
Wireless Networks 11, 243–254, 2005
C© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Strongly Consistent Access Algorithms for Wireless Data Networks

YUGUANG FANG∗
Department of Electrical and Computer Engineering, University of Florida, 435 Engineering Building, P.O. Box 116130, Gainesville, FL 32611

YI-BING LIN
Dept. Comp. Sci. & Info. Management, Providence University, TaiChung, Taiwan

Abstract. In wireless data networks such as the WAP systems, the cached data may be time-sensitive and strong consistency must be
maintained (i.e., the data presented to the user at the WAP handset must be the same as that in the origin server). In this paper, we study the
cached data access algorithms in such systems. Two caching algorithms are investigated. In Algorithm I, Pull-Each-Read, whenever a data
access occurs, the client always asks the server whether the cached entry in the client is valid or not. In Algorithm II, Callback, the server
always invalidates the cached entry in the client whenever an update occurs. Analytic models are proposed to evaluate the performance of
these algorithms. Our studies show that Algorithm II outperforms Algorithm I if the data access rate is high and the access pattern is irregular.
We also design an adaptive mechanism to effectively switch between the two algorithms to take advantages of both algorithms. We also apply
the single-level cached data access algorithms for the multi-level cache hierarchy. Our study indicates that with appropriate arrangement,
strongly consistent cached data access for wireless Internet (such as WAP) can be efficiently supported.

Keywords: cache access, strong consistency, wireless application protocol (WAP), wireless internet

1. Introduction.

The increasing Internet and multimedia applications are a ma-
jor factor that drives the new generation mobile network tech-
nology. It was indicated that more than 20% of the adult pop-
ulation of the US are interested in wireless Internet access. As
the advanced wireless infrastructure becomes available and the
inexpensive wireless handheld devices (e.g., wireless personal
data assistant and wireless smart phones) become popular, the
subscribers can enjoy instant wireless Internet access. The ser-
vices include sales force automation, dispatch, instant content
access, banking, e-commerce, and so on.

In a mobile network, however, wireless data are deliv-
ered with several constraints. In order to be portable, size and
weight establish limits for wireless handheld devices, which
result in a restricted user interface (small displays and key-
pads), less powerful CPU, low transmission power and reduced
memory capacity. Also, compared with its wireline counter-
part, the wireless network has limited bandwidth, limited trans-
mission power, longer latency, and a lower degree of reliabil-
ity. These limitations should be carefully addressed so that
the wireless handheld devices can access Internet applications
that are typically designed for desktop computers.

In June 1997, Ericsson, Motorola, Nokia and Phone.com
founded the Wireless Application Protocol (WAP) Forum. The
WAP forum has drafted a set of global wireless protocol spec-
ifications for many wireless networks, which has been con-
tributed to various industry groups and standards bodies. Most
handset manufacturers have committed to WAP-enabled de-

∗ Corresponding author.
E-mail: fang@ece.ufl.edu

vices, and many mobile operators have joined the WAP Fo-
rum. WAP has attracted significant attention for the follow-
ing reason. Until early 2000, wireless data services have not
been as successful as mobile network operators expected. By
providing a better environment to integrate Internet, WAP is
anticipated to significantly improve the wireless data market.

The WAP architecture [14,16,17] is illustrated in fig-
ure 1(a). In this architecture, the WAP Gateway interworks the
wireless network with the IP network, which allows a WAP
handset to obtain data from an origin server. To converge wire-
less data and the Internet, WAP integrates a light-weight web
browser into handheld devices with limited computing and
memory capacities. The wireless application protocols imple-
mented in the WAP Gateway and the WAP handset enable
a mobile user to access Internet web applications through a
client/server model. Furthermore, WAP supports User Agent
Profile (UAProf) [15] that allows a WAP handset to describe
its capability to application servers or other network entities so
that the servers/network entities can generate contents based
on the handset’s capability. This feature allows the applications
to exploit the maximum potential of WAP handsets.

To speed up wireless data access, the WAP user agent
caching model was proposed [15], which tailors the HTTP
caching model to support WAP handsets with limited func-
tions. Figure 1(b) shows a two-level cache hierarchy in WAP
environment. In this hierarchy, the WAP Gateway caches the
data entries from the origin server, and the WAP handset caches
the data entries from the WAP Gateway.

For cached items that will not be changed during user re-
trievals, they can be efficiently accessed by the WAP hand-
sets without revalidation. On the other hand, a time-sensitive
cached item is set to “must-revalidate”. If this cached item is

244 FANG AND LIN

Figure 1. The WAP architecture and a two-level caching model.

stale when the user tries to go back in the history, then the
user agent revalidates this cached item. In general, navigation
and processing within a single cached item does not require
revalidation except for the first fetch.

The HTTP caching model is sensitive to time synchroniza-
tion. Since WAP follows this model, a reliable time-of-day
clock should be maintained in the WAP Gateway. If a WAP
user agent does not have access to a time-of-day clock, it
should exchange the time-of-day request and response mes-
sage with the WAP Gateway and synchronize with the clock
value returned from the WAP Gateway. Another important is-
sue for caching is security. The private information in the user
agent cache is protected from unintended or malicious access.
WAP Gateways implementing a caching function must obey
all security-related considerations defined in HTTP.

Besides caching, complementary techniques such as
prefetching and push can also be used to speed up the web
access. Prefetching is based on the fact that after retrieving a
page from the origin server, the WAP user may spend some
time viewing the page. During this period the WAP handset
as well as the air link of the wireless network are idle, provid-
ing time which can be used to prefetch the next page. Thus
when the user proceeds to retrieve the information, the page
is available immediately. In this way, transmission delay can
be reduced. However, if the prefetched data is not used by the
user, the network resources used by prefetching are wasted. Of
course, if the prefetching is based on the best-of-effort, that is,
prefetch only whenever the resource is idle, then such network
resource wastage may not be a serious problem.

In the push mechanism, a trusted application server can
send information directly to the application environment for
processing. Push allows applications to alert the user when
time-sensitive information changes. Application-generated
events, such as telephony applications and emergency ser-
vices, can benefit from using push technology. To fully utilize
the push mechanism, users are allowed to register their inter-

ests (e.g., when and how often a data object should be pushed)
to the server. The server then pushes the data objects based on
the users’ interests.

This paper studies cached data access algorithms in wireless
environments such as WAP. We assume that the cached data are
time-sensitive and strong consistency must be maintained (i.e.,
the data presented to the user at the WAP handset must be the
same as that in the origin server). We first describe two strongly
consistent cached data access algorithms. Then we propose an
analytic model to evaluate the communication costs of these
algorithms. An adaptive mechanism is designed to effectively
switch between the two algorithms to reduce the communica-
tion costs. Then we apply the single-level cached data access
algorithms for the multi-level cache hierarchy. Our study in-
dicates that with appropriate arrangement, strongly consistent
cached data access for wireless Internet (such as WAP) can
be efficiently supported. A WAP prototype (with push mecha-
nism) has been developed in National Chiao Tung University.
One of our future research directions is to implement the adap-
tive mechanism for the strongly consistent cached data access
algorithms in our WAP prototype.

2. Strongly consistent cached data access algorithms

This section describes strongly consistent cached data access
algorithms for wireless WAP systems. For the discussion pur-
pose, we define the term “server” as the node that supplies
data, and the term “client” as the node that caches the data en-
tries received from the server. In figure 1(b), the origin server
and the WAP Gateway are a server-client pair, and the WAP
Gateway and the WAP handset are another server-client pair.

Several strongly and weakly consistent cached data access
algorithms were given in [18] for wireline computer networks.
In this paper, we investigate two strongly consistent algorithms
for wireless applications: poll-each-read and callback. In

STRONGLY CONSISTENT ACCESS ALGORITHMS FOR WIRELESS DATA NETWORKS 245

poll-each-read [5], the client always asks the server if the
cached entry is valid. If so, the server responds affirmatively.
Otherwise, the server sends the current data entry to the client.
There are two approaches to implement poll-each-read. In the
first approach, timestamps are used to indicate if a cached en-
try is up to date. The timestamp of a cached entry in the client
indicates when the entry was received by the client. The times-
tamp of the entry in the server indicates the latest time when
the entry was updated. Thus, by comparing the timestamps of
the entry in the client and the server, the server determines if
the cached entry in the client is out of date. The timestamp of a
cached entry can be maintained by the client or by the server. If
the client is a WAP handset, the cached capacity is limited. In
this case, the information should be maintained by the server.
This implies that the server should have a caching timestamp
table for each client. In WAP, this table can be implemented
in UAProf, a User Agent Profile discussed in [9].

Instead of using timestamps, we propose the following im-
plementation for poll-each-read using validation bits. In this
approach, the server maintains a validation bit cv for each of
the clients who have the cached entry. The algorithm works as
follows:

Algorithm I. Poll-Each-Read

I.1. Entry Update (Server). When a data entry is updated,
for every client that has the cached entry, the server sets
cv to 0. Note that “0” implies that the entry is invalidated.

I.2. Entry Access (Client). To access a data entry, a client
sends an entry access message to the server. The mes-
sage contains an access type bit ca . If the client does not
have a cached entry (either the entry is first accessed or
was replaced), then ca is 1. In this case, the entry in the
server should be sent to the client. If the client has the
cached entry, then ca is set to 0. In this case, the cached
entry should be validated by the server.

I.3. Entry Access (Server). The server receives an entry ac-
cess message from a client. Let cv be the validation bit
for that client.

I.3.1. If the client does not have the cached entry (i.e.,
ca = 1), the server sends the entry to the client, and
cv is set to 1.

I.3.2. If ca = 0 and cv = 0, then the server sends the
data entry to the client. The bit cv is set to 1.

I.3.3. If ca = 0 and cv = 1 then the server returns vali-
dation affirmation to the client.

Figure 2. Data entry access and update in poll-per-read.

Figure 2 shows the messages exchanged between the server
and the client for a update and access sequence of a data entry
with poll-each-read. In this example, accesses occur at times
t0, t1 and t3. An update occurs at time t2. The first access to
the data entry occurs at time t0. Since the client does not have
a cache copy, it sends an entry access message with ca = 1
to the server (Step I.2). The server sends the data entry to the
client and sets the validation bit cv to 1 (Step I.3.1). The second
access request occurs at time t1. Since the client already has a
cache copy, it sends an entry access message with ca = 0. The
server finds that cv = 1 and the cached entry in the client is
valid. The server sends an affirmation to the client (Step I.3.3).
The client then uses the cached entry. At time t2, an update to
the data entry occurs. The cv bit is set to 0 (Step I.1). When
another access occurs at time t3, the data entry is sent from the
server to the client (Step I.3.2) because the cached entry in the
client is invalid.

In the callback approach [5,12], when modifying a data en-
try, the server either invalidates the cached entry in the clients
or send the current data entry to the clients. Figure 3(a) gives
a scenario for entry update and access with callback, where
the current data entry is always sent to the client when it is
updated at the server. In this example, the first access occurs at
time t0. Since the client does not have a cache copy, the data is
obtained from the server. At time t1, the second access occurs
and the client utilizes the cached entry. Then four consecutive
updates occur at times t2, t3, t4, and t7, respectively. The data
entry is sent from the server to the client at each update. At
times t5, t6, and t8, the accesses occur and the cached entry
is utilized. In the above scenario, all data accesses are per-
formed locally at the client. Thus, the data access can be done
quickly. However, the requirement of the entry sending per
update may unnecessarily consume transmission bandwidth.
In figure 3(a), the data sendings at time t2 and t3 are not nec-
essary because the data entry is not accessed before time t5.
These unnecessary data sending can be avoided if the server
invalidates the client copy when an update occurs. We propose
the following modified algorithm where the server maintains
a validation bit cv for each of the clients that have the cached
entry.

Algorithm II. Callback

II.1. Entry Update (Server). When an update occurs, for ev-
ery client that has the cached entry, if cv = 1, the server
sends an invalidation message to the client. Then the
server sets cv to 0.

246 FANG AND LIN

Figure 3. Data entry access and update in callback.

II.2. Entry Update (Client). When the client receives the in-
validation message, the cached entry is invalidated and
the storage can be reclaimed to cache another data en-
try. The client sends an acknowledgment message to the
server.

II.3. Entry Access (Client). If the cached entry exists, then
the client uses the cached entry. Otherwise, the client
sends an entry access message to the server. Eventually,
the client will receive the data entry from the server.

II.4. Entry Access (Server). When the server receives an en-
try access message from a client, it sends the data entry
to the client. Let cv be the validation bit for that client.
The server sets cv to 1.

From the above description, we observe the following fact:

Fact 1. In Algorithm II, a data entry is in the cache if the
cached entry is valid.

Algorithm II attempts to avoid unnecessary updates described
in figure 3(a). Figure 3(b) shows the communication between
the server and the client for the update and access sequence
given in figure 3(a). In this scenario, the data entry is sent to the
client three times (comparing to five times in figure 3(a)). The
disadvantage of Algorithm II is that the access delay at time t8
is longer than that in figure 3(a). Compared with Algorithm I,
Algorithm II does not require the client to check with the server
for every data access. On the other hand, for data invalidation
in Algorithm II, the server needs to invalidate all clients who
have the cached entry. In the subsequent sections, we analyze
the performance of Algorithms I and II.

3. Analytical models for single-level cache

To our understanding, most performance studies for web
caching were conducted by tracing specific web applications.

For example, the work in [19] utilized log files from Boston
University. While the trace driven approach can study the be-
havior of specific cases, the results may not be generalized. In
this and the subsequent sections, we propose analytical model
to analyze Pull-Each-Read and Callback. With the Gamma
distributions for the access and the update patterns, general
conclusions (such as the impact of the variance of the ac-
cess/update patterns) can be drawn in our study.

Let α be the probability that there are at least one update
between two data accesses. Let x be the cost for data entry
access message or validation/invalidation message, and y be
the cost for delivering a data entry from the server to the client.
Both x and y can be measured by bytes. Note that the costs x
and y may not be different if the radio characteristics of uplink
and downlink transmissions are considered. For simplicity, we
assume that costs for the data entry access message, validation
message, and invalidation message are all the same. It is clear
that our results can be easily extended for the case that they
are not the same. In Algorithm I, for every data access, the
client sends an entry access message to the server at Step I.2
(with cost x). With probability α the entry is sent back to the
client at Step I.3.2 (with cost y) and with probability 1 − α a
validation affirmation message is sent from the server to the
client at Step I.3.3 (with cost x). Thus for Algorithm I, the
communication cost CI per data access is

CI = x + αy + (1 − α)x = α(y − x) + 2x (1)

Consider data access in Algorithm II. If the cached entry is
valid (with probability 1 − α), the client utilizes the cached
entry without any communication between the client and the
server. If the cached entry is obsolete, then an invalidation mes-
sage pair is exchanged by the client and the server at Steps II.1
and II.2 (with cost 2x). To access a data entry, the client sends
an entry access message to the server at Step II.3 (with cost x)
and the server returns the valid entry to the client at Step II.4

STRONGLY CONSISTENT ACCESS ALGORITHMS FOR WIRELESS DATA NETWORKS 247

Figure 4. Timing diagram for deriving α.

(with cost y). Thus the communication cost CI I per data access
for Algorithm II is

CI I = α(2x + x + y) = α(3x + y) (2)

Remark. We may apply some cost factors to indicate the cost
difference of messages flowing in different directions, which
may reflect different transmission limitations. For example,
between the gateway and the WAP handset, the transmission
power for WAP handset may be critical due to battery-powered
nature, we may use high cost coefficient to the messages from
the WAP handset than the ones from the WAP gateway. How-
ever, we will not explicitly express this cost factor in this paper
for simplicity of presentation, most results can be easily mod-
ified if we do.

In (1) and (2), the probability α plays an important role,
which can be derived as follows. Consider the timing diagram
in figure 4. Suppose that an access arrives at time t1. The last
update before t1 occurs at time t0. The next update after t1
occurs at time t2 and the next access occurs at time t3. The
inter arrival time of update is τ0 = t2 − t0, and the inter arrival
time of access is τ2 = t3 − t1. Let τ1 = t2 − t1 be the period
between an access and the next update. Assume that both τ0

and τ2 are random variables. Let fu be the density function
of τ0 with mean 1/λ and fa be the density function of τ2

with mean 1/µ, both of which have Laplace transforms f ∗
u (s)

and f ∗
a (t), respectively. Let ru(t) and r∗

u (s) be the probability
density function and Laplace transform for τ1. Let random
variable K be the number of updates occurring between two
accesses. Then

α = Pr[K > 0] = Pr[τ1 < τ2]

Following similar argument used in [4], we obtain

α = Pr(τ1 ≤ τ2)

=
∫ ∞

0
Pr(τ1 ≤ t) fa(t) dt

=
∫ ∞

0

(
1

2π j

) {∫ σ+ j∞

σ− j∞

[
r∗

u (s)

s

]
est ds

}
fa(t) dt

=
(

1

2π j

) ∫ σ+ j∞

σ− j∞

[
r∗

u (s)

s

] [∫ ∞

0
fa(t)est dt

]
ds

=
(

1

2π j

) ∫ σ+ j∞

σ− j∞

[
r∗

u (s)

s

]
f ∗
a (−s)ds

where σ is sufficiently small positive number. Let σa denote
the set of poles of f ∗

a (−a) in the strict right complex plane,

applying the Residue Theorem, we obtain

α = −
∑
p∈σa

Ress=p

[
r∗

u (s)

s

]
f ∗
a (−s)

= −
∑
p∈σa

Ress=p

[
λ(1 − f ∗

u (s))

s2

]
f ∗
a (−s) (3)

Similarly, we can obtain

α = 1 +
∑
p∈σu

Ress=p

[
f ∗
a (s)

s

]
r∗

u (−s)

= 1 −
∑
p∈σu

Ress=p

[
λ f ∗

a (s)

s2

]
(1 − f ∗

u (−s))

= 1 +
∑
p∈σu

Ress=p

[
λ f ∗

a (s)

s2

]
f ∗
u (−s) (4)

where σu is the set of poles of r∗
u (−u) and f ∗

u (−s) in the right
half complex plane (notice that r∗

u (−s) and f ∗
u (−s) share the

same set of poles). For the demonstration purpose, we consider
two cases:

Case A. When τ0 has an exponential distribution (i.e., the ar-
rivals of updates form a Poisson process where fu(τ0) =
λe−λτ0) and τ2 has a general distribution, from (4) we
can easily obtain

α = Pr[K > 0] = 1 − f ∗
a (λ) (5)

Case B. When τ0 has a general distribution and τ2 has an
exponential distribution where (fa(τ2) = µe−µτ2), from
(3) we obtain

α = Pr[K > 0] = r∗
u (µ) =

(
λ

µ

)
[1 − f ∗

u (µ)] (6)

Since the probabilityα will be extensively used in the subse-
quent development, we present another approach for its com-
putation. This approach is based on distribution model called
phase-type distribution. It is well-known that [8] the phase-
type distributions (PH) are dense in the set of all distributions
in [0, ∞), i.e., any distribution of a nonnegative random vari-
able can be approximated by Phase-type distributions. The
exponential distribution, the Erlang distributions, the hyper-
exponential distribution and the hyper-Erlang distribution are
all special cases of PH distributions. The advantage of PH
distributions is that most computations are reduced to matrix
manipulations. A PH distribution is the distribution of the time
till absorption into the absorbing state 0 in a finite state Markov
chain with states {0, 1, 2, . . . , n} and with initial probability
vector (ζ0, ζ) and infinitesimal generator

Q =
(

0 0
t T

)

where ζ is row vector of size n and T is an n×n matrix. It can be
shown [8] that this distribution can be uniquely determined by
the pair (ζ, T), so we say that a random variable X is P H (ζ, T)
if X is PH distributed with parameter (ζ, T). In fact, a random

248 FANG AND LIN

variable with P H (ζ, T) has the following probability density
function

f (x) = −ζ exp(T x)T 1T , x ≥ 0

where 1T is the column vector of all 1’s with the same dimen-
sion as the matrix T (i.e., if T is an n × n matrix, then 1T will
be an n-dimensional vector). We need the following result:

Lemma 1 [1,8].

(1) Assume that F(x) is the cumulative distribution function
of a random variable with P H (ζ, T) with expectation
1/µ, then the distribution µ[1 − F(x)] is also PH dis-
tributed with P H (π, T) where π = (ζ T −11T)−1ζ T −1.

(2) Assume that random variables X and Y are independent
with P H (ζ, T) and P H (ν, S), respectively, then

Pr(X ≤ Y) = (ν ⊗ ζ)(−S ⊕ T)−1(1S ⊗ (−T 1T)).

where ⊗ indicates the Kronecker product and ⊕ denotes
the Kronecker sum. Assume that the inter-update time τ0 is
P H (ζ, T) and inter-access time τ2 is P H (ν, S), then from
Lemma 1 we conclude that τ1 is also PH distributed with
P H (π, T) with π = (ζ T −11T)−1ζ T −1. Applying Lemma 1
again, we obtain

α = Pr(τ1 ≤ τ2) = (ν ⊗ π)(−S ⊕ T)−1(1S ⊗ (−T 1T)),

π = (ζ T −11T)−1ζ T −1. (7)

By directly applying PH distributions (e.g., hyper-exponential
and Erlang) into (5), (6), and (7), it is apparent that these
equations are the same. Equations (5) and (6) can be quickly
computed when the distributions have simple form for Laplace
transforms. On the other hand, (7) can be easily used for Phase-
type distributions which may have complicated Laplace trans-
forms.

Based on (5) and (6), figure 5 plots the α values for Cases A
and B. In this figure, the Gamma distributions are considered
for τ2 in Case A and τ0 in Case B. Thus,

f ∗
a (s) =

(
1

1 + µvs

) 1
µ2v

and f ∗
u (s) =

(
1

1 + λvs

) 1
λ2v

Figure 5. The α values for various entry access and update distributions (Solid curves: Case A; dashed curves: Case B).

in Cases A and B, respectively, where v is the variance of
the Gamma distribution. The Gamma distribution is selected
because it can be used to approximate many other distributions
as well as measured data [6,7]. Gamma distributions are used
in several mobile network studies [1–4]. Figure 5 indicates that
both Cases A and B show the same trends for the α curves,
namely, α decreases as µ/λ and v increase. In the remainder
of this paper, we only consider Case A. The results for Case
B are similar and are omitted.

Based on (1) and (2), figure 6 plots CI and CI I against
µ, where both τ0 and τ2 are exponentially distributed. The
figure indicates that when µ is small CI I > CI , and when µ is
large, CI > CI I . That is, Algorithm I outperforms Algorithm
II when there are more updates. On the other hand, Algorithm
II outperforms Algorithm I when there are more accesses.

Figure 7 shows the impact of variance v of the τ2 (inter
access time) distribution where the inter update times are ex-
ponentially distributed and y = 10x . We observe that when
v increases, both CI and CI I decrease. This phenomenon is
explained as follows. Large variance implies that the data
access pattern becomes irregular (i.e., there are more long
and short τ2). For those short τ2, it is likely that no update
occurs between two accesses. For those long τ2, many up-
dates may occur between two accesses. However, only one
of them will cause the client to access the entry from the
server.

We also observe that when update frequency is high (i.e.,
µ = 0.1λ in figure 7), Algorithm II may outperforms Algo-
rithm I if v is sufficiently large. That is, Algorithm II benefits
more on the increase of v than Algorithm I does.

The analysis in this section assumes that the cached en-
tries in the client are not replaced. This assumption may hold
when the client is the WAP Gateway (where memory storage
is large). However, it is not true if the client is a WAP handset.
In this case, (1) and (2) are re-written as

CI = (1 − γI)(x + y) + γI

[
α(y − x) + 2x

]

CI I = (1 − γI I)(x + y) + αγI I (3x + y)

where γI and γI I are the cache hits (the probability that the
cached entry is found at an access) for Algorithms I and II,

STRONGLY CONSISTENT ACCESS ALGORITHMS FOR WIRELESS DATA NETWORKS 249

Figure 6. Impact of µ/λ on CI and CI I (Solid curves: CI ; dashed curves: CI I).

Figure 7. Impact of distribution variance v on CI and CI I .

respectively. Note that when exercising the same cache re-
placement algorithm, the cache hits may be different for these
two algorithms. As described in the next section, γI I ≥ γI is
expected. Due to the page limitation, the impact of the cache
replacement algorithms (such as LRU) will not be elaborated
in this paper, but will be addressed elsewhere [10].

4. Other performance measures for single-level cache

This section considers two performance measures other than
the communication costs. We first study the number of inval-
idation messages sent from the server to the client in Algo-
rithm I. Then we investigate how long the stale cached entry
will occupy cache storage in Algorithm II.

4.1. Invalidation messages sent in callback

If there are K updates between two accesses, then the data
entry is sent to the client K times in the traditional callback
algorithm (see the example in figure 3(a)). In Algorithm II,
only the first one of these K updates results in an invalidation

message sent from the server to the client. Let β be the portion
of updates that can be ignored in Algorithm II. Then

β = E[(K − 1)+]

E[K]

where

X+ =
{

X X ≥ 0

0 X < 0
From the Little’s law [13]

E[K] =
∞∑

k=0

k Pr[K = k] = λ

µ

The expected value E[(K − 1)+] is derived as follows:

E[(K − 1)+] =
∞∑

k=1

(k − 1) Pr[K = k]

= E[K] − Pr[K > 0] = E[K] − α

and

β = 1 −
(µ

λ

)
α

where the computation of α was given in the previous section.
From (5), when the updates form a Poisson process, we have

β = 1 −
(µ

λ

)
[1 − f ∗

a (λ)] (8)

From (6), when the accesses form a Poisson process, we have

β = 1 −
(

λ

µ

) (µ

λ

)
[1 − f ∗(µ)] = f ∗

u (µ)

Figure 8 plots the β curves based on (8). We assume that
τ2 has a Gamma distribution with mean 1/µ and variance v.
The figure indicates that Algorithm II can ignore most updates
when the data access pattern becomes irregular (i.e., when v

is large). The variance v has more impact on β when µ

λ
is

large.
As we mentioned before, for an update in Algorithm II,

the server needs to invalidate all clients who have the cached

250 FANG AND LIN

Figure 8. The portion β of invalidation messages saved in callback.

entry. For every client, the communication cost for this opera-
tion is already considered in (2). For the server, the processing
cost for sending invalidation messages to multiple clients may
be expensive. In WAP, the applications in origin server are
typically implemented for a small number of WAP Gateways
belongs to a specific mobile operator (in Taiwan, most origin
servers are associated with one WAP Gateway). Thus, if Al-
gorithm II is implemented between the origin server and the
WAP Gateway, the invalidation processing cost at the origin
server is not a problem. On the other hand, to implement Al-
gorithm II between the WAP Gateway and the WAP handsets,
processing power and transmission power should be consid-
ered in the WAP Gateway for energy conservation at the WAP
handset.

4.2. Invalid period in poll-each-read

Define the invalid period as the period between the instant that
an update occurs and the instant that the next access arrives. In
figure 4, the invalid period is (t3 −t2)+ = (τ2 −τ1)+. We notice
that when there is no update between two accesses (which is
the case when t3 < t2, the cached item is valid, thus the invalid
period in this case is zero. In the invalid period, the cached entry
in the client unnecessarily occupies cache storage in Algorithm
I if the entry is not replaced. In Algorithm II, the cached entry
is invalidated as soon as the entry is updated, and the storage
can be re-used during the invalid period. Thus it is anticipated
that the cache utilization for Algorithm II is better than that
for Algorithm I. Define E[Tinv] as the expected invalid period
between two data accesses. E[Tinv] is derived as follows:

E[Tinv] =
∫ ∞

0

∫ ∞

0
(τ2 − τ1)+ru(τ1) fa(τ2) dτ1 dτ2.

Although we can derive more general case, for the simplicity,
we concentrate on two special cases. When the updates form
a Poisson process, τ0 and τ1 will be exponentially distributed
with the same distribution λ exp(−λτ1), hence we have

E[Tinv] =
∫ ∞

τ2=0

∫ τ2

τ1=0
(τ2 − τ1)λe−λτ1 fa(τ2) dτ1 dτ2

= 1

µ
− 1

λ
(1 − f ∗

a (λ)) (9)

Define θ as the portion of invalidation time in an inter access
arrival time period, then

θ = E[Tinv]

E[τ2]
and from (9)

θ = 1 −
(µ

λ

)
[1 − f ∗

a (λ)]

which is the same as (8). When the accesses form a Poisson
process, τ2 is exponentially distributed with probability den-
sity function µ exp(−µτ2). Thus,

E[Tinv] =
∫ ∞

τ1=0
ru(τ1)

∫ ∞

τ1

[(τ2 − τ1) fa(τ2)dτ2] dτ1

=
∫ ∞

τ1=0
ru(τ1)

∫ ∞

τ1

[
(τ2 − τ1)µe−µτ2 dτ2

]
dτ1

=
∫ ∞

τ1=0
ru(τ1)

∫ ∞

τ1

[
1

µ
exp(−µτ1)

]
dτ1

= 1

µ
r∗

u (µ) = λ

µ2
(1 − f ∗

u (µ)) (10)

and

θ = λ

µ
(1 − f ∗

u (µ)).

If we plot the θ curves based on (8), then these curves are the
same as the β curves in figure 8. We observe that Algorithm I
may keep stale entry for a long time (and thus the cache is not
efficiently utilized) if the access pattern is irregular (i.e., v is
large) and µ/λ is small.

5. Adaptive algorithm for single-level cache

From (1) and (2), we can derive when Algorithm I outperforms
Algorithm II and vice versa.

CI > CI I ⇔ α(y − x) + 2x > α(3x + y)

⇔ 2x > 4αx

⇔ α <
1

2
(11)

Based on (11), we propose an adaptive algorithm to dynam-
ically switch the cached access algorithm exercised between
the server and the client. In this adaptive algorithm, the server
keeps two counters for a data entry. Define a cycle as the period
between two consecutive data accesses. In figure 4, the period
[t1, t3] is a cycle. Figure 9 shows four cycles, where updates
occur in Cycles 1 and 3. The counter nu measures the number

Figure 9. Updates in cycles.

STRONGLY CONSISTENT ACCESS ALGORITHMS FOR WIRELESS DATA NETWORKS 251

Figure 10. Comparison of the adaptive algorithm and Algorithms I and II.

of the cycles that have updates in the cycles, and the counter
nc measures the number of the cycles in an observed period.
Thus, during an observed period,

α = nu

nc
(12)

If the observed period is the four cycles in figure 9, then nu = 2,
nc = 4, and α = 0.5. When Algorithm I is exercised, the server
increments nc by one at Step I.3 (when the server receives an
entry access message from the client), and increments nu by
one at Step I.3.2 (when the server sends the data entry to the
client). When Algorithm II is exercised, every cached entry
in the client keeps a count n∗

c to record the number of ac-
cesses since the last update. At Step II.3, if the cached entry
exists, the client uses the cached entry and increments n∗

c by
one. At Step II.1, the server increments nu by one if an inval-
idation message is sent to the client. At Step II.2 (an update
occurs), the client sends the n∗

c value to the server through the
acknowledgment message, and then sets n∗

c to 0. When the
server receives the acknowledgment from the client, it incre-
ments nc by the amount n∗

c . When nc is larger than a predefined
value Nc, then the server computes α using (12), and deter-
mine which algorithm should be exercised based on (11). Then
both counters nc and nu are reset. Our experiments indicate
that when Nc ≥ 5, the adaptive algorithm can accurately se-
lect the algorithm with lower communication cost. Figure 10
plots the communication costs for the adaptive algorithm (i.e.,
Cadaptive), Algorithms I and II. The nc values in the adaptive
algorithm is 10. The figure indicates good performance for the
adaptive algorithm.

6. Analysis of multi-level cache

Suppose that there are n > 1 nodes in the data path between
the origin server and the WAP handset (including these two
nodes). Let node 0 be the origin server and node n − 1 be
the WAP handset. Suppose that node j (1 ≤ j ≤ n − 1) has a
cache and the cached data access algorithm A[j] is exercised,

where

A[j] =
{

I, for Algorithm I

I I, for Algorithm II

There are two facts for multi-level cached data access algo-
rithm:

Fact 2. Assume that A[j] = A[j +1] = I I (0 < j < n −1).
When node j receives an invalidation message for a cached
entry, node j should also sends an invalidation message to
node j + 1 if the status of the cached entry at node j + 1
is valid.

It is clear that Fact 2 must hold, otherwise Fact 1 in Section 2
is violated.

Fact 3. For 0 < j < n − 1, if A[j] = I then A[j + 1] = I .

We prove by contradiction that Fact 3 holds. Assume that
A[j] = I and A[j + 1] = I I . When a data entry at node 0 is
modified, the cached entry at node j is not modified until the
next access of this entry occurs. Thus, no invalidation message
for this entry is sent from node j to node j + 1 and Fact 1 is
violated at node j + 1. Thus, the value for A[j + 1] must be
I .

The communication cost C[j] for an entry access between
node j and node 0 is

C[j] =
{

0, j = 0

CA[j] + α j C[j − 1], 1 ≤ j < n
(13)

where from (1) and (2)

CA[j] =
{
α j (y j − x j) + 2x j , A[j] = I

α j (3x j + y j), A[j] = I I
(14)

In (14), x j represents the communication cost for the entry ac-
cess message or the validation/invalidation message between
node j and j − 1, y j represents the communication cost for
delivering a data entry from node j − 1 to node j , and α j

represents the α value of the cache at node j .
Consider the two-level cache architecture in figure 1(b).

Suppose that there are N WAP handsets connected to the
WAP Gateway. The update rate is λ and the access rate at
a WAP handset is µ. Let CA[1],A[2] be the C[2] cost where the
WAP Gateway exercises Algorithm A[1] and the WAP hand-
set exercises Algorithm A[2]. From (13), the cost CA[1],A[2] is
expressed as

CA[1],A[2]

=

α2(y2 − x2) + 2x2 + α2[α1(y1 − x1) + 2x1],

A[1] = I, A[2] = I

α2(y2 − x2) + 2x2 + α2α1(3x1 + y1),

A[1] = I I, A[2] = I

α2(3x2 + y2) + α2α1(3x1 + y1),
A[1] = A[2] = I I

(15)

252 FANG AND LIN

Figure 11. Performance of two-level cached data access algorithms (N = 100, y2 = 10x2, x1 = 0.5x2, y1 = 5x2).

The probabilities α1 and α2 are derived as follows. We only
consider Case A. From (5), at the WAP handset, we have

α2 = 1 − f ∗
a (λ)

At the WAP Gateway, if callback is exercised at the WAP
handset, then the data access rate is

µI I,WAP-Gateway = α2 Nµ (16)

because only α2 of the accesses at a WAP handset will results in
accesses at the WAP Gateway. If poll-each-read is exercised
at the WAP handset, then the data access rate at the WAP
Gateway is

µI,WAP-Gateway = Nµ (17)

If N is large enough, then the accesses to the WAP Gate-
way becomes a Poisson process [11]. Thus α1 can be derived
by using (16) and (5) for A[2] = I I and be serviced by us-
ing (17) and (5) for A[2] = I , where the inter access times
are exponentially distributed (v = 1). Figure 11 shows the the
communication costs for various two-level cached data access
algorithms. In this figure, N = 100, y2 = 10x2, x1 = 0.5x2,

Figure 12. Performance of two-level cached data access algorithm (cont.;
A[1] = A[2] = I, y2 = 10x2, x1 = 0.5x2, y1 = 5x2).

and y1 = 5x2. This figure indicates that when the access rate
µ is small, CI I,I I > CI I,I , CI,I . When the access rate is large,
the result reverses. Furthermore, when the access pattern of a
WAP handset is more irregular, the communication costs of
the two-level cached data access algorithms become smaller.
Figure 12 shows the impact of N on the performance of
two-level cached data access algorithms. The figure indicates
that the communication cost reduces as N increases. This re-
sult is consistent with what we observed before. As N in-
creases, the access rate at the WAP Gateway increases, and it
is more likely that WAP Gateway will have current copy of
the data entry. For N > 200, the impact of N becomes less
significant.

If A[1] = I I , then the adaptive mechanism in Section 5 can
be exercised between the WAP Gateway and the WAP handset
to reduce the communication cost.

7. Conclusions

This paper investigated two cached data access algorithms for
strongly consistent wireless data. In Algorithm I the client al-
ways asks the server if the cached entry in the client is valid
when a data access occurs. In Algorithm II, the server always
invalidates the cached entry in the client when an update oc-
curs. We proposed an analytical model to derive the communi-
cation costs of these two algorithms. Let α be the probability
that there are updates between two data access. Our derivation
indicates that Algorithm II outperforms Algorithm I if and
only if α < 1/2. A small α occurs if the access rate is large
compared with the update rate and/or the data access pattern
is irregular (the variance of the inter access time distribution
is large).

Based on the α statistics we designed an adaptive mech-
anism that switches between Algorithms I and II to reduce
the communication cost for cached entry accesses. Our study
indicates that this mechanism effectively selects the access
algorithm with lower communication cost.

STRONGLY CONSISTENT ACCESS ALGORITHMS FOR WIRELESS DATA NETWORKS 253

We also extended our algorithm for two-level cache hierar-
chy where the WAP Gateway has the first level cache and the
WAP handsets have the second level caches. Our study pro-
vided guidelines to select data access algorithms under various
traffic patterns. A WAP prototype (with push mechanism) has
been developed in National Chiao Tung University. One of our
future research directions is to implement the adaptive mecha-
nism for the strongly consistent cached data access algorithms
in our WAP prototype.

Acknowledgments

The authors would like to express their gratitude to the Editors
and the reviewers for their valuable comments which have
greatly enhanced the quality of this paper.

The work of Fang was supported in part by US Na-
tional Science Foundation under Faculty CAREER Award
ANI-0093241 and under grant ANI-0220287, and by the US
Office of Naval Research under Young Investigator Award
N000140210464 and under grant N000140210554. The work
of Lin was sponsored in part by MOE Program for Promoting
Academic Excellence of Universities under the grant number
89-E-FA04-1-4, FarEastone, IIS/Academia Sinica, CCL/ITRI,
National Telecommunication development Program (NTP),
and the Lee and MTI Center for Networking Research,
NCTU.

References

[1] S. Asmussen, Matrix-analytic models and their analysis. Scandinavian
Journal of Statistics 27(2) (2000) 193–226.

[2] I. Chlamtac, Y. Fang, and H. Zeng, Call blocking analysis for PCS net-
works under general cell residence time, in: IEEE WCNC, New Orleans
(Sept. 1999).

[3] Y. Fang, and I. Chlamtac, Teletraffic analysis and mobility modeling for
PCS networks. IEEE Transactions on Communications 47(7) (1999)
1062–1072.

[4] Y. Fang, I. Chlamtac, and H. Fei, Analytical results for optimal choice
of location update interval for mobility database failure restoration in
PCS networks. IEEE Transactions on Parallel and Distributed Systems
(2000).

[5] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham and M. West, Scale and performance in a distributed
file system, ACM Transactions on Computer Systems 6(1) (Feb. 1988)
51–58.

[6] N.L. Johnson, Continuous Univariate Distributions-1 (John Wiley &
Sons, 1970).

[7] N.L. Johnson, Continuous Univariate Distributions-2 (John Wiley &
Sons, 1970).

[8] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling (SIAM, Philadelphia, 1999).

[9] Y.-B. Lin and I. Chlamtac, Wireless and Mobile Network Architectures
(John Wiley & Sons, 2001).

[10] Y.-B. Lin, W.-R. Lai and J.-J. Chen, Effects of cache mechanism on
wireless data access. IEEE Transactions on Wireless Communications
(Accepted for Publication) (2003).

[11] I. Mitrani, Modeling of Computer and Communication Systems (Cam-
bridge University Press, 1987).

[12] M. Nelson, B. Welch, and J. Ousterhout, Caching in the Sprite Net-
work File System. ACM Transactions on Computer Systems 6(1) (Feb.
1988).

[13] S.M. Ross, Stochastic Processes (John Wiley & Sons) (1996).
[14] WAP Forum, Wireless application protocol architecture specification,

Technical report, WAP Forum (1998).
[15] WAP Forum, Wireless application protocol cache model specification,

Technical report, WAP Forum (1998).
[16] WAP Forum, Wireless application protocol white paper, Technical re-

port, WAP Forum (1999).
[17] WAP Forum, Wireless application protocol V1.1 to V1.2, Technical

report, WAP Forum (1999).
[18] J. Yin, L. Alvisi, M. Dahlin and C. Lin, Volume leases for consistency in

large-scale systems. IEEE Trans. on Knowledge and Data Engineering
11(4) (1999).

[19] J. Yin, L. Alvisi, M. Dahlin and A. Iyengar, Engineering server-driven
consistency for large scale dynamic web services. ACM Transactions
on Internet Technology 2(3) (2002) 224–259.

Yuguang Fang received the B.S. and M.S. degrees
in Mathematics from Qufu Normal University, Qufu,
Shandong, China, in 1984 and 1987, respectively, a
Ph.D degree from Department of Systems, Control
and Industrial Engineering at Case Western Reserve
University, Cleveland, Ohio, in January 1994, and
a Ph.D degree from Department of Electrical and
Computer Engineering at Boston University, Mas-
sachusetts, in May 1997.

From 1987 to 1988, he held research and teaching
positions in both Department of Mathematics and the Institute of Automation
at Qufu Normal University. He held a post-doctoral position in Department
of Electrical and Computer Engineering at Boston University from June 1994
to August 1995. From June 1997 to July 1998, he was a Visiting Assistant
Professor in Department of Electrical Engineering at the University of Texas
at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the
Department of Electrical and Computer Engineering at New Jersey Institute
of Technology, Newark, New Jersey. From May 2000 to July 2003, he was
an Assistant Professor in the Department of Electrical and Computer Engi-
neering at University of Florida, Gainesville, Florida, where he has been an
Associate Professor since August 2003. His research interests span many ar-
eas including wireless networks, mobile computing, mobile communications,
automatic control, and neural networks. He has published over ninety papers
in refereed professional journals and conferences. He received the National
Science Foundation Faculty Early Career Development Award in 2001 and
the Office of Naval Research Young Investigator Award in 2002. He is listed
in Marquis Who’s Who in Science and Engineering, Who’s Who in America
and Who’s Who in World.

Dr. Fang has actively engaged in many professional activities. He is a se-
nior member of the IEEE and a member of the ACM. He is an Editor for
IEEE Transactions on Communications, an Editor for IEEE Transactions on
Wireless Communications, an Editor for ACM Wireless Networks, an Area
Editor for ACM Mobile Computing and Communications Review, an As-
sociate Editor for Wiley International Journal on Wireless Communications
and Mobile Computing, and an Editor for IEEE Wireless Communications.
He was an Editor for IEEE Journal on Selected Areas in Communications:
Wireless Communications Series and the feature editor for Scanning the Lit-
erature in IEEE Wireless Communications (formerly IEEE Personal Commu-
nications). He has also actively involved with many professional conferences
such as ACM MobiCom’02, ACM MobiCom’01, IEEE INFOCOM’04, IN-
FOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’02, WCNC’00
(Technical Program Vice-Chair), WCNC’99, and International Conference
on Computer Communications and Networking (IC3N’98) (Technical Pro-
gram Vice-Chair).
E-mail: fang@ece.ufl.edu

254 FANG AND LIN

Yi-Bing Lin received his BSEE degree from Na-
tional Cheng Kung University in 1983, and his Ph.D.
degree in Computer Science from the University of
Washington in 1990. From 1990 to 1995, he was with
the Applied Research Area at Bell Communications
Research (Bellcore), Morristown, NJ. In 1995, he
was appointed as a professor of Department of Com-
puter Science and Information Engineering (CSIE),
National Chiao Tung University (NCTU). In 1996,
he was appointed as Deputy Director of Microelec-

tronics and Information Systems Research Center, NCTU. During 1997-1999,
he was elected as Chairman of CSIE, NCTU. His current research interests
include design and analysis of personal communications services network,
mobile computing, distributed simulation, and performance modeling. Dr.
Lin has published over 150 journal articles and more than 200 conference
papers.

Dr. Lin is a senior technical editor of IEEE Network, an editor of IEEE
Trans. on Wireless Communications, an associate editor of IEEE Trans. on
Vehicular Technology, an associate editor of IEEE Communications Survey
and Tutorials, an editor of IEEE Personal Communications Magazine, an ed-
itor of Computer Networks, an area editor of ACM Mobile Computing and

Communication Review, a columnist of ACM Simulation Digest, an editor of
International Journal of Communications Systems, an editor of ACM/Baltzer
Wireless Networks, an editor of Computer Simulation Modeling and Anal-
ysis, an editor of Journal of Information Science and Engineering, Program
Chair for the 8th Workshop on Distributed and Parallel Simulation, General
Chair for the 9th Workshop on Distributed and Parallel Simulation. Program
Chair for the 2nd International Mobile Computing Conference, Guest Editor
for the ACM/Baltzer MONET special issue on Personal Communications, a
Guest Editor for IEEE Transactions on Computers special issue on Mobile
Computing, a Guest Editor for IEEE Transactions on Computers special issue
on Wireless Internet, and a Guest Editor for IEEE Communications Magazine
special issue on Active, Programmable, and Mobile Code Networking. Lin is
the author of the book Wireless and Mobile Network Architecture (co-author
with Imrich Chlamtac; published by John Wiley & Sons). Lin received 1998,
2000 and 2002 Outstanding Research Awards from National Science Coun-
cil, ROC, and 1998 Outstanding Youth Electrical Engineer Award from CIEE,
ROC. He also received the NCTU Outstanding Teaching Award in 2002. Lin
is an Adjunct Research Fellow of Academia Sinica, and is Chair Professor of
Providence University. Lin serves as consultant of many telecommunications
companies including FarEasTone and Chung Hwa Telecom. Lin is an IEEE
Fellow.

