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Abstract. Modern mobile networks, such as GPRS and UMTS, support wireless data applications. One successful example is the ever
popular i-Mode in Japan. Wireless data services (wireless Internet) become more important as more and more customers of handheld devices
enjoy the convenience of the ubiquitous computing. To improve the effective wireless data access, the time-to-live (TTL) management for
data entries becomes important due to its use in effective caching design. In this paper, we study three TTL prediction schemes and
investigate the effects of the inter-update time distribution on the wireless data access. Performance analysis is carried out via simulations
as well as analytical modeling. We expect our results will be useful for the future wireless data access systems, in which transmission power
for mobile devices is more limited.
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1. Introduction

Modern mobile networks, such as GPRS and UMTS [8], sup-
port wireless data applications. Examples, such as the popular
i-Mode in Japan, have received a great deal of attention due to
their success in providing some Internet services. The stan-
dard Wireless Application Protocol (WAP) [6,8] is tailored
for web accessing, which represents the first step towards the
wireless Internet. In the wireless Internet environment, a mo-
bile customer may use a wireless handheld device to access
data services from the application server through the mobile
network. In fact, mobile users have become the fastest grow-
ing community of web users in the last few years. Already,
many cellular phones are equipped with web browsing capa-
bilities, and it is predicted that the number of wireless Inter-
net devices will outnumber desktop computers by 2003. As
another example, a user may access Web using Palm Pilot
through a wireless data service such as Omnisky [11]. Om-
nisky is supported by Cellular Digital Packet Data (CDPD)
[4,8] with rates varying from 5 Kbps to 13 Kbps. To provide
convenient services to mobile customers, web site personal-
ization techniques have been developed [9] to automatically
adapt and personalize web sites to mobile customers.

One of the challenging design tasks in such an environ-
ment is how to make data ubiquitously available, while min-
imizing the transmissions from mobile devices (to save bat-
tery power). An application running on the wireless handheld
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device may repeatedly access a data entry received from the
application server. If the data entry is not sensitive to time,
then the customer may access the data stored in the cache of
the wireless handheld device instead of querying the applica-
tion server, and the expensive wireless transmission overhead
is reduced. Effective caching strategies should be used for
such applications. If the data entry is sensitive to time, then
the current data entry should be provided from the application
server. In this case, it is better to push such a data entry to the
mobile device before it is queried, because the transmission
power from mobile devices tend to be higher and thus, more
expensive, than the receiving power. Therefore, it is reason-
able to handle time-sensitive wireless applications and time-
insensitive applications in a different fashion. One way to do
so is to use the timers (time-stamps or time-to-live) for data
entries.

Some time-sensitive wireless applications can tolerate cer-
tain degree of inaccuracy (e.g., most web page requests and
location dependent information in wireless applications). For
this type of applications, we can set an expiration period t to
predict when the data entry will be updated. During the pe-
riod t , the data entry in the cache of the handheld device is
used. When t expires, the next data access results in a query
to the mobile network. In this case, the application is weakly
consistent, where the wireless handheld device may occasion-
ally access the stale data. A mechanism is required to predict
when a data entry expires. In Apache [1] and Squid [15], a
time-to-live (TTL) interval t is defined for data entries stored
in the wireless handheld device. The TTL for a data entry is
determined based on whether the data entry is modified due
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to either a mobile query or a server update, which leads to a
simple TTL prediction algorithm.

Another important application of data TTL prediction is
web page hosting. In web page hosting, a page may be repli-
cated on many servers, so as to spread the access load and
reduce congestion. It can also lead to more reliable systems.
The replica pages need to be updated according to the time-
sensitivity, update pattern, and access pattern of the original
page. This is a similar problem to the update prediction prob-
lem that we study in this paper. In this problem, the “server”
is the main location of the web page and the “clients” are the
replicated locations. The goal is to minimize the traffic of fre-
quently updated pages and the penalty of providing out-dated
data.

Note that the TTL prediction mechanism is typically ex-
ercised with cache replacement such as LRU (least recently
used) and LFU (least frequently used) [3] in a proxy cache
for WWW accesses. Since the storage of a handheld device is
limited, the wireless application may determine that no cache
replacement algorithm is exercised for frequently accessed
data (or they are likely to be replaced by infrequently accessed
data). That is, when a wireless handheld device runs a partic-
ular application, some data used by this application are con-
sidered as “frequently accessed” and will always be kept in
the handheld device until they expire. This is especially true
for some location dependent services provisioned by the mo-
bile operators. The customer may also enable a data entry as
“frequently accessed”, and the handheld device will not exer-
cise cache replacement for this data entry until the frequently
accessed indication is disabled. In Squid [15], the TTL option
can be specified by users, so that users can control caching for
certain applications.

In this paper, we study three TTL prediction schemes for
wireless data access. We also propose analytical and simu-
lation models for studying the performance analysis for the
TTL prediction mechanisms. Our models are flexible enough
to accommodate any fudge factor values used to generate the
TTL interval. Since GPRS traffic reported by mobile opera-
tors indicates that the traditional web access patterns do not
apply to the GPRS-based wireless data access, our model con-
sider general distributions for data update and access. These
distributions can be used to approximate data obtained from
GPRS field operations or trials. Based on our model, we show
how the inter-update time distribution affects the accuracy of
TTL interval prediction.

2. TTL prediction schemes

In this section, we describe three schemes to determine the
proper TTL interval when the handheld device queries the
server. This series of schemes require increasing record-
keeping of the history of the server inter-update intervals.

TTL scheme #1. This scheme is based on the implementa-
tion of the Apache and the Squid systems. When the handheld
device queries the server, the server data entry either has been

modified or remains the same as the cached one. In the former
case, it is assumed that the server returns the updated data en-
try with a timestamp indicating when the data entry was last
modified. In the latter case, the server returns a positive ac-
knowledgment of the cache validity. Thus, the handheld al-
ways knows the time of the last server update. Let Tb be the
difference between the time of the query and the time of the
last server update. Then, in this scheme, the TTL interval is
given by

TTTL1 = cf Tb, (1)

where cf is a system defined fudged factor.

TTL scheme #2. In this scheme, it is assumed that the server
remembers the length of the previous inter-update interval,
denoted by Tp. When the handheld device queries the server,
the server sends back the value of Tp as part of the reply.
Then, the TTL interval for the current query is given by

TTTL2 = cf Tp. (2)

TTL scheme #3. As proposed in [14], a running average of
the inter-update intervals can be obtained by a handheld de-
vice. If the server maintains this average, it can be sent to
the handheld device during its query to the server. The exact
method of obtaining this average, including the designs of the
windowing duration and the weights of averaging, is outside
of this paper’s scope. Let Te denote the average inter-update
interval. Then, in this scheme, the TTL interval for the current
query is given by

TTTL3 = cf Te. (3)

All of these schemes employ an intuitive form, of a fudged
factor multiplying a time duration indicative of how often the
data entry is updated at the server. For example, in the scheme
TTL1, if the date entry is updated infrequently, the backward
residual time of server updating, Tb, is likely to be large, while
if it is updated frequently, Tb is likely to be small. Therefore,
we can use Tb to estimate, albeit coarsely, the time of the next
server update. The rationale behind using Tp and Te in TTL1
and TTL2 is similar. Furthermore, assuming that the server
updating process is stationary, Te is the clearly best real value
estimate of the inter-update time.

One main advantage of using TTL1 is that, on the server
side, it requires no extra equipment or processing overhead
above what is already implemented in many of the currently
deployed systems. For example, the time of the last update is
built into the Hypertext Transfer Protocol (HTTP). However,
as shown in the next section, this TTL prediction may not be
as accurate as the other two schemes.

The schemes TTL2 and TTL3, on the other hand, require
the server to remember its past updates and share that infor-
mation with the handheld device. In particular, a server sup-
porting TTL3 may need to maintain a record of its long-term
updating history. However, since Te gives a more consistent
estimate of the server’s next updating time, we expect TTL3
to outperform TTL1 and TTL2 in terms of data access cost.
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In what follows, we will study the performance of these
schemes and the effect of the server inter-update interval dis-
tribution on the cost of wireless data access.

3. Assumptions and output measures

In this section, we describe the assumptions used in this pa-
per and the performance measures used to evaluate the TTL-
interval prediction schemes. Consider the interval between
two consecutive queries from the wireless handheld device to
the server. This interval is referred to as a cycle. In figure 1,
[τ2, τ0) is a cycle. The access at the beginning of a cycle
(e.g., τ2 in figure 1) results in a query to the server. During
(τ2, τ0), the handheld device returns the cached copy to all lo-
cal accesses by applications to the data entry. We assume that
accesses to a data entry form a point process with general dis-
tribution. Furthermore, the inter-update intervals are assumed
to be a random variable with a general distribution. Based on
these assumptions, we consider the following primary perfor-
mance measures:

• The expected number, E[K1], of non-stale accesses in a
cycle. For a non-stale access, when the access occurs, the
data entry in the cache is the same as that in the server.
Note that the non-stale accesses include the one that results
in the query to the server at the beginning of a cycle.

• The expected number, E[K], of accesses in a cycle. This
number includes the stale and the non-stale accesses in the
cache, plus the access resulting in a query from the hand-
held device to the server (for the cycle [τ2, τ0) in figure 1,
this query occurs at τ2). Thus, K � 1 always holds.

• The probability β that when the handheld device queries
the server, the data entry is valid (i.e., the data entry has
not been modified since the last query).

It is clear that the handheld device communicates with the
server for every E[K] access. Based on E[K1] and E[K],
we can investigate the accuracy of TTL interval prediction
through the staleness ratio ps , which is the probability that
the handheld device returns a stale data entry for an access.
That is,

ps = E[K] − E[K1]
E[K] . (4)

Figure 1. The timing diagram.

Thus, we can define the cost due to data staleness as

Cstale = γps, (5)

where γ represents the penalty of returning a stale data entry
to the application.

Another performance measure considered in this paper is
the server query cost or wireless transmission cost Cquery.
Suppose that the cost of transmitting a data entry is one unit.
We further denote δ as the cost for the handheld device to
query the server without the data entry being transmitted. It
is clear that 0 < δ < 1.

When the handheld device queries the server and the data
entry is valid, the server returns a positive acknowledgment
with the cost δ. If the data has been modified, the server re-
turns the updated data entry to the handheld device and the
transmission cost is one unit. Note that on average, a query to
the server occurs for every E[K] accesses. That is, the trans-
mission costs for the E[K] − 1 accesses in the cycle are 0.
Thus, if we normalize the cost (e.g., wireless transmission
delay) for a query with data transmission as one unit, then the
server query cost per access can be expressed as

Cquery = δβ + (1 − β)

E[K] = 1 − (1 − δ)β

E[K] . (6)

Then, the total cost per access is

Caccess = Cstale + Cquery

= γ
E[K] − E[K1]

E[K] + 1 − (1 − δ)β

E[K] . (7)

Obviously, shorter TTL intervals lead to smaller stale data
probability ps , and hence lower Cstale. However, shorter TTL
intervals also create more queries to the server, which may
lead to higher Cquery. Ideally, if one has the exact informa-
tion of the future server update times, the TTL should be set
to expire at the next server update instant. However, in prac-
tice, one can only predict the actual next server update instant
based on the known statistics and then set the TTL appropri-
ately. In the previous section, we present three TTL prediction
schemes. Next, we study the effect of TTL selection on the
cost of wireless data access.

4. Performance study

Analytical modeling of the three TTL schemes under certain
simplified assumptions is possible. For example, for the third
TTL prediction scheme, we are able to completely character-
ize the performance measures. For the first and the second
TTL prediction schemes, we are also able to provide some
approximate analytical results. All analytical results and their
derivations are presented in the appendices. In what follows,
we will evaluate the performance of the three TTL prediction
schemes and the effects of the inter-update probability distri-
bution via both, simulations, as well as the analytical results.
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4.1. Simulation setup

Simulations are carried out in Matlab to evaluate the TTL pre-
diction schemes for wireless data access. The following three
example distributions of the server inter-update intervals are
studied:

• exponential,

• Rayleigh, and

• deterministic.

These three distributions represent a gradient of increasing
memory level, from memoryless, in the case of the exponen-
tial distribution, to fully future knowledgeable, in the deter-
ministic case.

The arrival process of accesses to a data entry is assumed
to have a general distribution. Previous studies suggest that
the arrivals of the Internet dial-up access connections can be
described by a Poisson model [10]. However, published re-
sults based on the wireline Web access trace indicate that the
user requests to a document on the Web do not follow a pure
Poisson process [12]. Currently there is no access trace avail-
able for wireless data. Furthermore, wireless data access is
affected by mobility and will, most probably, not follow the
access patterns observed in the wireline networks. In the fol-
lowing, we first consider the Poisson access stream for mean
value analysis and then summarize our simulation results with
general access patterns.

In each simulation, the mean of the inter-update intervals
is set to have one time unit, the data accesses are assumed to
occur five times as frequent as the server updates, and 10000
server updates are simulated. For each inter-update distribu-
tion, the three TTL schemes are studied separately. For each
scheme, the fudge factor, cf , is allowed to vary from 10−3 to
103. The optimal cf is obtained through observations, and the
corresponding optimal cost per data access is recorded.

In figures 2–4, we plot the optimal costs over δ and γ ,
where δ has the range between 0.1 and 1, and γ has the range
between 1 and 10. In addition, our experiments have shown
that, when δ is below 0.1, since the query cost is very low
when the cache is valid, the cost per data access can be triv-
ially minimized by querying the server at almost every data
access. Furthermore, when γ is below 1, since the penalty
against stale data access is very low, the cost per data access
can be trivially minimized by seldom querying the server at
all. Finally, when γ is above 10, since the penalty against stale
data access is very high, the best scheme is, again, to query
the server at almost every data access. All of these extreme
cases are independent of the TTL scheme, and therefore, are
not of interest in this study.

4.2. Comparison of TTL schemes

As shown in figures 2–4, for all server inter-update distrib-
utions, TTL3 outperforms TTL1 by a substantial amount if δ

is large. This is reasonable, considering TTL3 requires the
knowledge of the average of the inter-update intervals taken
over a relatively long period.

(a)

(b)

Figure 2. Exponential updating, optimal cost per access vs. (a) γ ; (b) δ.

For servers with the exponential inter-update distribution,
which has the memoryless property, TTL1 slightly outper-
forms TTL2, especially when δ is large and when γ is small.
However, for most other cases, TTL2 outperforms TTL1. In
particular, for servers with the deterministic inter-update dis-
tribution, TTL2 is equivalent to TTL3. Thus, we can infer
that the relative performance of TTL1, as used in Apache and
Squid, suffers as the memory level of the inter-update interval
distribution increases.

4.3. Cost sensitivity to δ and γ

Figures 2–4 also suggest that, for all inter-update distributions
and all the three TTL schemes, the data access cost is very
sensitive to the non-update query cost δ. Adjusting the la-
beling of the plot axes reveals that the cost is almost linearly
increasing with δ. Therefore, it is important for a system de-
signer to ensure that δ is kept small for cost effective data
caching.
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(a)

(b)

Figure 3. Rayleigh updating, optimal cost per access vs. (a) γ ; (b) δ.

On the other hand, the data access cost is less sensitive to
the stale data penalty γ . This is due to the optimal adjustment
of the fudge factor cf , such that queries are performed more
frequently when γ is large. In systems where δ is small, one
can afford to query the server more often, as the average cost
per query is reduced in this case.

In fact, when δ is sufficiently small, all the TTL schemes
perform similarly, regardless of the inter-update distribution.
As shown in these figures, when δ < 0.3, the access cost of
the three schemes is within 15% of each other. This can lead
to the simplified numerical evaluations of some TTL schemes.
For example, although TTL1 is the most often used scheme in
practical applications due to its minimal requirement on the
server, it is generally hard to precisely analyze the perfor-
mance of TTL1. However, the performance of TTL3 can be
accurately analyzed numerically. Therefore, given a cached
data access system that employs TTL1, one can first obtain an
accurate cost estimate of TTL3 and then apply that result as a
close approximation of the actual cost of TTL1.

(a)

(b)

Figure 4. Deterministic updating, optimal cost per access vs. (a) γ ; (b) δ.

Towards this end, appendix A provides an analytical
framework for evaluating the cost of TTL3. In addition, ap-
pendix B gives two more methods that approximately com-
pute the cost of TTL1 under a set of assumed conditions.

4.4. Non-Poisson data accesses

The above simulations were repeated assuming data ac-
cess streams with Rayleigh and with deterministic inter-
arrival intervals. In both cases, we observed the same
patterns of the cost comparison among the different TTL pre-
diction schemes and of the cost sensitivity to δ and γ . For
brevity, the redundant simulation results are not presented
here.

5. Conclusions

In this paper, we study three prediction schemes for setting
up the time-to-live (TTL) for data entries in wireless data
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access. Due to the fact that the measurements of the actual
wireless data access is not available for the inter-update time,
we use a general distribution model for the inter-update time
and carry out the performance analysis. The effects of the
inter-update time distribution on the performance of wireless
data access under the three TTL prediction schemes are in-
vestigated via the simulations, as well as through analytical
modeling. The study shows that the TTL prediction scheme
outperforms the currently used TTL prediction scheme used
in Apache and Squid when the query cost from mobile de-
vice is high, while most schemes perform similarly when the
query cost is low. We expect our results to be useful for wire-
less data access systems in which mobile transmissions are
more costly.

Appendix A. Numerical analysis for TTL scheme #3

In this section, we present an analytical framework for evalu-
ating the performance of the TTL scheme #3, where the TTL
interval depends on the mean duration of the previous inter-
update intervals.

Assume that the data accesses create a Poisson stream with
rate λ. Let random variable Y represent the inter-access time,
then Y has an exponential density function f (y), where

f (y) = λe−λy and E[Y ] = 1

λ
. (A.1)

Let random variable Z represent the inter-update time, which
has a general cumulative distribution function F(z), density
function f (z), Laplace transform f ∗(s) and mean E[Z] =
1/µ. Suppose that Z is a non-lattice random variable and
E[Z2] < ∞. Since the queries are independent of the server
updates, the residual life X of Z has the cumulative distribu-
tion function R(x), density function r(x), and Laplace trans-
form r∗(s), where from [13]

r(x) = µ
[
1 − F(x)

]
, (A.2)

r∗(s) =
(

µ

s

)[
1 − f ∗(s)

]
. (A.3)

Suppose that TTTL has probability density function rf (tf ), the
cumulative distribution function R(tf ), and the Laplace trans-
form r∗

j (s). Recall from section 2 that, in this scheme, the
TTL interval is

TTTL = cf

µ
, (A.4)

where cf is the fudge factor. Then,

rf (tf ) = δ

(
t − cf

µ

)
, and r∗

f (s) = e(cf /µ)s. (A.5)

Consider the interval t1 between when the TTL interval
expires and when the next data access arrives. Let f1(t1) and
f ∗

1 (s) denote the probability density function and the Laplace
transform of the random variable t1, respectively. From the

memoryless property of the exponential distribution, t1 has
the same distribution as Y , thus we have

f1(t1) = λe−λt1 and f ∗
1 (s) = λ

s + λ
. (A.6)

Let ξ = TTTL + t1, and let fξ (τ ) and f ∗
ξ (s) denote its

probability density function and its Laplace transform. Then
from (A.5)

fξ (τ ) = f1

(
t − cf

µ

)
and f ∗

ξ (s) = f ∗
1 (s)e−(cf /µ)s.

(A.7)
The probability β is derived as follows:

β = Pr(TTTL + t1 � X)

= Pr(ξ � X)

=
∫ ∞

x=0
Pr(ξ � x)r(x) dx

=
∫ ∞

x=0

{(
1

2π i

) ∫ c+i∞

s=c−i∞

[
f ∗

ξ (s)

s

]
esx ds

}
r(x) dx

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

ξ (s)

s

][∫ ∞

x=0
r(x) esx dx

]
ds

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

ξ (s)

s

]
r∗(−s) ds

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

1 (s) e−(cf /µ)s

s

]
r∗(−s) ds

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

1 (s) e−(cf /µ)s

−s2

][
1 − f ∗(−s)

]
ds

= µ
∑
p∈σf

Res
s=p

[
f ∗

1 (s) e−(cf /µ)s

s2

][
1 − f ∗(−s)

]
, (A.8)

where σf denotes the set of poles of f ∗(−s) and Ress=p de-
notes the residue at the pole s = p.

If Z, and hence X, is exponentially distributed, we have
F ∗(s) = µ/(s + µ). Then, we have

β = µ Res
s=µ

[
f ∗

1 (s) e−(cf /µ)s

s2

](
1 − µ

−s + µ

)

= µ

[
f ∗

1 (s) e−(cf /µ)s

s

]∣∣∣∣
s=µ

= λ e−cf

µ + λ
.

Now we derive E[K1] as follows. Consider figure 1. Af-
ter τ0, if the TTL interval expires earlier than the next up-
date, then all data accesses occurring in [τ0, τ0 + TTTL) are
non-stale. On the other hand, if the TTL interval expires af-
ter the next update, then non-stale accesses occur in period
[τ0, τ0 + x]. Thus, we conclude that during a cycle, the non-
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stale accesses occur in the period Tmin = E[min(TTTL,X)].
Since the accesses are a Poisson stream, from [13],

E[K1] = 1 + E[Tmin]
E[Y ] . (A.9)

The probability density function of Tmin is

rmin(tm) = − d

dtm
Pr

(
min{TTTL,X} � tm

)
= − d

dtm

[
Pr(TTTL � tm) Pr(X � tm)

]
=

∫ ∞

x=tm

rf (tm)r(x) dx +
∫ ∞

tf =tm

rf (tf )r(tm) dtf .

The Laplace transform of Tmin is

r∗
min(s) =

∫ ∞

0
rf (t)

[∫ ∞

t

r(τ ) dτ

]
e−st dt

+
∫ ∞

0
r(t)

[∫ ∞

t

rf (τ ) dτ

]
e−st dt

=
∫ ∞

0
rf (t)

[
1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z
ezt dz

]
e−st dt

+
∫ ∞

0
r(t)

[
1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z
ezt dz

]
e−st dt

= 1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z

[∫ ∞

0
rf (t) e−(s−z)t dt

]
dz

+ 1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z

[∫ ∞

0
r(t) e−(s−z)t dt

]
dz

= 1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z
r∗
f (s − z) dz

+ 1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z
r∗(s − z) dz, (A.10)

where σ is a sufficiently small positive number.
Applying the Residue theorem, we obtain the expected

value E[Tmin]
E[Tmin] = −r

∗(1)
min (0)

= − 1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z
r
∗(1)
f (−z) dz

− 1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z
r∗(1)(−z) dz

=
∑
p∈σrf

Res
s=p

1 − r∗(s)
s

r
∗(1)
f (−s)

=
∑
p∈σr

Res
s=p

1 − r∗
f (s)

s
r∗(1)(−s), (A.11)

where σr is the set of poles of r∗(−s) and σrf is the set of
poles of r∗

f (−s) in the strict right-half complex plane, and
where we also have used the following fact that the derivative
g(1)(s) of function g(s) shares the same set of poles except
the multiplicities. We can express E[Tmin] in terms of the

function f ∗(s) via the equations (A.2)–(A.5), however, we
omit such expressions here due to their complexity.

If the inter-update time Z is exponential, then f ∗(s) =
r∗(s) = µ/(s + µ) and r∗(1)(−s) = −µ/(s − µ)2. From
equation (18), we obtain

E[Tmin] = −cf

µ

∑
p∈σrf

Res
s=p

1

s + µ
e(cf /µ)s

+
∑
p∈σr

Res
s=p

1 − e−(cf /µ)s

s
r∗(1)(−s)

= cf

µ
Res

s=−µ

1

s + µ
e(cf /µ)s

− Res
s=µ

1 − e−(cf µ)s

s

µ

(s − µ)2

= cf

µ
e(cf /µ)s

∣∣∣∣
s=−µ

− µ
d

ds

(
1 − e−(cf /µ)s

s

)∣∣∣∣
s=µ

(a)

(b)

Figure 5. TTL3 analysis verification, optimal cost per access vs. (a) γ ; (b) δ.
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= cf

µ
e−cf + 1 − (1 + cf ) e−cf

µ

= 1 − e−cf

µ
, (A.12)

which is consistent with the direct computation.
The cost per wireless data access, in the case of TTL pre-

diction scheme #3, is computed based on the preceding ana-
lytical framework and compared with the simulation results.
Figure 5 illustrate this comparison in scenarios with the same
parameters as those in figure 2. These plots validate the sim-
ulation model against the analytical approach.

Appendix B. Approximating the cost of TTL schemes #1
and #2

This section describes an analysis framework that provides
the approximate cost of wireless data access using TTL
schemes #1 and #2. Since the analysis of these two schemes
is very similar, in what follows, we concentrate on the analy-
sis of TTL scheme #1. For scheme #2, we only provide brief
pointers where the analysis differs.

In this approximation, we have made the following two
assumptions.

Assumption #1. The handheld queries to the server are suf-
ficiently independent of the server updates, such that the
queries can be considered random observers of the inter-
update interval.

Assumption #2. At the time of every query, the TTL inter-
val is independent of the forward residual life of the current
server inter-update interval.

These assumptions are reasonable in systems with nearly-
exponential server inter-update intervals and relatively infre-
quent queries.

Consider the timing diagram in figure 1. Assume that the
data accesses are a Poisson stream with rate λ. Let the random
variable Y represent the inter-access time. Then Y has an
exponential density function f (y), where

f (y) = λ e−λy and E[Y ] = 1

λ
. (B.1)

Let random variable Z represent the inter-update time, which
has a general cumulative distribution function F(z), density
function f (z), Laplace transform f ∗(s), and mean E[Z] =
1/µ. Suppose that Z is a non-lattice random variable and
E[Z2] < ∞, then the residual life X of Z has the cumulative
distribution function R(x), density function r(x), and Laplace
transform r∗(s), where from [13]

r(x) = µ
[
1 − F(x)

]
, (B.2)

r∗(s) = µ

s

[
1 − f ∗(s)

]
. (B.3)

Let the random variable T be the interval between the previ-
ous update and when the handheld device queries the server.

In figure 1, T = t = τ0 − τ1. Since the queries to the server
are random observer of the inter-update interval Z, T is the
reverse residual life of Z. From the reversibility property of
residual life [13], T has the same distribution as X (the resid-
ual life of Z). In Apache [1], the TTL interval is computed
as TTTL = cf T , where cf is the fudge factor. In figure 1, the
TTL interval is tf = cf t . Suppose that TTTL has probability
density function rf (tf ), the cumulative distribution function
R(tf ), and the Laplace transform r∗

f (s). As previously dis-
cussed, T has the density function r(tf ) and Laplace trans-
form r∗(s), and1

rf (tf ) = 1

cf

r

(
tf

cf

)
and r∗

f (s) = r∗(cf s). (B.4)

Consider the interval t1 between when the TTL interval ex-
pires and when the next data access arrives. Let f1(t1) and
f ∗

1 (s) denote the probability density function and the Laplace
transform of the random variable t1, respectively. From the
memoryless property of the exponential distribution, t1 has
the same distribution as Y , and thus we have

f1(t1) = λe−λt1 and f ∗
1 (s) = λ

s + λ
. (B.5)

Let ξ = TTTL + t1 (in figure 1, TTTL = tf = cf t), and let
fξ (τ ) and f ∗

ξ (s) denote the probability density function and
its Laplace transform. Then from (B.4) and (B.5)

fξ (τ ) =
∫ τ

tf =0
rf (tf )f1(τ − t) dtf and

(B.6)
f ∗

ξ (s) = r∗
f (s)f ∗

1 (s).

The probability β is derived as follows:

β = Pr(TTTL + r1 � X)

= Pr(ξ � X)

=
∫ ∞

x=0
Pr(ξ � x)r(x) dx

=
∫ ∞

x=0

{(
1

2π i

) ∫ c+i∞

s=c−i∞

[
f ∗

ξ (s)

s

]
esx ds

}
r(x) dx

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

ξ (s)

s

][∫ ∞

x=0
r(x) esx dx

]
ds

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

ξ (s)

s

]
r∗(−s) ds

= 1

2π i

∫ c+i∞

s=c−i∞

[
f ∗

f (s)f ∗
1 (s)

s

]
r∗(−s) ds

= (µ2/cf )

2π i

∫ c+i∞

s=c−i∞

[
(1 − f ∗(cf s))f ∗

1 (s)

−s3

]

1 For TTL scheme #2, we have

rf (tf ) = f (tf ) and r∗
f (s) = f ∗(s).

The rest follows exactly as the analysis of TTL scheme #1, with the above
replacing (B.4).
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× [
1 − f ∗(−s)

]
ds

= µ2

cf

∑
p∈σf

Res
s=p

[
(1 − f ∗(cf s))f ∗

1 (s)

s3

][
1 − f ∗(−s)

]
,

(B.7)

where σf denotes the set of poles of f ∗(−s) and Ress=p de-
notes the residue at the pole s = p. If X is exponentially
distributed, then we have f ∗(s) = µ/(s + µ), hence we have

β = µ2

cf

Res
s=µ

[ [1 − f ∗(cf s)]f ∗
1 (s)

s3

](
1 − µ

−s + µ

)

= µ2

cf

[ [1 − f ∗(cf s)]f ∗
1 (s)

s2

]∣∣∣∣
s=µ

=
(

1

1 + cf

)(
λ

µ + λ

)
.

Now we derive E[K1] as follows. Consider figure 1. Af-
ter τ0, if the TTL interval expires earlier than the next update,
then all data accesses occurring in [τ0, τ0+cf t) are non-stale.
On the other hand, if the TTL interval expires after the next
update, then non-stale accesses occur in period [τ0, τ0 + x].
Thus, we conclude that during a cycle, the non-stale accesses
occur in the period Tmin = E[min(TTTL,X)]. Since the ac-
cesses are a Poisson stream, from [13],

E[K1] = 1 + E[Tmin]
E[Y ] . (B.8)

The probability density function of Tmin is

rmin(tm) = − d

dtm
Pr

(
min{TTTL,X} � tm

)
= − d

dtm

[
Pr(TTTL � tm) Pr(X � tm)

]
=

∫ ∞

tf =tm

rf (tf )r(tm) dt +
∫ ∞

tf =tm

rf (tm)r(x) dx.

The Laplace transform of Tmin is

r∗
min(s) =

∫ ∞

0
rf (t)

[∫ ∞

t

r(τ ) dτ

]
e−st dt

+
∫ ∞

0
r(t)

[∫ ∞

t

rf (τ ) dτ

]
e−st dt

=
∫ ∞

0
rf (t)

[
1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z
ezt dz

]
e−st dt

+
∫ ∞

0
r(t)

[
1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z
ezt dz

]
e−st dt

= 1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z

[∫ ∞

0
rf (t) e−(s−z)t dt

]
dz

+ 1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z

[∫ ∞

0
r(t) e−(s−z)t dt

]
dz

= 1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z
r∗
f (s − z) dz

+ 1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z
r∗(s − z) dz, (B.9)

where σ is a sufficiently small positive number. Applying the
Residue theorem, we obtain the expected value E[Tmin]:

E[Tmin] = −r
∗(1)
min (0)

= − 1

2π i

∫ σ+i∞

σ−i∞
1 − r∗(z)

z
r
∗(1)
f (−z) dz

− 1

2π i

∫ σ+i∞

σ−i∞

1 − r∗
f (z)

z
r∗(1)(−z) dz

=
∑
p∈σrf

Res
s=p

1 − r∗(s)
s

r
∗(1)
f (−s)

+
∑
p∈σr

Res
s=p

1 − r∗
f (s)

s
r∗(1)(−s)

=
∑
p∈σr

Res
s=p/cf

1 − r∗(s)
s

r
∗(1)
f (−s)

+
∑
p∈σr

Res
s=p

1 − r∗
f (s)

s
r∗(1)(−s), (B.10)

where σr is the set of poles of r∗(−s) and σrf is the set of
poles of r∗

f (−s) in the strict right-half complex plane, and
where we also have used the following facts that the derivative
g(1)(s) of function g(s) shares the same set of poles except
the multiplicities and that r∗

f (−s) has poles in the following
form: p/cf for p ∈ σr . We can express E[Tmin] in terms
of the function f ∗(s) via the equations (B.2)–(B.4), however,
we omit such expressions here due to their complexity. We
also notice that r∗(−s), f ∗(−s), and their derivatives share
the same set of poles in the strict right-half complex plane
except the multiplicities, and so we can express E[Tmin] as
follows:

E[Tmin] =
∑
p∈σf

Res
s=p/cf

1 − r∗(s)
s

r
∗(1)
f (−s)

+
∑
p∈σf

Res
s=p

1 − r∗
f (s)

s
r∗(1)(−s). (B.11)

If the inter-update time Z is exponential, then f ∗(s) =
r∗(s) = µ/(s+µ) and r∗

f (s) = µ/(cf s+µ) = µf /(s+µf ),
where µf = µ/cf . From equation (B.11), we obtain

E[Tmin] = Res
s=µf

1 − µ/(s + µ)

s

(
− µf

(−s + µf )2

)

+ Res
s=µ

1 − µf /(s + µf )

s

(
− µ

(−s + µ)2

)

= − Res
s=µf

1

s + µ

µf

(s − µf )2 − Res
s=µ

1

s + µf

µ

(s − µ)2

= −µf

d

ds

(
1

s + µ

)∣∣∣∣
s=µf

− µ
d

ds

(
1

s + µf

)∣∣∣∣
s=µ

= 1

µ + µf

= cf

(1 + cf )µ
, (B.12)

which is consistent with the direct computation.
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Next, we present another approach to compute the prob-
ability β and the expectation E[Tmin] for the scheme #1. It
is well known [7] that the phase-type distributions (PH) are
dense in the set of all distributions in [0,∞), i.e., any distrib-
ution of a nonnegative random variable can be approximated
by Phase-type distributions. The exponential distribution, the
Erlang distributions, the hyper-exponential distribution, and
the hyper-Erlang distribution are all special cases of PH dis-
tributions. The advantage of PH distributions is that most
computations are reduced to matrix manipulations. A PH dis-
tribution is the distribution of the time till absorption into the
absorbing state 0 in a finite state Markov chain with states
{0, 1, 2, . . . , n} and with initial probability vector (α0, α) and
infinitesimal generator

Q =
(

0 0
t T

)
,

where α is row vector of size n and T is an n×n matrix. It can
be shown [7] that this distribution can be uniquely determined
by the (α, T ), so we say a random variable X is PH(α, T ) if
X is PH-distributed with parameter (α, T ). In fact, a random
variable with PH(α, T ) has the following probability density
function:

f (x) = −α exp(T x)T 1T , x � 0,

where 1T is the column vector of all 1’s with the same dimen-
sion as the matrix T (i.e., if T is an n × n matrix, 1T will be
n-dimensional vector). We need the following result (⊗ in-
dicates the Kronecker product and ⊕ denotes the Kronecker
sum):

Lemma [2,7].

(1) Assume that F(x) is the cumulative distribution func-
tion of a random variable with PH(α, T ) with expectation
1/µ, then the distribution µ[1−F(x)] is also PH-distrib-
uted with PH(π, T ) where π = (αT −11T )−1αT −1.

(2) Assume that the random variables X and Y are indepen-
dent with PH(α, T ) and PH(ν, S), respectively, then the
random variable min{X,Y } is also PH-distributed with
PH(γ, C), where

γ = α ⊗ ν, C = T ⊕ S.

(3) Assume that the random variables X and Y are inde-
pendent with PH(α, T ) and PH(ν, S), respectively, then
the random variable X + Y is also PH-distributed with
PH(γ, C), where

γ = [α, α0ν], C =
(

T tν
0 S

)
,

where α0 = 1 − α1T , t = −T 1T .

(4) Assume that random variables X and Y are independent
with PH(α, T ) and PH(ν, S), respectively, then

Pr(X � Y ) = (ν ⊗ α)(−S ⊕ T )−1(1S ⊗ (−T 1T )
)
.

Now we assume that the inter-update time is PH(α, T ),
then from lemma assertion (1), the residual life X is PH(π, T )

where π = (αT −11T )−1αT −1, thus we have

r(x) = −π exp(T x)T 1T

and

rf (x) = 1

cf

r

(
x

cf

)
= −π exp

((
T

cf

)
x

)(
T

cf

)
1T ,

which is PH(π, T /cf ).
We first compute β. Since TTTL is PH(π, T /cf ) and r1 is

exponentially distributed with PH(1,−λ), from lemma, we
conclude that TTTL + r1 is PH-distributed with PH(γβ, Cβ),
where

γβ = (α, 1 − α1T ), Cβ =

 T

cf

−
(

T

cf

)
1T

0 −λ


 .

Applying lemma assertion (4), we obtain

β = (π ⊗ γβ)(−T ⊕ Cβ)−1(1T ⊗ (−Cβ1Cβ )
)

= (π ⊗ γβ)(−T ⊕ Cβ)−1
(

1T ⊗
(

0
λ

))
. (B.13)

If the inter-update time Z is exponentially distributed, we
have

α = 1, T = −µ, π = 1, γβ = (1, 0),

Cβ =

− µ

cf

µ

cf

0 −λ


 .

Applying (B.13), we obtain (IA denotes the identity matrix
with the same dimension as a matrix A)

β = (π ⊗ γβ)(−T ⊗ ICβ − IT ⊗ Cβ)−1
(

1T ⊗
(

0
λ

))

= (
1 ⊗ (1, 0)

)(−
(−µ 0

0 µ

)
−

(−µ/cf µ/cf

0 −λ

))−1

×
(

1 ⊗
(

0
λ

))

= (1 0)




1 + cf

cf

µ − 1

cf

µ

0 λ + µ




−1 (
0

λ

)

= 1

1 + cf

λ

λ + µ
,

which is the same result as what was previously obtained.
Next, we compute E[Tmin]. Again since TTTL is PH(π,

T /cf ) and X is PH(π, T ), where π = (αT −11T )−1αT −1.
From lemma, we conclude that Tmin is also PH-distributed
with PH(γe, Ce), where

γe = π ⊗ π,

(B.14)
Ce = T ⊕

(
T

cf

)
= T ⊗ IT + IT ⊗

(
T

cf

)
.
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Therefore, from the property of PH distribution, we obtain the
expectation for Tmin as follows:

E[Tmin] = γe

(−C−1)1Ce

= −(π ⊗ π)

[
T ⊕

(
T

cf

)]−1

1Ce. (B.15)

If the inter-update time Z is Erlang-distributed with parameter
(m,µ), then we know it has representation PH(α, T ), where

α = (1, 0, . . . , 0),

T = −mµ




1 −1 0 . . . 0

0 1 −1 . . . 0

...
...

. . .
...

...

0 0 . . . 1 −1

0 0 . . . 0 1




= −mµT0 (B.16)

Then, r(t) will be PH(π, T ) with

π = (
αT −11T

)−1
αT −1 = 1

m
(1 1 . . . 1).

Thus, we have (AT denotes the matrix transpose of A):

E[Tmin] = − 1

m2
1T

(
T ⊕

(
T

cf

))−1

1

= 1

m3µ
1T

(
T0 ⊕

(
T0

cf

))−1

1

= 1

m3µ

∑
i,j

[(
T0 ⊕

(
T0

cf

))−1]
ij

, (B.17)

where 1 is a column vector of all 1’s with appropriate dimen-
sion for the matrix multiplication. When m = 1, i.e., Z is
exponentially distributed, we have T0 = 1, hence

E[Tmin] = 1

13µ

(
1 + 1

cf

)−1

= cf

1 + cf

1

µ
,

which is the same result as we obtained earlier.
Now assume that Z is hyper-Erlang distribution with the

following probability density function [5]:

f (t) =
M∑
i=1

pi
(miµi)

mi tmi−1

(mi − 1)! e−miµi t ,

pi � 0,

M∑
i=1

pi = 1,
1

µ
=

M∑
i=1

pi

µi

, M > 0. (B.18)

From a result in [7], we know that the hyper-Erlang distri-
bution f (t) has the following representation PH(αhe, The),
where

αhe = (p1α1 p2α2 . . . pMαM),

αi = (1 0 . . . 0), i = 1, 2, . . . ,M,

The =




T1

T2

. . .

TM


 ,

Ti = −miµi




1 −1 0 . . . 0

0 1 −1 . . . 0

...
...

. . .
...

...

0 0 . . . 1 −1

0 0 . . . 0 1




mi×mi

,

i = 1, 2, . . . ,M.

From (B.15) we obtain

E[Tmin] = −(πhe ⊗ πhe)

[
The ⊕

(
The

cf

)]−1

1, (B.19)

where

πhe = [
αheT

−1
he 1he

]−1
αheT

−1
he

=
[

M∑
i=1

piαiT
−1
i 1Ti

]−1

× (
p1α1T

−1
1 p2α2T

−1
2 . . . pMαMT −1

M

)
,

and 1 is a column vector of all 1’s with appropriate dimension
for matrix multiplication (the dimension is (

∑M
i=1 mi)

2).
As a final remark, we notice that the approach using the

Residue theorem may overcome the dimension explosion in-
herited in the matrix-geometric approach, however, the for-
mer does not give explicit formula, while the latter does.
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