2-D square
planar field hereafter. Our results, however, can be easily
extended to 2-D or 3-D ROIs of arbitrary shapes. For l > 0,
let Al denote the square ROI of side length l centered at the
origin, i.e., Al = [−l/2, l/2]2, and ∂ Al be the border of Al .
We examine a large-scale WSN consisting of hundreds or
even thousands of stationary sensor nodes,2 and denote the
sensor nodes deployed in the ROI as V = {s1, . . . , si , . . . ,

sn}.

2.2 Formal definition of the problem

We now formally define the connected coverage boundary
detection (CCBD) problem addressed in this paper. We start
with a few definitions.

Definition 1. A connected set of nodes is said to be a max-
imally connected set, or a cluster, if adding any other node

1 The formal definition of “boundary nodes” and “localized algorithms”
will be given in Sections 2.2 and Appendix B, respectively.
2 Stationary nodes here do not imply that the topology of the WSN is
static. Instead, the WSN may have highly dynamic topology changes
due to nodes failures, new nodes additions or nodes switching their
states between active and sleeping modes to save energy. One advantage
of our schemes lies in the efficiency to handle topology changes in
WSNs (cf. Section 3.4).

to the set will break the connectedness property. We write
Clust(si ) for the cluster containing node si .

Based on the sensing model, the sensing disk of
node si is given by Disk(si , rs) = Disk0 + si . Then the
coverage corresponding to a cluster can be defined as
follows:

Definition 2. We define the set of all points in Al that are
within radius rs from any node of Clust(si ) as the set covered
by Clust(si ). This set is denoted by

Cover(si ) =
⎛
⎝ ⋃

u∈ Clust(si )

(u + Disk0)

⎞
⎠ ∩ Al . (1)

Definition 3. We define the boundary nodes of Clust(si ) as
those whose minimum distances to ∂Cover(si ) are equal to
rs , and denote them by

BN (si ) = {u ∈ Clust (si ) : min ‖u − v‖ = rs

for v ∈ ∂Cover (si )} ; .
(2)

Accordingly, interior nodes is defined by

IN (si ) = {u ∈ Clust (si ) : u /∈ BN (si )} . (3)

We denote the position of the base station as BS. Note that
the cluster Clust(si ) is connected with the BS if and only if
BS ∈ Clust(si ) ⊕ Disk(0, rc). Therefore, the connected cov-
erage with BS, which means the total area of the ROI under
the surveillance of BS due to contributions from each sensor
node connected to BS, can be formally defined as

Cover(BS) =
⋃

1≤i≤n

{
Cover(si ) :

BS ∩ (Clust(si ) ⊕ Disk(0, rc)) 
= ∅}
. (4)

Note that Cover(BS) is uniquely decided by its bound-
ary ∂Cover(BS). Assume there are two different clus-
ters Clust(si ) and Clust(sk) connected with BS, from
Definition 2, we have Cover(si ) ∩ Cover(sk) = ∅. Therefore,

∂Cover(BS) =
{⋃

∂Cover(si ) :

Clust(si ) is connected with BS

}
, (5)

which means CCBD problem can be simplified as finding the
coverage boundary of each cluster, i.e., ∂Cover(si ). Since the
minimum information required to describe ∂Cover(si ) is rs

and BN(si ), the CCBD problem is equivalent to finding the
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set BN(si ). Note that the CCBD problem formulated above
can be easily generalized to the cases with multiple BSs or
mobile BSs.

2.3 State of the art

The task of CCBD will be trivial if we do it in a central-
ized way and the exact locations of all nodes are available.
For example, a single node has access to locations of all
functional sensors (an “image” of the sensor distribution).
In this scenario, traditional ways of edge detection in im-
age processing are applicable. However, due to the energy
constraints, this scenario is impractical for most WSNs. Dis-
tributed solutions to the CCBD problem have already been
proposed in [11, 13, 16, 17, 32, 35]. In what follows, we
further classify these approaches according to the boundary
node identification methods they adopted.

2.3.1 Perimeter-based approaches

The first localized boundary node detection algorithm is pro-
posed in [17], which is based on the information about the
coverage of the perimeter of each node’s sensing disk. It
can be shown that node si is a boundary node if and only if
there exists at least one point v ∈ ∂Disk(si , rs) which is not
covered by any s j ∈ Neig(si ) (cf. Fig. 1(a)). Based on this
criterion, an algorithm with the complexity O(k log k) is de-
signed in [17] to locally check whether one node is a bound-
ary node, where k is the number of neighbors. A crossing-
coverage checking approach proposed in [16, 35] simpli-
fies the previous perimeter-coverage checking approach by
just checking some special points called crossings on the
perimeter. A crossing is defined as an intersection point
of two perimeters of sensing disks. A node si is a bound-
ary node if and only if there exists at least one crossing
v ∈ ∂Disk(si , rs) ∩ ∂Disk(s j , rs) which is not covered by
any other sk ∈ Neig(si ) − {s j }. Figure 1(b) shows an ex-
ample where c is a crossing determined by two perimeters

si

(a)

rs

v

si

(b)

sj

sk

c rs

u v

Fig. 1 Perimeter-based boundary node detection approaches. (a)
Perimeter-coverage checking approach proposed in [17]. The solid
curve represents the portion of perimeter of sensing disk covered by
neighbor nodes. (b) Crossing-coverage checking approach proposed
in [16, 35]. Solid and open triangles represent covered and uncovered
crossings, respectively

∂Disk(si , rs) and ∂Disk(s j , rs), which is covered by the third
sensing disk of node sk . The problem of perimeter-based
approaches is that each node needs to check positions and
status of all of its neighbors, which is inefficient when the
sensor nodes are densely deployed (cf. Section 5) so that
every time when a node dies, all its neighbors need to check
the coverage of their perimeters or crossings again.

2.3.2 Polygon-based approaches

In [11, 13, 32], Voronoi diagram (VD) is used for boundary
node detection. Briefly speaking, the VD of a node set V ,
is the partition of the Euclidean space into polygons, called
Voronoi polygons (VPs) and denoted by Vor(si ) for si ∈ V
such that all the points in Vor(si ) are closer to si than to any
other node in V . According to the closeness property of VPs,
if some portion of a VP is not covered by nodes inside the
VP, it will not be covered by any other node, which implies
a coverage hole. Therefore, it is claimed in [11, 13, 32] that
each node can locally check whether it is on the coverage
boundary under the assumption that VPs can be derived lo-
cally. However, it has been shown that in general VPs cannot
be locally computed [34]. In fact, VP-based approach is not
a real localized solution. It does not work when the survival
nodes are sparsely distributed. In this paper, we still follow
the line of polygon-based approaches, since the VP and its
derivatives provide more information about the spatial distri-
bution of one node’s neighbors, which can be used to design
more efficient detection schemes and simplify the updating
procedures when the number of neighbors changes.

There is a trend in the literature to provide some basic
functionalities of WSNs by only using directional informa-
tion [5, 23, 30]. The boundary node detection with only
directional information is an untouched topic since all the
existing schemes are based on the directional and distance
information of each node’s neighbors. We will return to this
topic in Section 4 to propose a solution for this scenario.

3 Localized Voronoi Polygons

In this section, we describe our first algorithm for identify-
ing boundary nodes based on two novel geometric concepts
called Localized Voronoi Polygon (LVP) and Tentative LVP
(TLVP) which are nontrivial generalization of Voronoi Poly-
gons (VPs) [27] from computational geometry. We must
point out that a similar concept called Localized Voronoi
Diagrams (LVDs) is introduced as the dual of Localized De-
launay Triangulations (LDTs) in the literature[18, 24]. The
edge complexity of LDT is analyzed in [18] and its applica-
tions in topology control and routing for wireless networks
are discussed in [24]. However, there is no indication on how
to relate this concept to the coverage problems in WSNs.
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Moreover, unlike our work, there is no description on how to
efficiently construct LVDs given in [18, 24]. Furthermore the
idea of using TLVP to reduce the overhead of the detection
algorithm in this paper is completely new. Finally and most
importantly, our scheme only uses the local information to
detect the boundary instead of global information commonly
used in either VP or DT.

3.1 Definition and properties of LVPs

To facilitate our illustration, we first define VPs, LVPs and
TLVPs in terms of half planes. For two distinct points si , s j ∈
V , the dominance region of si over s j is defined as the set of
points which are at least as close to si as to s j , and is denoted
by

Dom(si , s j ) = {v ∈ R
2 : ‖v − si‖ ≤ ‖v − s j‖}. (6)

Obviously, Dom(si , s j ) is a half plane bounded by the per-
pendicular bisector of si and s j , which separates all points in
the plane closer to si from those closer to s j .

Definition 4. The VP associated with si is the subset of the
place that lies in all the dominance regions of si over other
points in V , namely,

Vor (si ) =
⋂

s j ∈V −{si }
Dom(si , s j ). (7)

In the same way, the localized Voronoi polygon (LVP)
LVor(si ) and the tentative localized Voronoi polygon (TLVP)
TLVor(si ) associated with si are defined as:

LVor(si ) =
⋂

s j ∈ Neig(si )
Dom(si , s j ); (8)

TLVor(si ) =
⋂

s j ∈ SubNeig(si )
Dom(si , s j ), (9)

where SubNeig (si ) ⊂ Neig (si ) .

The collection of LVPs given by

LVor (V ) = {LVor (si ) : si ∈ V } (10)

is called the localized Voronoi diagram (LVD) generated by
the node set V. The boundary of LVor(si ), i.e., ∂LVor(si ), may
consist of line segments, half lines, or infinite lines, which
are all called local Voronoi edges.

Lemma 1. Properties of VPs, LVPs and TLVPs:

(i) LVor (si ), TLVor (si ) and Vor (si ) are convex sets;
(ii) Vor (si ) ⊆ LVor (si ) ⊂ TLVor (si );

(iii) Plane R
2 is completely covered by LVor(V ).

Proof: (i) Since a half plane is a convex set and the inter-
section of convex sets is a convex set,3 an LVP (or a TLVP)
as well as a VP is a convex set.

(ii) From (7), (8) and (9) we have

Vor(si ) = LVor(si )
⋂(⋂

s j ∈V,s j /∈Neig(s j )
Dom(si , s j )

)
,

LVor(si ) = TLVor(si )
⋂(⋂

s j ∈Neig,s j /∈SubNeig(s j )
Dom(si , s j )

)
,

which directly leads to Lemma 1(ii).
(iii) It is well known in computational geometry that

⋃
si ∈V

Vor (si ) = R
2. (11)

(cf. [27, Property V1, pp. 77] for a reference). Combining
(11) with Lemma 1(ii) that Vor (si ) ⊆ LVor (si ), we can di-
rectly obtain Lemma 1(iii). �

Therefore, the set LVor (V ) ∩ A can fully cover the arbi-
trary set A where A ⊆ R

2 . Note that this result can be easily
extended to any cluster in V , e.g., for Clust (si ) we have
⋃

s j ∈ Clust(si )
LVor(s j ) = R

2. (12)

3.2 LVP-based boundary node detection

In this subsection, we present an algorithm for each node to
detect whether it is on the coverage boundary based on its
own LVP or TLVP, which is illustrated with node si as an
example.

3.2.1 Input

Our BOND is a distributed scheme in that we only need posi-
tions of node si ’s neighbors as the input of our algorithm. We
need to consider two cases based on whether the information
about the border of Al , i.e., ∂ Al , is available. In the first case
where ∂ Al is unavailable at node si , our detection scheme is
based on the construction of LVor (si ) (or TLVor (si )); in the
second case where ∂ Al is available, we need to exploit this in-
formation by calculating LVor (si ) ∩ Al (or TLVor (si ) ∩ Al).
It can be shown that LVor (si ) ∩ Al must be a finite convex
polygon. Thus, the second case can be transformed into the
first case by introducing dummy nodes into Neig(si ). See
Fig. 2(a) for an example, in which four dummy nodes, d1

through d4, are introduced such that perpendicular bisectors

3 This sublemma can be proved as follows: Let Bi , i ∈ I, be a convex
set and B = ⋂

i∈I
Bi . If u and v are two points in B, then they are in

each Bi , so the line joining u to v lies in each Bi and therefore in B.
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Fig. 2 Illustration of LVP-based boundary node detection algorithm

between si and the dummy nodes generate the four border
edges of ROI. Then we can calculate LVor (si ) ∩ Al by fol-
lowing the same procedure for calculating LVor (si ). There-
fore, we will discuss only the first case in what follows.

We notice that dummy nodes cannot be directly applied
to the generalized cases, i.e., the border of Al consisting
of curves. However in these cases, it merely means that
the information of Al’s border cannot be efficiently ex-
ploited. But the correctness of our scheme is not affected.
There also exist two easy ways to remedy our BOND
here. First, in general a curve can be approximated with
straight line segments and thus the BOND is still appli-
cable. Second, instead of checking whether the vertices
of LVor (si ) ∩ Al are covered by Disk(si , rs) when Al is a
polygon, we can still correctly detect boundary nodes by
checking every point on ∂(LVor(si ) ∩ Al ) when Al is not a
polygon.

3.2.2 Algorithm

Our goal is to construct the LVor(si ) (or TLVor(si )) which
is sufficient for the boundary node detection with the min-
imal information required about si ’s neighbors. We first di-
vide Disk (si , rc) into four4 quadrants. Then we construct the
TLVP of si by using the nearest neighbors (solid nodes in
Fig. 2(b)) in each of the four quadrants. Without loss of gen-
erality, we denote these four nearest neighbors as s1, s2, s3,
and s4. The first TLVP is calculated by

TLVor (si ) ←
⋂4

j=1
Dom(si , s j ).

If all vertices of the TLVP are covered by Disk (si , rs), the
procedure stops and this TLVP is saved. Otherwise, we need
to find new neighbors which are the nearest to the uncovered
vertices of the TLVP (cf. Fig. 2(c)), add those neighbors to

4 Other values will also work well.

SubNeig(si ), and calculate the TLVP again:

TLVor (si ) ← TLVor (si )
⋂

(⋂
s j ∈SubNeig(si ), j 
=1,2,3,4 Dom (si , s j )

)
.

The new vertices of the new TLVP will be checked to see
whether they are covered by Disk (si , rs). This procedure
continues until all the vertices of the TLVP are covered by
Disk(si , rs) or the LVP of si is calculated and saved. We refer
to the neighbors used to construct the LVP or TLVP at the
end of this procedure as its consulting neighbors.

Note that when ∂ Al is unavailable, LVor(si ) may be infi-
nite, which means that it is possible that we cannot find any
node in one or more quadrants in the first step. See Fig. 2(d)
for an example. If a quadrant contains no neighbors, we de-
fine two sectors of angle 45◦ which are directly adjacent to
the quadrant as the assistant area, and add the nodes in this
area to SubNeig(si ) first. If all the nodes in the assistant area
cannot make TLVP finite, we can conclude that LVP must
be infinite without need to do further calculation.

3.2.3 Output

If LVor (si ) is infinite, si must be a boundary node. If LVor (si )
(or the final TLVor (si )) is finite with all the vertices covered
by si , then si ∈ IN (si ). Otherwise, si ∈ BN (si ).

3.3 Validating the algorithm

In the VD, the VPs of different nodes are mutually exclusive,
but in the LVD, the LVPs of different nodes may overlap.
This critical difference makes the validating of our algorithm
totally different with the VP-based ones.

Theorem 1. If there is a point v ∈ LVor (si ) which is not
covered by si , i.e., v /∈ Disk (si , rs), there must exist a point
h ∈ LVor (si ) that is not covered by any node, and si must be
a boundary node.
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Fig. 3 Illustration of the proof of Theorem 1

Proof: Without loss of generality, we assume that the
node nearest to si and outside Disk(si , rc) is sm , and
‖si − sm‖ = rc + δ for δ > 0. Let s ′

m be the point
on siv satisfying ‖si s ′

m‖ = ‖si sm‖, and h be another
point on siv such that ‖si h‖ = rs + δ/.2 (see Fig. 3).
By the triangular inequality, we have ‖smh‖ + ‖si h‖ ≥
‖si sm‖ = ‖si s ′

m‖ = ‖si h‖ + ‖hs ′
m‖. Therefore, ‖smh‖ ≥

‖hs ′
m‖ = ‖si s ′

m‖ − ‖si h‖ = rs + δ/.2, which means that sm

cannot cover h and neither can any other node in
Disk(si , rc)�. The reason is that, since ‖si sl‖ > ‖si sm‖ holds
for any node sl ∈ Disk(si , rs)� and sl 
= sm , we have ‖s ′

l h‖ >

‖s ′
mh‖ where point s ′

l is on the line siv and ‖si s ′
l‖ = ‖si sl‖.

Therefore, ‖slh‖ ≥ ‖s ′
l h‖ > ‖s ′

mh‖ = rs + δ/.2.
Since v ∈ LVor(si ), based on the convexity of LVor(si )

we have siv ∈ LVor(si ). Therefore, h ∈ LVor(si ), which im-
plies for any node s j ∈ Disk(si , rc) and si 
= s j , we have
‖s j h‖ ≥ ‖si h‖ > rs , i.e., no node in Disk(si , rc) can cover h.
Consequently, we can conclude that no node in the plane can
cover h because Disk(si , rc) ∪ Disk(si , rc)� = R

2. Note that
from the above proof process, we can see that h can be arbi-
trary close to v′, the intersection of circle ∂Disk(si , rs) and
siv. Therefore, si is a boundary node. �

Theorem 2. If there is a point v ∈ Al not covered by any
sensor node, for every cluster Clust(si ) there must exist at
least one sensor s j ∈ V whose LVor(s j ) is not completely
covered by Disk(s j , rs).

Proof: According to Lemma 1(iii) or (12), we have
⋃

s j ∈ Clust(si )
(LVor(s j ) ∩ Al) = Al (13)

Therefore, for any v ∈ Al , it must lie in at least one
LVor(s j ) ∩ Al for s j ∈ Clust(si ). �

Theorems 1 and 2 prove that LVor(si ) ∩ Al is completely
covered by si for all si ∈ Clust(s j ) is the sufficient and neces-
sary condition for Clust(s j ) to completely cover Al . The fol-
lowing theorem shows that when LVor(si ) or LVor(si ) ∩ Al is
finite, the coverage of vertices of LVor(si ) (or final TLVor(si ),

since LVor(si ) ⊂ TLVor(si )) by si is equivalent to the cover-
age of the whole LVor(si ) by si , which guarantees the cor-
rectness of our LVP-based algorithm.

Theorem 3. LVor(si ) is fully covered by si if and only if
LVor(si ) is finite and all the vertices are covered by si .

Proof: Let V e(si ) be the set of vertices of LVor(si ). Ob-
viously, when LVor(si ) is completely covered by si , i.e.,
LVor(si ) ⊂ Disk(si , rs), we have v ∈ Disk(si , rs) for all
v ∈ V e(si ) and LVor(si ) is finite. Since

max
u∈LVor(si )

{‖si − u‖} ≤ max
v∈V e(si )

{‖si − v‖} ,

when v ∈ Disk(si , rs) for all v ∈ V e(si ), we have u ∈
Disk(si , rs) for all u ∈ LVor(si ). �

3.4 Discussions on LVP-based detection

Our LVP-based detection is a truly localized polygon-based
solution since computing LVor(si ) (or TLVor(si )) only needs
one-hop information (this can be directly obtained from
Definition 4, which is impossible for computing Vor(si ).

Assuming that the number of trusted neighbors is k, each
node can compute its own LVor(si ) with complexity smaller
than O(k). In addition, the computation of the LVor(si ) only
involves some simple operations on polygons which can
be efficiently implemented (e.g., PolyBoolean library [22]).
We further simplify the detection process by constructing
TLVPs first. For a densely deployed WSN, we have LVor(si )
or TLVor(si ) → Vor(si ), and it is well known in computa-
tional geometry that under the homogeneous spatial Poisson
point process, the average number of vertices of Vor(si ) is
6 [27]. Therefore, when the node density is high, our LVP-
based detection on average needs only 4 to 6 nearest neigh-
bors’ information to successfully detect the boundary nodes.
Moreover, when a neighbor node dies, our LVP-based de-
tection need do nothing unless the dead node is used to
construct the final TLVor(si ) or LVor(si ) in the last turn
of LVP or TLVP construction. This unique property will
greatly simplify the update of detection results and save pre-
cious energy of each sensor node. None of these advantages
can be achieved by other localized boundary node detection
schemes in the literature, such as the perimeter-coverage
checking approach [17] and the crossing-coverage checking
approach [16, 35]. We refer to Section 5.4 for a detailed
comparison.

4 Neighbor embracing polygons

The neighbor embracing polygon (NEP) was first introduced
in computational geometry as an alternative to the Voronoi
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(a)

rc
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α π≥

(b)
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si

α π<

( )iSect s

supporting line

Fig. 4 Illustration of the convex hull of node si ’s neighbors (shaded
area) and the smallest sector Sect(si ) containing all neighbors when (a)
node si has the NEP and (b) node si does not have the NEP. Solid nodes
represent neighbors of si and dotted open nodes are the projection of
neighbors on the boundary of Disk(si , rc)

polygon [8, 10]. In this section, we will show that the local-
ized NEP can also be used as a complementary tool of the
LVP for coverage boundary detection. We will also demon-
strate the close relationship of NEPs with barrier coverage
and network connectivity.

4.1 Definition and properties of NEPs

Definition 5. Given the point set Neig(si ), we define its
convex hull, CH (Neig(si )), as the smallest convex set
containing all the points in Neig(si ). If si is in the in-
terior of CH(Neig(si )), i.e., si ∈ CH(Neig(si )) and si /∈
∂CH(Neig(si )), we call CH(Neig(si )) the NEP of si .

If si belongs to CH(Neig(si )), si has at least three neigh-
bors. By the properties of the convex hull, we also know that
CH(Neig(si )) is the unique convex polygon whose vertices
are points from Neig(si ) [4].

The idea of using NEP in boundary node detection is
rather intuitive. Figure 4 illustrates the relationship between
si and its CH(Neig(si )). We can see that si is more likely to
be far from the boundary when embraced by its neighbors.
On the other hand, when si /∈ CH(Neig(si )), we can find a
line (supporting line for the convex set) which separates si

from its neighbors, and node si is on the boundary almost
for sure.

There is a clear difference between our definition and
the existing one in [8, 10]. An NEP is constructed globally
in [8, 10]: for a given node si ∈ V , they first connect si

to the nearest node, then to the second nearest, and so on;
the process continues either when si belongs to the interior
of the convex hull of these nearest nodes or when all the
nodes in V have been tested. In this way, only the vertices
of CH(V ) do not have the NEP.5 By our definition, when
nodes without the NEP are found, some local convex points

5 NEPs are never used in coverage boundary detection in [8, 10].

other than vertices of CH(V ) (global convex points) will
also be identified, which can provide more detailed boundary
information (cf. Section 5.1). More importantly, our scheme
can be done locally.

Although efficient algorithms for computing the convex
hull of a given point set are available, we still want to avoid
using them if possible. The reason is that we only need
to know whether there is an NEP for node si and do not
care about the shape or size of the NEP. Let Sect(si ) be the
smallest sector with angle α whose apex is si and contains all
the points of Neig(si ). Note that Sect(si ) can be represented
by two points on ∂Disk(si , rc). In fact, we can project all
the points of Neig(si ) onto ∂Disk(si , rc),6 and view Sect(si )
as the “1-D convex hull” of the projected points of Neig(si )
on ∂Disk(si , rc) (see Fig. 4). Intuitively, the existence of the
NEP depends on the magnitude of angle α, which can be
formally expressed by the following lemma:

Lemma 2. For a given finite set Neig(si ), node si has an
NEP if and only if the angle α of Sect(si ) is larger than π .

Proof: See [8, Lemma 2]. Note that, different from [8],
the degenerate case in which there are only two vertices of
CH(Neig(si )) defining a line segment that contains si and
α = π , has been excluded here by Definition 5. �

Therefore, checking the existence of an NEP can be done
solely based on directional information.

4.2 NEP-based boundary node detection

Based on Lemma 2, the NEP-based boundary node detection
works as follows with node si as an example:

4.2.1 Input

The NEP-based algorithm does not require distances to si ’s
neighbors, but needs only directions to si ’s neighbors. There-
fore, we can use neighbors’ projections on ∂Disk(si , rc) as
their representations (i.e., s j is a point on ∂Disk(si , rc)). Ac-
cordingly, Sect(si ) can be determined by the two end points
on ∂Disk(si , rc). We consider only the case when ∂ Al is un-
available in this section, since this information cannot be
utilized even if it is available.

4.2.2 Algorithm

An intuitive way to check the existence of NEP is to
sort s j ∈ Neig(si ) according to their angles to si , and then
check if there is a gap greater than π in these angles. The

6 rc here can be replaced by any other value.
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Fig. 5 Illustration of the computation of Sect(si , q + 1) from
Sect(si , q)

average complexity of sorting is O(k log k), where k is the
number of neighbors. In the following, we describe how to
decide whether α > π in O(k) time by computing tenta-
tive Sect(si , n), where n is the number of neighbors used in
computing this tentative sector.

We first randomly take two points from Neig(si ), and
construct a tentative sector Sect(si , 2). Then we compute
Sect(si ) iteratively, by adding points to the tentative sec-
tor one by one. Given Sect(si , q) (q < k) and the next
point sq+1 randomly chosen from Neig(si ), if sq+1 is con-
tained in Sect(si , q), Sect(si , q + 1) = Sect(si , q). When
sq+1 /∈ Sect(si , q) and the antipodal point7 A(sq+1) of sq+1

is contained in Sect(si , q) (excluding end points), we can
immediately decide α > π without further computation.
When A(sq+1), sq+1 /∈ Sect(si , q), we update Sect(si , q) (the
shaded area in Fig. 5(a)) by adding to Sect(si , q) the sector
(the dashed area in Fig. 5(b)) which is from an endpoint of
Sect(si , q) to sq+1 and does not contain A(sq+1). This proce-
dure continues until it can be decided that α > π or Sect(si )
is computed and α is obtained.

4.2.3 Output

If α ≤ π , si ∈ BN(si ). However, when α > π , we cannot
decide whether si is a boundary node.

4.3 Validating the algorithm

We first give the relationship between LVPs and NEPs.

Theorem 4. The LVP LVor(si ) is infinite if and only if there
is no NEP for si .

Proof: We prove the first part by contradiction. Assume that
LVor (si ) is infinite. Since LVor(si ) is a convex set, LVor(si )

7 The antipodal point A(sq+1) is defined as the point on ∂Disk(si , rc)
that is on the ray staring at si and along the opposite direction of sq+1

and represented by the dotted open node in Fig. 5.
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Fig. 6 Illustration of the Proof of Theorem 4

must contain a half-infinite line starting from si and denoted
by −→siv in Fig. 6(a). Assuming that si ∈ CH(Neig(si )), we
can find a triangle �s j sksl such that si ∈ �s j sksl , where
s j , sk, sl ∈ Neig(si ). Without loss of generality, we assume
that −→siv intersects with s j sk (if −→siv goes through s j or sk , we
can directly get a contradiction). Since ∠s j si sk < π , then
∠s j siv or ∠vsi sk must be smaller than π/.2. If ∠s j siv <

π/.2, the bisector and perpendicular of s j si , i.e., uh, will
intersect with siv at point h. Obviously, all the points on hv

will be closer to s j than si , which contradicts the assumption
that −→siv ⊂ LVor(si ).

If si /∈ CH(Neig(si )), then all neighbors of si lie in a sector
with angle α < π (the shaded area in Fig. 6(b)). Let −→siv be
the half-infinite line starting from si with angle β where
β + α/.2 = π (cf. Fig. 6(b)). Therefore, for any point h on−→siv and s j ∈ Neig(si ), we can get ‖s j h‖ > ‖si h‖, because in
�si s j h we have γ ≥ β > π/.2. Hence −→siv ∈ LVor(si ), which
implies that LVor(si ) is infinite. �

When LVor(si ) is infinite, it cannot be fully covered by
Disk(si , rs). From Theorem 1, we can directly conclude that
si must be a boundary node if there is no NEP for si . There-
fore, the correctness of the algorithm is guaranteed.

4.4 Discussions on NEP-based detection

4.4.1 NEP-based detection for area coverage

Unlike the LVP-based algorithm, the NEP-based algorithm
cannot identify all the boundary nodes, which is the cost of
only using directional information. The two algorithms can
be combined in the following way. Since directional informa-
tion is relatively easier to obtain than distance information,
we assume that the former is available while the latter is
determined only when necessary. In the first step, a given
node checks whether it has no NEP, and if so, decides that
it is a boundary node. Otherwise, this node determines the
distances to neighboring nodes and then performs the LVP-
based algorithm. By doing so, although both algorithms need
to be executed for a few nodes, the overall energy consump-
tion and response time may be reduced in contrast to the
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case where only the LVP-based algorithm is used, as accu-
rate distance estimation may be both time-consuming and
energy-inefficient.

When each node can only obtain neighbors’s direction
information, it is easy to show that it is impossible to find
an algorithm to locally detect all the boundary nodes for
all situations. For NEP-based algorithm, it has already done
its best. However, note that only when we want to know
the coverage boundaries without any distortion, is the com-
plete information about all the boundary nodes necessary.
In practice, however, several degrees of distortion on the
“coverage image” is usually tolerable for the users to make
the decision. Moreover, the property of the coverage bound-
aries (e.g., boundaries always consist of continuous closed
curves) can be utilized for the users to recover some lost data
about boundaries. Therefore, we can still get the key infor-
mation about the coverage boundaries from partial bound-
ary nodes detected by NEP-based algorithm. The simulation
result supports our argument and is quite positive: the po-
sitions of nodes without NEPs can depict the major topol-
ogy shape of the connected coverage area (see Fig. 10 in
Section 5.1).

4.4.2 NEP-based detection for barrier coverage

If only directional information is available, only part of the
boundary nodes can be identified. In this case, how would the
coverage quality of the WSN be? Inspired by [7, 25], in the
following we will show that the NEP-based algorithm is very
useful for characterizing the WSN’s ability of detecting any
penetrating behavior of mobile object (or intruder) through
the protected area.

Definition 6. We say an intruder penetrates a polygonal
area A, if it enters the polygon from one side and leaves
from another along a continuous path. A penetrating path is
undetectable for Clust(si ) if it does not intersect Cover(si )
in area A. If there exists no penetrating path undetectable
for area A under the node set Clust(si ), we say Clust(si ) can
provide barrier coverage over area A.

Barrier coverage is weaker than area coverage (which
requires every point in A to be covered by nodes Clust(si )),
but it is widely used in many WSN applications such as
intrusion detection and border surveillance [7, 25]. The goal
in these applications is to detect intruders as they penetrate a
protected area instead of continuously surveilling every point
in the area. The following theorem shows that the information
about nodes without NEPs is sufficient to characterize the
barrier-coverage capability of a WSN.

Theorem 5. Let NNEP(si ) be the set of nodes without NEPs
in Clust(si ), then Clust(si ) can provide barrier coverage over

s1

s4

s2
s3

s15s14
s11

s9

s5 s6

s10

ph

communication path

penetrating path

( )( ) )( iCH NNEP s Disk∂ ⊕ 0

Fig. 7 Illustration of the proof of Theorem 5. Solid points represent
the nodes without NEP, and solid lines represent the convex hull of all
the nodes without NEP

the polygon CH(NNEP(si )), and the largest polygon LP(si )
over which Clust(si ) can provide barrier coverage is bounded
by

CH(NNEP(si )) ⊂ LP(si ) ⊂ CH(NNEP(si )) ⊕ Disk0. (14)

Proof: We prove this theorem by contradiction. Assume
that there is an undetectable penetrating path entering the
polygon CH (NNEP(si )) from one side (side s1s3 in Fig. 7),
and leaving from another side (side s14s15 in Fig. 7). This
penetrating path divides NNEP(si ) into two nonempty sets:
{s1, s2, s4, s11, s14} and {s3, s15}. Let us randomly select a
node from each set, say s4 and s15. Then there must exist
a communication path between s4 and s15 because they be-
long to the same cluster, i.e., s4 − s5 − s9 − s6 − s10 − s15 in
Fig. 7. Due to the property of the convex hull, this path at least
intersects the penetrating path at one point in CH(NNEP(si )).
By the definition of the communication path, all the points
on it are covered by Clust(si ), including the crossing points,
which contradicts the assumption that the penetrating path is
undetectable. Therefore, there is no undetectable penetrating
path in CH(NNEP(si )).

To give tight bounds of LP(si ), we need to prove that

CH(NNEP(si )) = CH(Clust(si )). (15)

By the definition of the convex hull, node si is the ver-
tex of Clust(si ) if and only if there is a supporting
line such that si is in one side and all the other nodes
Clust(si ) − {si } are in another side [4]. Therefore, the ver-
tex of CH(Clust(si )) must be the node without an NEP and
(15) holds. We have shown that Clust(si ) can provide bar-
rier coverage over CH(NNEP(si )), thus CH(NNEP(si )) ⊂
LP(si ). Since Cover(si ) ⊆ CH(Clust(si )) ⊕ Disk0, we have
LP(si ) ⊂ CH(Clust(si )) ⊕ Disk0. Combining this result with
(15), we obtain (14). Therefore, we can bound ∂LP(si ) be-
tween ∂CH(NNEP(si )) and ∂(CH(NNEP(si )) ⊕ Disk0) (the
shaded area in Fig. 7). �
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Fig. 8 Illustration of the Proof of Theorem 6, where dashed lines
represent the convex hull of Clust(si )

Note that ∂LP(si ) is the boundary of barrier coverage of
Clust(si ). Unfortunately, for the boundary of area coverage,
i.e., ∂Cover(si ), we cannot obtain such tight bounds for all
possible situations if knowing only the nodes without NEPs.
Also note that Theorem 5 only holds when rc ≤ 2rs , which
shows a big difference between area coverage and barrier
coverage.

4.4.3 NEP-based detection for connectedness

In addition to providing some important coverage informa-
tion, NEPs are directly related to the network connectivity.
This relationship can be used to facilitate distributed topol-
ogy maintenance which is a nice feature not provided by
LVPs. We first define the sensor node on the border ∂ Al , e.g.
si , as the sensor which satisfies Disk(si , rs) ∩ ∂ Al 
= ∅.

Theorem 6. If every sensor node (except sensor nodes on
the border) has an NEP, the network is guaranteed to be
connected.

Proof: We prove this by contradiction. Suppose the network
has two partitions, as shown in Fig. 8. For a node, e.g., s j , on
the boundary of the convex hull of cluster Clust(s j ), all the
neighbors all lie in the sector with angle α that is not greater
than the angle β of the convex hull. By the definition of the
convex hull, α ≤ β < π , which contradicts the assumption
that s j has an NEP and thus α > π . �

Unfortunately, we cannot conclude that the network must
be disconnected if one of the nodes that is not on the bor-
der does not have an NEP. Different from isolation (i.e., si

has no neighbors), disconnection is a relationship between
clusters, with which the detection cannot be completely
localized. This sufficient condition, however, is still useful
in preventing disconnection. Consider topology control [21]
as an example. Ascertaining that all the active nodes have an
NEP, we can design distributed sleep scheduling algorithms
to guarantee network connectedness. As another example, in

network self-monitoring applications where the BS needs a
global view of the network, detecting nodes without an NEP
can provide the early warning of network disconnectedness
and partitions.

5 Performance evaluation

In this section, we first validate the accuracy of our algo-
rithms by simulations. It is shown by theoretical analysis
and simulations that our algorithms outperform the existing
schemes in the literature in terms of energy consumption.

5.1 Validating the accuracy with simulation results

We have implemented the LVP-based and NEP-based algo-
rithms in � [1] and tested their performance on the large-
scale WSNs. Figure 9 shows the detection example of a large
scale WSN with an intended attack (physically destruction
such as the planned bombing of the WSN). The intention of
adversary is very clear, by destroying parts of sensor nodes,
disconnecting the WSN, and making a large part of the WSN
lose its function. Figure 9 gives some snap-shots of this pro-
cess, and the detection results of each state. The ROI is a
square with the size of 14rc × 14rc and originally deployed
sensors completely covered the ROI (see Fig. 9(a)). The
boundary nodes detected by the NEP-based algorithm are
displayed as darkened dots, and the additional ones detected
by the LVP-based algorithm are displayed as lightly shaded
dots. In addition, the theoretical coverage boundary is formed
by solid lines. It can be found that all the boundary nodes

rc

(a) (b)

(d)(c)

Fig. 9 Boundary detection results for large-scale WSNs
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(a) (b)

Base station

Fig. 10 Coverage boundary reconstruction results on the base station
with the NEP-based algorithm for the situation shown in Fig. 9(d)

are correctly detected. The effectiveness of our algorithms is
quite obvious.

As shown above, the LVP-based algorithm can detect
all the boundary nodes and give perfect information about
coverage boundaries. Although the NEP-based algorithm
cannot detect all the boundary nodes, it can still offer very
useful information. Consider Fig. 10 as an example. All the
boundary nodes determined by the NEP-based algorithm
send their positions and the directions of the areas that are
not covered to the sink, which in turn, can reconstruct the
coverage boundary based on such information. Figures 10(a)
and (b) show the “images of the boundary” when the sink
lies in the margin and center of the ROI, respectively. Such
results are quite positive because although the details of the
boundary are lost, the outline can be obtained.

5.2 Cost analysis

5.2.1 LVP-based approach vs. perimeter-based approach

After the deployment of the WSN, we assume localization
techniques are available for sensor nodes to decide their
positions. Each node then collects the position information
of its neighbors by broadcasting its own positions. Since
the connected coverage will change with time, each node
needs to check the existence of its neighbors periodically.
Our LVP-based approach and the perimeter-based approach
can both provide truly localized boundary node detection
with operational difference in the neighborhood checking
phase. In particular, the perimeter-based approach requires
each node to check the status of all its neighbors, which is
quite inefficient when sensor nodes are densely deployed.
This situation becomes worse every time when a node dies,
as all its neighbors need recheck the coverage of their perime-
ters or crossings. In contrast, our LVP-based approach only
uses consulting neighbors to perform boundary node detec-
tion. When sensor nodes are densely deployed, from Lemma
1, we have LVor(si ) or TLVor(si ) → Vor(si ), and it is well
known in computational geometry that under the homoge-

neous SPPP, the average number of vertices of Vor(si ) is 6
[27], which implies that when the node density is high, each
node on average only has 4 to 6 consulting neighbors. There-
fore, the higher the node density, the greater the benefit using
our scheme.

5.2.2 LVP-based approach vs. VP-based approach

Intuitively, LVP-based approach will have smaller com-
munication overhead or equivalently energy consumption
than the VP-based method since LVPs can be locally com-
puted. In what follows, we prove this intuition in a formal
way.

Theorem 7. If there exist boundary nodes, the costs of the
NEP-based and LVP-based algorithms are always smaller
than the cost of the VP-based one.

The proof of the theorem depends on the following lemma:

Lemma 3. For any si ∈ V , the VP Vor(si ) can be locally
computed if and only if Clust(si ) can completely cover the
plane R

2 (or Al , when the information of ∂ Al is available),
i.e., Cover(si ) = R

2 (or Cover(si ) ∩ Al = Al).

Proof: From Theorems 1 and 2, a node set can completely
cover R

2 if and only if LVor(si ) is fully covered by Disk(si , rs)
for any si ∈ V . From Lemma 1, this implies that Vor(si ) =
LVor(si ) for any si ∈ V . Therefore, Vor(si ) can be locally
computed by si just as LVor(si ).

Let d = max ‖v − si‖ for any v ∈ Vor(si ). Since Vor(si )
is a convex set, d = ∞ if Vor(si ) is infinite, otherwise d
is the distance from a vertex of Vor(si ) to si . Vor(si ) can
also be computed in a similar way as LVP with set V as
the input. We can determine that the construction of Vor(si )
is completed when all the nodes in Disk(si , 2d) have been
counted. Therefore, Vor(si ) can be locally computed, which
implies that 2d ≤ rc or d ≤ rs and thus guarantees the com-
plete coverage of Vor(si ). Since this holds for all si ∈ V , we
can ensure the complete coverage of the plane. �

Therefore, when there are boundary nodes, it is impossi-
ble to compute all Vor(si )’s locally based on only one-hop
information. Since multi-hop communications are unavoid-
able, the cost of the VP-based approach will be higher than
both LVP-based and NEP-based algorithms. Only when the
node density is so high that the ROI is completely covered
(not considering the ROI border), is the cost of the VP-based
approach equal to that of ours. However, in this case, there
is no need for coverage boundary detection at all. As a re-
sult Theorem 7 guarantees that when boundary detection
algorithms are helpful, the cost of our algorithms is defi-
nitely smaller than the VP-based one. The next question is
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how significant the cost savings are by using our algorithms,
which is answered in the rest of this section.

5.3 Evaluation of energy consumption for VP- and
LVP-based approachs

5.3.1 Evaluation settings

We assume that sensor nodes are distributed in a large
square region Al and form a homogeneous Spatial Pois-
son Point Process (SPPP) with density λ. Each node
knows its own position by GPS or existing localization
schemes such as [23]. For any measurable subset of Al with
area B,

Pr {finding i nodes in the region of area B} = (λB)i e−λB

i! .

Each node is expected to have k = πr2
c λ neighbors on av-

erage, and the expected number of nodes in Al is given by
n = λ · Al . We also assume that each node fails indepen-
dently and uniformly with probability p. It has been shown
that functional nodes still form a homogeneous Poisson point
process with density λ′ = (1 − p)λ [31]. Therefore, the net-
work can be uniquely identified by the current node density
λ (or equivalently k).

In general, no assumption should be made about the
distribution of the sensor nodes in the environment. Our
algorithms are designed to work correctly under arbitrary
node distributions. However, here we utilize homogeneous
SPPP as the node distribution model to facilitate the theo-
retical analysis and simulations in the performance evalua-
tion of our algorithms. It is well known that this model is
a good approximation of the distribution of sensor nodes
massively or randomly deployed (e.g, via aerial scatter-
ing or artillery launching) and can be easily extended to
characterize the process that nodes fail dynamically. In
addition, we let the side length l → ∞ (which implies
n = λAl → ∞). By doing so, we can infer the characteristics
of the whole network by just analyzing some “typical nodes”
(which are far away from ∂ Al) and ignoring the “boundary
effects” [29].

Based on the continuum percolation theory [26, 29], if
k ≤ 4.5, a 2-D network will be partitioned into O(n) small
clusters, which implies that the WSN will completely fail.
Previous work [14, 21] also points out that for n → ∞, the
ROI Al is completely covered with a high probability when
λ and k satisfy

πr2
s λ = π (rc/2)2λ = k/4 = log(n) + log log(n). (16)

When k is greater than this critical value, it is guaranteed
that there is no coverage hole in the network. Therefore, in

( ) ( )( )(a) , , 2j c i idisk s r disk s d s⊄

rc 2d(si)

si sj sk

( )( ), ,i j ksend s s pos s

( )( ),i ibcast s pos s ( )( ),k kbcast s pos s

rc

si
sj sk

( )( ), ( ),i j jbcast s d s pos s( )( ), ,i j ksend s s pos s

( )( ),i ibcast s pos s ( )( ),k kbcast s pos s

2d(si)

( ) ( )( )(b) , , 2j c i idisk s r disk s d s⊂

Fig. 11 Illustration of the communication procedure in VP/LVP com-
putation

what follows we will just consider the case when

4.5 < k < 4 log(n) + 4 log log(n). (17)

In our evaluation, in order to have a fair comparison, VPs
are computed in a similar way as LVPs with set V as the input.
Specifically, we first compute LVor(si ) as the tentative VP of
si , and then refine the tentative VP iteratively. In each itera-
tion, we add one more hop information about node positions.
Let d(si ) = max ‖v − si‖, for any v ∈ LVor(si ) (d(si ) = ∞
when LVor(si ) is infinite). Obviously, to guarantee the accu-
racy of the results, we only need to check the nodes in the
region Disk(si , 2d(si )).

To facilitate the analysis, we also assume that communi-
cations proceed in rounds (governed by a global clock) with
each round taking one time unit, and that there are effective
MAC-layer protocols supporting reliable communications.
Let ET and ER denote the energy consumed to transmit and
receive one bit, respectively, and SM be the size of message
M in bits. The procedure for computing VPs/LVPs/NEPs is
shown below (cf. Fig. 11).

Step 1. Every node si broadcasts its position si , and receives
its neighbors’ position messages. This step is enough for
computing LVPs and NEPs, and the energy consumption
of node si is (ET + k ER)Ssi . To compute VPs, we still
need to do the the following steps:

Step 2. Node si computes its tentative VP LVor(si ) with
position of s j where s j ∈ Neig(si ), and then broadcasts
d(si ) if d(si ) > rc. The energy consumption of si in this
step is (ET + k ER)Sd(si ).

Step 3. Upon receiving any d(s j ), node si checks the posi-
tions of its neighbors. If there is a node sk such that

sk ∈ Disk(s j , rc)� ∩ Disk(s j , 2d(s j )) ∩ Disk(si , rc),

node si reports sk’s position to node s j . If Disk(si , rc) ⊂
Disk(s j , 2d(s j )), node si still needs to broadcast d(s j ) and
s j ’s position.

Step 4. repeat step 3 until Disk(si , rc) 
⊂ Disk(s j , 2d(s j )).
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If constructing a VP needs m-hop information, the total
energy consumption in steps 3 and 4 will be

(m − 1)(ET + k ER)
(
Sd(s j ) + Ss j

)
. (18)

5.3.2 Theoretical results

Given the density λ, from the proof of Lemma 3, 2d(si ) can
be computed from (16) as:

2d(si ) =
(

4 log (n) + 4 log log (n)

πλ

)1/2

. (19)

The next step is to compute the number of hops needed to
reach 2d(si ). For the homogeneous Poisson point process,
hop-distance relationship has been derived in [9]:

E (m) =
{

1, d ≤ rc

0.5 + h · c, d > rc
(20)

where d = h · rc is the distance to reach, E(m) is the corre-
sponding expected number of hops, and c is a constant that
is close to two for a small k and to one as k becomes large.
Therefore, the number of hops needed for 2d(si ) > rc can be
calculated as:

E(m) = 1

2
+ c

rc

(
4 log(n) + 4 log log(n)

πλ

)1/.2

. (21)

The energy consumption of a typical node using the LVP-
based or NEP-based algorithm is

ECLVP = (ET + k ER)Ssi . (22)

It is difficult to precisely compute the total energy con-
sumption for transmitting position information of sensor
nodes in region Disk(si , rc)� ∩ Disk(si , 2d(si )) to si . One
way to handle this problem is to estimate it by the last hop
energy consumption:

ECL Hop = (ET + ER)
(
π (2d(si ))

2λ − πr2
c λ

)
Ssi . (23)

Therefore, the energy consumption for a typical node using
the VP-based algorithms will not be less than

ECVP = ECLVP + E(m)(ET + k ER)Sd(si )

+ (E(m) − 1)(ET + k ER)Ssi + ECL Hop.
(24)

For 4.5 < k < 4 log(n) + 8 log log(n), we have E(m) ≥ 1.5.
Since d(si ) is 1-D while si ) is 2-D data, we assume that
Ss j = 2Sd(s j ). Then we can get

ECVP

ECLVP
> 2.75. (25)

Obviously, the energy savings are significant. Note that
(25) holds for all 4.5 < k < 4 log(n) + 8 log log(n). For
a network with an inhomogeneous point distribution, we
can divide the network into a finite number of parti-
tions with different constant densities. If the densities are
all in (4.5, 4 log(n) + 8 log log(n)), the inequality (25) still
holds.

5.4 Simulation results

5.4.1 LVP-based approach vs. VP-based approach

We simulate a WSN with l = 200 m, rc = 20 m, Ss j = 64
bytes, ER = 0.6 μJ/bits, ET = 0.8 μJ/bit, and 4.5 < k < 45
(the range of k is derived from the Eq. (17)). Figure 12
shows the average node energy consumption for the VP-
based (ECVP) and the LVP-based or NEP-based (ECLVP)
algorithms as a function of k. We can see that the theoretical
values of ECLVP are always greater than the simulation re-
sults. The reason is that we treat nodes on the ROI boundary
as typical nodes in theoretical analysis, while these nodes in
fact have much fewer neighbors and thus have less energy
consumption. In addition, both theoretical and simulation re-
sults of ECLVP slightly increase as k becomes large, as the
reception energy consumption increases with the increasing
number of neighbors. By contrast, the theoretical results of
ECVP are always lower than the simulation results because
of the approximation in (23). We can also observe that the
difference becomes smaller with the increase of k. This is
due to the fact that the number of hops needed to reach 2d(si )
will become smaller with increasing k and our approxima-
tion will make more sense. In general, it is obvious that
our LVP-based algorithms can achieve remarkable energy
savings.
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coverage checking approach and LVP-based approach

5.4.2 LVP-based approach vs. perimeter-based approach

The simulation settings are the same as above. Figure 13
shows the average number of neighbor nodes needed for the
crossing-coverage checking approach and our LVP-based
approach to detect boundary nodes as a function of k. It
is of no surprise to observe that when the node density in-
creases, the number of nodes needed remains constant for
our LVP-based detection while increases dramatically for
the crossing-coverage checking approach. This means that,
in contrast to our approach, the crossing-coverage checking
approach will incur a significant overhead at the initial stage
of WSNs where sensor nodes are normally densely deployed
to provide adequate redundancy and fault-tolerance.

To sum up, the VP-based approaches only perform well
when functional nodes are densely deployed; the perimeter-
based approaches only work well when functional nodes are
sparsely deployed; and only our LVP-based approach works
equally well in both cases.

6 Conclusion

In this paper, we develop two deterministic, localized algo-
rithms for coverage boundary detection in WSNs. Our algo-
rithms are based on two novel computational geometric tech-
niques, namely, localized Voronoi and neighbor embracing
polygons. Theoretical analysis and simulation results show
that, our algorithms can be applied to WSNs of arbitrary
topologies with varying node densities and have the mini-
mal computation and communication costs, as compared to
previous proposals.

Appendix A: Remarks on disk sensing
and communication models

In this paper, we assume that both the sensing and communi-
cation ranges are regular disks (cf. Section 2.1). In practice,
however, it is well known that both the sensing and the com-
munication ranges are non-isotropic, i.e., sensors exhibit dif-
ferent ranges (in both sensing and communication) in differ-
ent directions [6]. According to [6], the sensing range of the
passive infrared (PIR) sensors in different directions roughly
conforms to a normal distribution probability model. For the
communication range, two non-isotropic models—the De-
gree of Irregularity (DOI) model and the Radio Irregularity
(RIM) model—are presented in [36].

However, regular disk models are widely used in studying
coverage and connectivity properties of WSNs as in [3, 12,
15, 20, 21, 33]. We still follow this approach for the following
two reasons:

First, in the cases where the irregular sensing and com-
munication ranges each has a lower bound, the sensing and
communication areas can be regarded as a disk with radius
equal to the lower bound. With this approach, our schemes
can provide a conservative estimation on the connected cov-
erage deterministically. For more general cases, our work
can be further extended to provide statistical coverage in-
ference. Since our BOND scheme detects boundary nodes
based on the real communications between neighbors, the
only thing we need to change is to adopt a statistical sensing
range model such as the one proposed in [6] and estimate the
corresponding statistical connected coverage.

Second, our schemes target at large-scale WSNs, where rc

and rs are relatively very small compared to the size of ROI.
Therefore, in general the inference error introduced by our
disk models is negligible compared to the total area of con-
nected coverage. The validity of disk model for large-scale
WSNs is intensively studied in the literature. It is shown in
[12] that claims about the connectivity and coverage made
under this “disk” abstraction generally also hold for more ir-
regular sensing and communication shapes found in practice.

Appendix B: Locality of boundary node detection

In this subsection we investigate further to show that it is
impossible to find localized algorithms for boundary node
detection with arbitrary node distributions when rc/rs < 2.
We first define what we mean by localized algorithms. This
definition is based on a model proposed in [28].

Definition 7. Assume that each computation step takes one
unit of time and so does every message to get from one
node to its directly connected neighbors. With this model, an
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Fig. 14 Non-locality of the boundary node detection when rc < 2rs

algorithm is called localized if its computation time is O(1),
in terms of the number of nodes n in the system.

Our LVP-based algorithm shows that when rc = 2rs , sen-
sors can locally determine if it is a boundary node. When
rc > 2rs , since the node will have more information about
other nodes around itself, it can still locally detect whether
it is a boundary node. However, in the case of rc < 2rs , in-
dividual nodes can neither locally say “yes” nor “no” to the
question of whether a given node is a boundary node. To
see this, consider sensors deployed as in Fig. 14. Obviously,
node si is an interior node. However, to confirm this, it needs
to know the existence of nodes s1 to s5 with the help of some
relay nodes (lightly shaded nodes). In Fig. 14(a), node s4 is
already 5 hops away from node si . In fact the distance be-
tween these two nodes can be arbitrary long, which is shown
in Fig. 14(b). Therefore, for arbitrary node distributions, it
is impossible to find a localized boundary node detection
algorithm that always works. In [3], the authors considered
general values of rc/rs with regular deployment patterns
such as the hexagon, square grid, rhombus, and equilateral
triangle. Unlike [3], in this paper, we prefer to make the
strict assumption on the value of rc/rs rather than on the
node distribution pattern. The reason is that even if in some
scenarios, the regular distribution of nodes is possible, it is
difficult to hold in practice due to inevitable node failures.
In contrast, even in the case of rc/rs < 2, we can still as-
sume a smaller value of rs in our algorithms while obtaining
a conservative inference of the coverage, which is desirable
for some security-critical applications.
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