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Hyper-Erlang Distribution Model and its Application in Wireless
Mobile Networks *

YUGUANG FANG
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Abstract. This paper presents the study of the hyper-Erlang distribution model and its applications in wireless networks and mobile
computing systems. We demonstrate that the hyper-Erlang model provides a very general model for users’ mobility and may provide
a viable approximation to fat-tailed distribution which leads to the self-similar traffic. The significant difference from the traditional
approach in the self-similarity study is that we want to provide an approximation model which preserves the Markovian property of
the resulting queueing systems. We also illustrate that the hyper-Erlang distribution is a natural model for the characterization of the
systems with mixed types of traffics. As an application, we apply the hyper-Erlang distribution to model the cell residence time (for users’
mobility) and demonstrate the effect on channel holding time. This research may open a new avenue for traffic modeling and performance
evaluation for future wireless networks and mobile computing systems, over which multiple types of services (voice, data or multimedia)
will be supported.
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1. Introduction (quality of service) requirement via inexpensive low pow-

o ered portables. The session time for each service will vary
The future telecommunications networks (such as the thginificantly from application to application. In each cell,

generation wireless networks) target to provide integrategk cell traffic will consist of different traffic flows with
services such as the voice, data and multimedia via inexpefistinct characteristics, similar to the wired environments,
sive low-powered mobile computing devices over the Wirgne cell traffic most probably shows self-similarity property,
Igss_lnfrastructures, teletraffic modeling qnd resource dim&fisnce. the traditional traffic theory (relying on exponential
sioning for such networks are challenging and importantdel) will most likely be invalid. More general distribu-
which rely heavily on good traffic models to characterize thé,n models are needed to capture the essence of the network
network dynamics with appropriate accuracy. The CriteT@namics. It has been shown [19] that fat-tailed distribution
for finding an appropriate traffic model are as follows: (1) i petter suitable for the characterization of the self-similar
must be general enough to provide a good approximationd@gtic unfortunately, this model complicates the resulting
the field data; (2) it must also be simple enough to enable 4ge ,eing model, which is not computationally tractable.
to obtain analytically tractable results for performance eval- Recently, in wireless network and mobile computing re-
uation. Current practices u_sually_emphasize one and neglegtch two general models have been proposed. Rappa-
the other, it will be worthwhile to find a good traffic model toport and his colleagues [23,24] proposed a model called the
satisfy these two criteria. Traffic models can be determineghyp (the Sum of the Hyper-Exponential) distribution to
by probability distributions of time variables, such as intefyqqe| the channel holding time and cell dwell time (i.e., the
arrival times and service times in queueing systems, whigh| resjdence time), by showing that the coefficient of vari-
characterize the traffic and service utilities in the considergg ,, (the ratio of square root of variance to mean) can be
networks. ) adjusted to be less than, equal and greater than unity, they
In order to get tractable analytical results, researchegﬁowed the generality of the SOHYP models. In a series
have used the exponential distribution to model time variz rasearch works on PCS networks. the current author and
gbles n the past for many years. Recent study on SIis colleagues [6,8] proposed another general while simpler
ilar traffic [19] and intensive research followed stronglyjiciribution model calledhe hyper-Erlangdistribution to

show the limitation of exponential distribution models. 10,46/ girectly the cell residence time which leads to better
the wireless and mobile computing arena, a plenty of e\zge

q H d that ch ! holding 1 qi “Characterization of channel holding time. We have qualita-
‘ences showed that channel holding times and interarri ly shown that the hyper-Erlang model provides a univer-
times of cell traffic are no longer exponentially distribute

al approximator to any general distribution of nonnegative

[1'3'13’15’1_6]' ) ) random variable and also satisfies the two criteria we men-
Future wireless networks target to provide various bl[—

timedi ; ¢ diff ith vari éoned earlier. More importantly, this distribution model can
rate multimedia services of different types with various Qo e easily implemented in simulation software and provide

* This research was sponsored in part by the New Jersey Institute of TeBR0re general traffic modeling platform for verification and
nology under Grant SBR421980. testing.
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There are still some unanswered questions left for thien:

hyper-Erlang distribution model: what moment properties Moy
does it have (in terms of first moment, variance and even s(t) = Z Zsi(). (1)
high moments)? How can we apply it to solve the traf i1

fic modeling problems, particularly in wireless mobile nGt"I'his is in the mixed form of different (maybe simple) distri-

works? How dowe do with the data fitting for it? This PAPEL jtions in the spirit of the hyper-Erlang modeling. Another

is an attempt to address some of the issues. We first PreSeinario comes from the research on self-similarity of traf-
some results for the hyper-Erlang model, we show why ﬂ?fé modeling, the ON/OFF model of Willinger et al. [26]
hyper-Erlang model is better suited for the characterizatiof, o e the traffic process is modeled by the superposition of
of traffic model for networks with different types of traffic; large number of independentDreward processes whose
flows, how this model can be potentially used to approxpN/OFF durations are heavy-tailed. This scenario is very
mately characterize the network traffic with self-similaritysjmijar to the previous one for cellular networks, the interar-
property, and why this model can provide a more realigya| time in a cell is also the mixed type of simple distribu-
tic approximation to general distribution. We discover tha{gns.

the hyper-Erlang distribution is a natural choice for network From the above observation we know that the mixed types
modeling with integrated services supported in the futueg distributions are the appropriate modeling approach. Rap-
telecommunications networks. Itis observed that in wirelepaport and his colleagues [23,24] proposed the SOHYP to
mobile networks, the important teletraffic parameters sughiodel the channel holding time in the cellular networks. We
as channel holding time can be characterized by the cell re®serve that the SOHYP is one of the mixed types. Recently,
idence time and call holding time, we then apply the hypewe [6] proposed a simpler model of mixed types, what we
Erlang distribution to model the cell residence time for thealled thehyper-Erlangdistribution model.

study of channel holding time in wireless networks and mo- The hyper-Erlang distribution has the following density
bile computing systems, easy-to-use analytical results hduaction and Laplace transform:

been derived. The sensitivity of the mobility (i.e., cell resi- " R

dence time) on the distribution of channel holding time has fre(t) = Z“i (mini)™ ™ et (1> 0),

been discussed. Rather than studying the effect of variance - (m; — 1)!

of cell residence time on the channel holding time distribu- M m;

tion as we did in the past [6,8], we investigate the effect of Fils) = qu( m;n; ) , @)

the coefficient of variation (CoV) of cell residence time on s +m;in;

the channel holding time. It seems that the CoV is a bette

i=1

i=1

parameter for capturing the users’ mobile behavior. where
M
a; = 0, Zai =1
o . . =1
2. Hyper-Erlang distribution and its properties l o
and M, m1, mo, ..., my are nonnegative integersgy, 12,

. . r itive numbers. Defin
In this section we present some new results on the hypér-’ nu are positive numbers. Define

Erlang distribution model. M (mini)™iemi=t
We first demonstrate that the hyper-Erlang model is theH = | f(t): f(t) = Zaiﬁe it
natural choice for teletraffic modeling in communications i=1 i ’
networks with integrated services. As we mentioned, the M
future telecommunications networks (such as the third gen- M>0 m >0 n7>0, 0 >0, Zou = 1}-
i=1

eration wireless networks) target to provide integrated ser-

vices such as the voice, data and multimedia via inexperhis set is basically the set of all hyper-Erlang distribution
sive low-powered mobile computing devices over the wirgnodels, it contains the exponential distribution, Erlang dis-
less infrastructures, teletraffic modeling and resource dimaribution, the hyper-exponential distribution. For this class
sioning for such networks are challenging and importardgf distribution models, we have

Imagining that we have a wireless network with cellular in-

frastructure, we want to suppoM types of (real-time or Theorem 1. The setH has the following properties:
non-realtime, prioritized or nonprioritized) services. ket
denote the arrival rate of the call requests of tyrea cell,
let s; (¢) denote the cell session time (channel holding time)
probability density function of service typen the cell. If

we assume some independence of services of all types, we
can model the cell as a queue system with total arrival raf@) Let F denote the set of all probability density functions
A= Zf‘il A; and with service time probability density func-  of nonnegative random variables, thahis a dense set

(1) H is aconvexset, i.e., any convex combination of hyper-
Erlang distributions is also in this set. Therefore, any
convex supposition of hyper-Erlang distributions is also
a hyper-Erlang distribution.
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in F, i.e., any probability density function of a nonneg-
ative random variable can be approximated by hyper-

Erlang distribution models. O ~ssr

(3) Hyper-Erlang distributions can be tuned to have the c@--2f - // bt R
efficients of variation (CoV) less than, equal to an@,
greater than unity; they can be also tuned to have C&V 4
as small as desired and as large as desired. z

YO ty densit:

Proof. (1) can be easily verified, (2) has been shown in [& 5 ; 5 g ;
(or referred to [17]). We focus on the proof of (3). FOr @ -gf [N ]
hyper-Erlang distribution as in (2), the first moment and the
second moment are given byié a random variable with the  -1of-
above hyper-Erlang distribution)

2 ; ; ; : ;
0

1 0.5 1 1.5 2 2.5 3
EE1=Y" i =, e
Zl 1 l’?i 3
) M mi+1 1 ( ) Figure 1. Erlang and expongntial (dashed line) density functions in log-
E[E ] =) g0 -—, linear graph.
mj ni
from which we obtain the coefficient of variation is given by ' ' ' ' ? ' ' ' '
,5-.
E[£2] — E[£)?
cov? — EIET1— EIE) ol
E[£]2 _
fearymod P N TN
[Z?ilotixi]z s ;_20 ...........................................
wherex; = 1/7;. Let us choos@/ = 2, define E'ZS '
g_so_ ......
a(l4+1/mp)x? + (1 —a)(1+ 1/m2)x2 g
g(a) — 1 5 _ 1 (5) 2_35_ ““““““““““““““““““““““““““““““““
[ox1 + (1 — a)x2]
401
It is obvious thatg(0) = 1/m» andg(l) = 1/m1. Since
g(a) is continuous in[0, 1], henceg(«) can assume any T
value in [1/m2, 1]. If we choosem; = 1 and varyma % 160 260 3(30 460 580 eciJo 7(30 s&o 950 1000
from 1 to oo, then we can show that(«) can assume any time

value in(0, 1]. This implies that the CoV for hyper-Erlang
distribution can be tuned to have any valugnl].
Next, we show thag(«) can also assume any value in

Figure 2. Hyper-Erlang distribution which shows some fatness property in
a time interval of interest.

[1, +00). Chooseny = m2 = 1, then denote the cumulative distribution of a hyper-Erlang distri-
bution given in (2), letF (1) = 1 — F(¢). It can be easily
2
h@, x1, x2) = 22207 )0x2/x) verified that

[ +2(1 — a)(x2/xD)12

> M m;—1 (m~77~t)k
- -1 (fc—j—>0>, F(t)=Zou<Z #e"”""”)- (6)
i=1 k=0
from which we conclude that when we chooseand The distribution of a random variablg is said to be fat-
x2/x1 sufficiently small (for example, choose/x1 = tailed if P{X > ¢] is on the order of " whent is suffi-
a?), h(a,x1,x2) can be as large as desired. Moreovegjently large for a > 0. Itis enough to study the property of
h(0.5,x,x) = 1. Sinceh(a, x1,x2) are continuous in F(t) for the fatness property. Intuitively, a fat-tailed distrib-

[0, 1] x (0, 00) x (0, 00), henceh(x, x1, x2) can assume ution has a “fat tail” comparing to the exponential distribu-
any value in[1, c0). Hence, the CoV can also be tuned teion, so we can also observe the probability density functions
have value if1, co). In summary, this completes the proofon the log-linear graphs to determine whether a distribution
of (3). O is a fat-tailed distribution. Figure 1 shows that the Erlang
distributions are not fat-tailed distribution. However, as we
Next, we want to show that the hyper-Erlang distributionsbserve from the figure, there are pieces where Erlang distri-
can also provide good approximations to the fat-tailed disttutions do show “fatness” property: the Erlang distributions
butions which lead to the self-similar traffic [25]. L&tr) are higher than the straight (dashed) line. Suitable supposi-
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tion of multiple Erlang distributions may lead to a fat-tailed A
distribution in the time interval of interest. Indeed, as shown
in figure 2, the hyper-Erlang distribution does provide the n
fat-tailed property in the time range of interest by tuning the
parameters in the hyper-Erlang model appropriately.

Another characteristic of the fat-tailed distribution is the ! 2 m ol
infinite variance. We can demonstrate that the hyper-Erlang
distributions can be tuned to have a finite bounded mean
while a sufficiently large variance. From (3), we observe
that we could choose; andn; appropriately so thaE[£]iS  Figure 3. The time diagram for call holding time and cell residence time.
finite while E[£2] is sufficiently large. For example, choose
M=2n>1a =1//n n = /nandn = 1, then pase station in the cell they are traveling. The time the mo-

E[§]=2-1/y/n <2and bile users spend in the cell (not necessarily engaging in a
1 1 1 service) is called theell residence timewhich character-
E[EZ] = <1+ m—l)«/ﬁ+ <1 - ﬁ) <1+ m_z) izes the users’ mobility. The time a mobile user locks on a

channelin the cell is called thehannel holding timgwhich
>n—o00 (n— o). corresponds to the service time in queueing systems study.

Thus, whem is sufficiently large, then the variance of thd" [8], we have studied the channel holding time under gen-
corresponding hyper-Erlang distribution can be sufficient al cgll residence tlme dlstrlbutlo_ns_. We hqve obtained the
large, which also leads to the fat tail property. oII(_)vv_lng result. As in the self-sn_rmlar traffic study [}1],
There exists a nice structure about the hyper-Erlang di@riations of service time at certain node may result in the
tribution model. From theorem 1(1), we notice that a hypep€lf-similar traffic downstream. In this section, we apply the
Erlang distribution has a layered structure: the Erlang di8YPer-Erlang distributions to model the cell residence time
tributions are the first layer, the convex combination of a s8f'd investigate how integrated services will affect the chan-
of Erlang distributions forms the second layer, another cohé! ho]dmg time distribution. . .
vex combination of a set of hyper-Erlang distributions forms AS in [8], figure 3 shows the time diagram for our study.
another layer, and so on. The more the number of layér8t’c be the call holding time (the time of the requested con-
(related to the number of the Erlang distribution terms {RECtioN to @ wireless network) for a typical new caj},be
the overall hyper-Erlang distribution), the better approxima?€ cell residence time in theth cell the mobile user travels,
tion to the real situation we achieve. This modeling beafsbe the time between the instant the new call is initiated at
a similarity to the self-similar traffic study: no matter howAnd the instant the new call moves out of the cell if the new
small the time scale is, the traffic pattern looks almost ttf@l is not completed (we call it the residual cell residence
same. This is the reason why hyper-Erlang distributions cHM1€), et (m > 1) be the residual call holding time when
be used for the modeling of self-similar traffic. Another obthe call finishesnth handoff successfully. Assume that the
servation is that our modeling is also in the similar vein to thall holding times are exponentially distributed with para-
ON/OFF modeling for self-similarity [26]. If we use the fol-Meteru and the cell residence time is generally distributed

lowing hyper-Erlang distributionfep(7; k) is a hyper-Erlang With mean ¥7. Letn andmn denote the new call channel
distribution), holding time and the handoff call channel holding time, re-

spectively (i.e., the channel holding times for new calls and

N N . \
handoff calls, respectively). Then, from figure 3, the new
h(t) = Z,Bi fopt; k), Bi =0, Zﬂi =1 call channel holding time is
=1 =1
to model the interarrival times of call arrivals to a cell in a tah = Min{tc, r}, (7)

cellular network, then the cell traffic is in fact the switche%nd the handoff call channel holding time is
traffic merge fromV sources: a new call arrival belongs to

the kth source with probabilitys;, (k = 1,2,..., N). We thh = Min{r,,, t,}. (8)
will investigate self-similar traffic using the hyper-ErIangL )
models in more detail elsewhere. et 2 andin denote the arrival rates for new calls and hand-

off calls, respectively. Letc., denote the channel holding
time (i.e., the channel holding time no matter whether the
3. Analytical results for channel holding times call is new call or handoff call), thugsn = th with proba-
bility /(A + An) andtcn = thn With probability /(A 4+ Ap).
In this section, we concentrate on the study of the channellLet f.(¢), f(#), fr(t), fan(®), fhn(t) and fen(t) denote,
holding time for the wireless networks and mobile computespectively, the probability density functions #f ¢, r,
ing systems (WINMOC) under hyper-Erlang cell residenagn, thn andzcn with their corresponding Laplace transforms
time. In a WINMOC, service areas are equipped with celfl (s), £*(s), £(s), fan(s), fran(s) and fZ,(s), respectively.
lular structure, where mobile users get their service via tte[8], we obtain the following result.
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. . . =0.1
Theorem 2. For a wireless network with exponential callg gemma

gamma=0.5
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holding times and Poisson new call arrivals with arnv@

ol
o

ratei, we have the following statements:

(i) The Laplace transform of the probability density func

tion of the new call channel holding time is given by

oM ns
fnh(s) - S+/L + (S+M)2 (9)

and the expected new call channel holding time is

[1— "G +w]

Eltnn] = = — %[1 — Fr(w]. (10)

(i) The Laplace transform of the probability density func

tion of the handoff call channel holding time is glver%oz

by

finG) = —— + —— (s + ),

11
—i—u S+ U (11)

and the expected handoff call channel holding time is

1
Elthh] = = (1 - fF(w). (12)

(iii) Let i, denote the handoff call arrival rate to a cell, then

the Laplace transform of the probability density func-

tion of channel holdlng time is given by

fc*h(s) = fnh( s)+ fhh(s) (13)

A+ An A+ A
and the expected channel holding time is given by

Iy N PR PR
el = = a2 [1 <1 r )f (n )]
(14)

(iv) The handoff call arrival ratep, is given by
Ah=—n(1— po)A
1- %)

Res *(—s), (15
XPZ = a—pp e’ ™ 1

whereog is the set of poles of;(—s) on the right com-
plex plane, Res., is the residue at a pole = p, po

o
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Figure 4. Average channel holding times for new calls and handoff calls:
solid line for the new calls and the dashed line for the handoff calls.

calls and handoff calls are different. In this figure, we as-
sume that the cell residence time is Gamma-distributed with
hape parameter varying at= 0.1,y = 0.5,y = 2, and

= 10. The average channel holding times for new calls
and handoff calls can be computed using the formulae in the-
orem 2. We observe in the figure that the difference is some-
times very significant. Thus, the one-dimensional Markov
chain model for call blocking performance assuming that the
new calls and handoff calls are identically distributed may
not be appropriate, the multidimensional Markov chain (ba-
sically two-dimensional Markov chain) may be needed. This
observation calls for the necessity of characterizing new call
channel holding time and handoff call holding time under
more general mobility assumption.

As we mentioned earlier, the hyper-Erlang distribution
model is general enough for field data and simple enough for
tractable analysis. We can apply this hyper-Erlang distribu-
tion to model the cell residence time (mobility). Assume that
the cell residence time is hyper-Erlang distributed as in (2)
with parameter 1n = Zi"il «; /n; and the call holding time

andp; are the blocking probabilities for the new callgs exponentially distributed, applying theorem 2 with some

and handoff calls, respectively.

mathematical manipulations, we can obtain

In the current Iiteraturez we observe that most p_erfmr—heorem 3. For a wireless network or mobile computing
mance analyses_wer_e carried out under the assumption atem with exponential call holding time, Poisson new call
the channel holding times for new calls and handoff calls aggrivals and hyper-Erlang distributed cell residence time, we

identically distributed (some with exponential distribution)have
i.e., any calls, either new calls and handoff calls, were as-

sumed to have the same identically distributed channel holdi) The Laplace transform of the density function of the
new call channel holding time is given by

ing time with the same parameter, in which case the one-
dimensional Markov chain can be used to obtain the block-

ing probabilities for new calls and handoff calls. From theo- M m ns

rem 2 we could show that the new call channel holding time Jan(s) = Z [ ) + G2

and the handoff call channel holding time are having differ- i=1

ent distributions, even having different average values. Fig- ns min; \™ 16
ure 4 shows that the average channel holding times for new G+ w2\s Fmin; - (16)
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wheren = [Zf‘il a,-/n,-]—l, and the expected new callcharacterize the users’ mobility. Thus, if field data is avail-
channel holding time is able, then we can apply statistical method to fit the field data
y by the hyper-Erlang distribution, as such the channel holding
U i[Za( m;n; >m} time distribution is determined.
2 2 w4 min; If the call holding time is not exponentially distributed,
(17) then results for handoff call channel holding time both in
theorem 3 and in [8] cannot be applied, where the memory-
(i) The Laplace transform of the density function of thdess property had been used. In the reminder of this section,

handoff call channel holding time is given by we give some results for this case.
u . Letrc denote the residual life of the call holding time (it is
. n s m;n; ! rn if the call has been handed afftimes). The statistics for
Fin($) = Z i [s +u + s+ (s + o+ mn; ) ] rc can be obtained in a similar way as we do for the call hold-

i=1 (18) ing time zc and the cell residence tinrg which do not in-

and the expected handoff call channel holding time isVCIVe the network operation. Léfc(1) denote the probabil-
ity density function for¢ with the Laplace transforng.(s)
and letF,c(r) denote the cumulative distribution function of

1 mini \"
Elthh] = — [1 =Y <7> } (19)  h. For handoff call channel holding time, we have
™ & \u+min

) ) thh = Min{re, ty}. (23)
(iii) The Laplace transform of the density function of chan-

nel holding time is given by From equation (23), we obtain

Fnn(t) =Pr(thh < 1)

* —
Jen($) = 5= Ah )+ A+ A Jon(s). - (20) =Pr(tyc <100ty <1)
and the expected channel occupancy time is given by =Prltre < 1) + Prty < 1) = Prltre < 1.t < 1)
N " =Pr(t,c <t) + Pr(t,, <t) —Pr(tye < t)Pr(t,, <1t).
Elten] = m Elthn) + —— ot E[tn]. (21) (24)
(iv) The handoff call arrival ratey, can be computed by the Differentiating (24), we obtain
following formula: fhh@®) = frc@®) + £@) — frc@) Prt, < 1)
1— 1— f* A —Prit,e <o) f@t
= 77([1 _zzci)[_ ;‘f:;:)i]’ (22) ( ¢ < ) f (@) N
M Ps M = frc(f)/ f(r)ydr + f(t)/ fre(t) dz. (25)
where ' '
" . Notice that the Laplace transform qftoo g(r)dr is
) = Z“’( mini ) " (1—g*(s))/s whereg(¢) can bef,.c(t) or f(t), applying
= \ i+ min; Laplace transform to both sides of equation (25) and the in-

verse Laplace transform theorem, we obtain

In current PCS (Personal Communications Services) net- 00 00 o
works and some mobile computing systems with high transthn(s) = / fre(t) [/ f() df} dt
mission rates, services are mainly accomplished via the cir-

o0 o0
cuit switching mode (session switching in mobile comput- +/ f(t)[/ Fro(T) dr}e—” dr
ing). In this scenario, call holding time (session time) can
still be appropriately modeled by exponential distributions. . o+joo &
Thus, the above result can be applied to study the channel _/ 27” / fre@ <

holding time for performance evaluation and design. We ob-

serve two important features about the above result. The X [

first is the simplicity. All computations involved with the

result are the manipulations of the rational functions, hence + f J10

the partial fractional expansion technique can be used to find 0

the probability density functions of the channel holding time f"ﬂ‘” 1- frc*(z)
o

f(o) drj| e s dr

t —S!
(the inverse Laplace transform). The second feature is the X — edear

generality. Due to the universal approximation capability of o4 joo

the hyper-Erlang models, we can use the hyper-Erlang distri- = i)

butions to approximate any distribution function of cell resi- 2”1

dence time. Since the cell residence time captures the users’ o o de le=6-97 g g
mobility, we can use the hyper-Erlang distribution models to x f f f(x)dr e 1oz
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1 /a+joo 1— f;’Z;(Z)
21
o0
X / f(He = dr dg
0
1 ot o 1—f*s—2)
- - - - > d
2rj / Jre@) s —z .

o—joo

o—joo <

1 o+joo 1_fr>sz:(z)

+— — I (s — ) dz
21 o—joo Z
1 o+joo . 1— *(S -2)
= o0 |:frc(1)7f
] Jo—joo s —2

+ Wf*(s - z)] dz, (26)

whereo is the real number appropriately chosen for the use

of the inverse Laplace transforms. legt andop denote the
sets of poles off,%.(—s) and f*(—s) in the right half of the
complex plane, respectively. It can be verified that s is a
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this case, the complex functions under the Res operator
in (27) and (28) will be rational functions, hence, the
partial fractional expansion techniques can be used to
find the inverse Laplace transform, i.e., the probability
density functionfpn(z).

(2) Forthe new call channel holding time, we can obtain the
similar result by substituting the with ¢; andz,, with

r, respectively. This is left to the readers.

(3) As a final remark, the probability distribution fey can

be approximately modeled by the Residual Life Theo-
rem [18], so the Laplace transform of the probability
density function of. can be given by

pll— fE()]
S K

frt(s) = (29)

which also gives the exponential distribution when the
call holding time is exponentially distributed.

removable singular point of the integrand of the last equation
of (26). From the residue theorem [20], we obtain (Using4& performance studies

contour in the right half of the complex plan)
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In particular, if the call holding time; is exponentially

distributed, from the strong memoryless property 4glis

In this section we present our findings on how the distribu-
tion of cell residence time affects the distribution of channel
holding time. We use the hyper-Erlang distribution to model
the cell residence time.

We use the hyper-Erlang distribution model of two Er-
lang terms for our numerical study. Our idea here is as
follows: if the users’ mobility could be described by the
hyper-Erlang distribution, what would happen to the result-
ing channel holding time distribution? Could we still use
the exponential model to approximate it? Can we use the
first and second order statistics of the cell residence time to
characterize the channel holding time distribution?

There are two approaches for these problems. First, we

also exponentially distributed with the same distribution %bmpare the channel holding time distribution and its ap-

tc, SO f5(s) = /(s + ). From (28), we obtain

* — * _ M
Jon(s) = ZzBs%rSp{f (Z)|:1 s—z—i—u]

PEOrc
1_ *
n ff@) }
z s—z+u

1
=R ) ————
z:ﬁi{f (Z)z—(s—i-,u)
+1—.f*(Z) H }
z z—(s4+n)
__H S px
_S+//L S+ch(s+u)s

which is the same as in [8].

3.1. Remarks

proximation when the cell residence time is approximated
by exponential fit. In this case, the channel holding time
distributions can be obtained from our analytical results by
taking the hyper-Erlang and exponential cell residence times
into theorem 3. Figures 5 and 6 show the comparisons. In
figure 5, we use one Erlang term and one exponential term in
our hyper-Erlang model, we vary the coefficient of variation
in order to observe the change of channel holding time dis-
tribution and its approximation. Obviously, the exponential
distribution model does not have good fit for the real distrib-
ution, even when the coefficient of variation is close to unity
(a signature for exponential distribution). Figure 6 displays
the cases when the hyper-Erlang distribution model has two
Erlang terms. This figure exhibits more mismatches between
the real channel holding time distribution and its approxima-
tions.

The second approach is to use the exponential approxi-

(1) We witness the powerful approximation of the hypemation directly to the channel holding time. Figure 7 shows
Erlang distribution models, hence, we can use hypdahe comparison between the channel holding time distribu-
Erlang distributions to approximately model the residudion and its exponential approximation where the coefficient
life of the call holding time and cell residence time. Irof variation (CoV) for cell residence time is very close to
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Figure 5. Handoff call channel holding time and its statistical fit (dashedgure 7. Handoff call channel holding time and the exponential fit (dashed
line) when the exponential fit for cell residence time is used: one term in line) for the channel holding time.
hyper-Erlang model is exponential.
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................ s In this paper, we present some new properties of the hyper-
1 Erlang model we proposed for mobility modeling. We show
: : the generality of such model, which can be used to model
o ! 0 o ' not only cell residence time (users’ mobility) but also other

CoV=0.9139 Cov=2.5054 time variables in wireless networks and mobile computing

: 1 systems. The future work is to study how the hyper-Erlang
model can be used to approximate the network traffic. In the
wireless and mobile systems, each cell can be modeled as a
gueueing system with two streams of arrivals (new calls and
handoff calls) with distinct channel holding time distribu-
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Figure 6. Handoff call channel holding time and its statistical fit (dashd®eferences
line) when the exponential fit for cell residence time is used.
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