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Abstract. This paper presents the study of the hyper-Erlang distribution model and its applications in wireless networks and mobile
computing systems. We demonstrate that the hyper-Erlang model provides a very general model for users’ mobility and may provide
a viable approximation to fat-tailed distribution which leads to the self-similar traffic. The significant difference from the traditional
approach in the self-similarity study is that we want to provide an approximation model which preserves the Markovian property of
the resulting queueing systems. We also illustrate that the hyper-Erlang distribution is a natural model for the characterization of the
systems with mixed types of traffics. As an application, we apply the hyper-Erlang distribution to model the cell residence time (for users’
mobility) and demonstrate the effect on channel holding time. This research may open a new avenue for traffic modeling and performance
evaluation for future wireless networks and mobile computing systems, over which multiple types of services (voice, data or multimedia)
will be supported.
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1. Introduction

The future telecommunications networks (such as the third
generation wireless networks) target to provide integrated
services such as the voice, data and multimedia via inexpen-
sive low-powered mobile computing devices over the wire-
less infrastructures, teletraffic modeling and resource dimen-
sioning for such networks are challenging and important,
which rely heavily on good traffic models to characterize the
network dynamics with appropriate accuracy. The criteria
for finding an appropriate traffic model are as follows: (1) it
must be general enough to provide a good approximation to
the field data; (2) it must also be simple enough to enable us
to obtain analytically tractable results for performance eval-
uation. Current practices usually emphasize one and neglect
the other, it will be worthwhile to find a good traffic model to
satisfy these two criteria. Traffic models can be determined
by probability distributions of time variables, such as inter-
arrival times and service times in queueing systems, which
characterize the traffic and service utilities in the considered
networks.

In order to get tractable analytical results, researchers
have used the exponential distribution to model time vari-
ables in the past for many years. Recent study on sim-
ilar traffic [19] and intensive research followed strongly
show the limitation of exponential distribution models. In
the wireless and mobile computing arena, a plenty of evi-
dences showed that channel holding times and interarrival
times of cell traffic are no longer exponentially distributed
[1,3,13,15,16].

Future wireless networks target to provide various bit-
rate multimedia services of different types with various QoS
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(quality of service) requirement via inexpensive low pow-
ered portables. The session time for each service will vary
significantly from application to application. In each cell,
the cell traffic will consist of different traffic flows with
distinct characteristics, similar to the wired environments,
the cell traffic most probably shows self-similarity property,
hence, the traditional traffic theory (relying on exponential
model) will most likely be invalid. More general distribu-
tion models are needed to capture the essence of the network
dynamics. It has been shown [19] that fat-tailed distribution
is better suitable for the characterization of the self-similar
traffic, unfortunately, this model complicates the resulting
queueing model, which is not computationally tractable.

Recently, in wireless network and mobile computing re-
search, two general models have been proposed. Rappa-
port and his colleagues [23,24] proposed a model called the
SOHYP (the Sum of the Hyper-Exponential) distribution to
model the channel holding time and cell dwell time (i.e., the
cell residence time), by showing that the coefficient of vari-
ation (the ratio of square root of variance to mean) can be
adjusted to be less than, equal and greater than unity, they
showed the generality of the SOHYP models. In a series
of research works on PCS networks, the current author and
his colleagues [6,8] proposed another general while simpler
distribution model calledthe hyper-Erlangdistribution to
model directly the cell residence time which leads to better
characterization of channel holding time. We have qualita-
tively shown that the hyper-Erlang model provides a univer-
sal approximator to any general distribution of nonnegative
random variable and also satisfies the two criteria we men-
tioned earlier. More importantly, this distribution model can
be easily implemented in simulation software and provide
more general traffic modeling platform for verification and
testing.
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There are still some unanswered questions left for the
hyper-Erlang distribution model: what moment properties
does it have (in terms of first moment, variance and even
high moments)? How can we apply it to solve the traf-
fic modeling problems, particularly in wireless mobile net-
works? How do we do with the data fitting for it? This paper
is an attempt to address some of the issues. We first present
some results for the hyper-Erlang model, we show why the
hyper-Erlang model is better suited for the characterization
of traffic model for networks with different types of traffic
flows, how this model can be potentially used to approxi-
mately characterize the network traffic with self-similarity
property, and why this model can provide a more realis-
tic approximation to general distribution. We discover that
the hyper-Erlang distribution is a natural choice for network
modeling with integrated services supported in the future
telecommunications networks. It is observed that in wireless
mobile networks, the important teletraffic parameters such
as channel holding time can be characterized by the cell res-
idence time and call holding time, we then apply the hyper-
Erlang distribution to model the cell residence time for the
study of channel holding time in wireless networks and mo-
bile computing systems, easy-to-use analytical results have
been derived. The sensitivity of the mobility (i.e., cell resi-
dence time) on the distribution of channel holding time has
been discussed. Rather than studying the effect of variance
of cell residence time on the channel holding time distribu-
tion as we did in the past [6,8], we investigate the effect of
the coefficient of variation (CoV) of cell residence time on
the channel holding time. It seems that the CoV is a better
parameter for capturing the users’ mobile behavior.

2. Hyper-Erlang distribution and its properties

In this section we present some new results on the hyper-
Erlang distribution model.

We first demonstrate that the hyper-Erlang model is the
natural choice for teletraffic modeling in communications
networks with integrated services. As we mentioned, the
future telecommunications networks (such as the third gen-
eration wireless networks) target to provide integrated ser-
vices such as the voice, data and multimedia via inexpen-
sive low-powered mobile computing devices over the wire-
less infrastructures, teletraffic modeling and resource dimen-
sioning for such networks are challenging and important.
Imagining that we have a wireless network with cellular in-
frastructure, we want to supportM types of (real-time or
non-realtime, prioritized or nonprioritized) services. Letλi
denote the arrival rate of the call requests of typei in a cell,
let si(t) denote the cell session time (channel holding time)
probability density function of service typei in the cell. If
we assume some independence of services of all types, we
can model the cell as a queue system with total arrival rate
λ =∑M

i=1 λi and with service time probability density func-

tion:

s(t) =
M∑
i=1

λi

λ
si(t). (1)

This is in the mixed form of different (maybe simple) distri-
butions in the spirit of the hyper-Erlang modeling. Another
scenario comes from the research on self-similarity of traf-
fic modeling, the ON/OFF model of Willinger et al. [26]
where the traffic process is modeled by the superposition of
a large number of independent 0/1 reward processes whose
ON/OFF durations are heavy-tailed. This scenario is very
similar to the previous one for cellular networks, the interar-
rival time in a cell is also the mixed type of simple distribu-
tions.

From the above observation we know that the mixed types
of distributions are the appropriate modeling approach. Rap-
paport and his colleagues [23,24] proposed the SOHYP to
model the channel holding time in the cellular networks. We
observe that the SOHYP is one of the mixed types. Recently,
we [6] proposed a simpler model of mixed types, what we
called thehyper-Erlangdistribution model.

The hyper-Erlang distribution has the following density
function and Laplace transform:

fhe(t)=
M∑
i=1

αi
(miηi)

mi tmi−1

(mi − 1)! e−miηi t (t > 0),

f ∗he(s)=
M∑
i=1

αi

(
miηi

s +miηi
)mi

, (2)

where

αi > 0,
M∑
i=1

αi = 1,

andM,m1,m2, . . . ,mM are nonnegative integers,η1, η2,

. . . , ηM are positive numbers. Define

H=
{
f (t): f (t) =

M∑
i=1

αi
(miηi)

mi tmi−1

(mi − 1)! e−miηi t ,

M > 0, mi > 0, ηi > 0, αi > 0,
M∑
i=1

αi = 1

}
.

This set is basically the set of all hyper-Erlang distribution
models, it contains the exponential distribution, Erlang dis-
tribution, the hyper-exponential distribution. For this class
of distribution models, we have

Theorem 1. The setH has the following properties:

(1) H is a convex set, i.e., any convex combination of hyper-
Erlang distributions is also in this set. Therefore, any
convex supposition of hyper-Erlang distributions is also
a hyper-Erlang distribution.

(2) LetF denote the set of all probability density functions
of nonnegative random variables, thenH is a dense set
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in F , i.e., any probability density function of a nonneg-
ative random variable can be approximated by hyper-
Erlang distribution models.

(3) Hyper-Erlang distributions can be tuned to have the co-
efficients of variation (CoV) less than, equal to and
greater than unity; they can be also tuned to have CoV
as small as desired and as large as desired.

Proof. (1) can be easily verified, (2) has been shown in [6]
(or referred to [17]). We focus on the proof of (3). For a
hyper-Erlang distribution as in (2), the first moment and the
second moment are given by (ξ is a random variable with the
above hyper-Erlang distribution)

E[ξ ] =∑M
i=1 αi

1

ηi
,

E
[
ξ2
]=∑M

i=1 αi
mi + 1

mi
· 1

ηi
,

(3)

from which we obtain the coefficient of variation is given by

CoV2= E[ξ
2] − E[ξ ]2
E[ξ ]2

=
∑M
i=1 αi(1+ 1/mi)x2

i

[∑M
i=1 αixi]2

− 1, (4)

wherexi = 1/ηi . Let us chooseM = 2, define

g(α) = α(1+ 1/m1)x
2
1 + (1− α)(1+ 1/m2)x2

[αx1+ (1− α)x2]2 − 1. (5)

It is obvious thatg(0) = 1/m2 andg(1) = 1/m1. Since
g(α) is continuous in[0,1], henceg(α) can assume any
value in [1/m2,1]. If we choosem1 = 1 and varym2

from 1 to∞, then we can show thatg(α) can assume any
value in(0,1]. This implies that the CoV for hyper-Erlang
distribution can be tuned to have any value in(0,1].

Next, we show thatg(α) can also assume any value in
[1,+∞). Choosem1 = m2 = 1, then

h(α, x1, x2) = 2α + 2(1− α)(x2/x1)
2

[α + 2(1− α)(x2/x1)]2 − 1

→ 2

α
− 1

(
x2

x1
→ 0

)
,

from which we conclude that when we chooseα and
x2/x1 sufficiently small (for example, choosex2/x1 =
α2), h(α, x1, x2) can be as large as desired. Moreover,
h(0.5, x, x) = 1. Sinceh(α, x1, x2) are continuous in
[0,1] × (0,∞) × (0,∞), henceh(α, x1, x2) can assume
any value in[1,∞). Hence, the CoV can also be tuned to
have value in[1,∞). In summary, this completes the proof
of (3). �

Next, we want to show that the hyper-Erlang distributions
can also provide good approximations to the fat-tailed distri-
butions which lead to the self-similar traffic [25]. LetF(t)

Figure 1. Erlang and exponential (dashed line) density functions in log-
linear graph.

Figure 2. Hyper-Erlang distribution which shows some fatness property in
a time interval of interest.

denote the cumulative distribution of a hyper-Erlang distri-
bution given in (2), letF (t) = 1 − F(t). It can be easily
verified that

F(t) =
M∑
i=1

αi

(
mi−1∑
k=0

(miηi t)
k

k! e−miηi t
)
. (6)

The distribution of a random variableX is said to be fat-
tailed if Pr[X > t] is on the order of 1/tr when t is suffi-
ciently large for ar > 0. It is enough to study the property of
F(t) for the fatness property. Intuitively, a fat-tailed distrib-
ution has a “fat tail” comparing to the exponential distribu-
tion, so we can also observe the probability density functions
on the log-linear graphs to determine whether a distribution
is a fat-tailed distribution. Figure 1 shows that the Erlang
distributions are not fat-tailed distribution. However, as we
observe from the figure, there are pieces where Erlang distri-
butions do show “fatness” property: the Erlang distributions
are higher than the straight (dashed) line. Suitable supposi-
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tion of multiple Erlang distributions may lead to a fat-tailed
distribution in the time interval of interest. Indeed, as shown
in figure 2, the hyper-Erlang distribution does provide the
fat-tailed property in the time range of interest by tuning the
parameters in the hyper-Erlang model appropriately.

Another characteristic of the fat-tailed distribution is the
infinite variance. We can demonstrate that the hyper-Erlang
distributions can be tuned to have a finite bounded mean
while a sufficiently large variance. From (3), we observe
that we could chooseαi andηi appropriately so thatE[ξ ] is
finite whileE[ξ2] is sufficiently large. For example, choose
M = 2, n > 1, α1 = 1/

√
n, η1 = √n andη2 = 1, then

E[ξ ] = 2− 1/
√
n < 2 and

E
[
ξ2]=(1+ 1

m1

)√
n+

(
1− 1√

n

)(
1+ 1

m2

)
>
√
n→∞ (n→∞).

Thus, whenn is sufficiently large, then the variance of the
corresponding hyper-Erlang distribution can be sufficiently
large, which also leads to the fat tail property.

There exists a nice structure about the hyper-Erlang dis-
tribution model. From theorem 1(1), we notice that a hyper-
Erlang distribution has a layered structure: the Erlang dis-
tributions are the first layer, the convex combination of a set
of Erlang distributions forms the second layer, another con-
vex combination of a set of hyper-Erlang distributions forms
another layer, and so on. The more the number of layers
(related to the number of the Erlang distribution terms in
the overall hyper-Erlang distribution), the better approxima-
tion to the real situation we achieve. This modeling bears
a similarity to the self-similar traffic study: no matter how
small the time scale is, the traffic pattern looks almost the
same. This is the reason why hyper-Erlang distributions can
be used for the modeling of self-similar traffic. Another ob-
servation is that our modeling is also in the similar vein to the
ON/OFF modeling for self-similarity [26]. If we use the fol-
lowing hyper-Erlang distribution (fhp(t; k) is a hyper-Erlang
distribution),

h(t) =
N∑
k=1

βifhp(t; k), βi > 0,
N∑
k=1

βi = 1,

to model the interarrival times of call arrivals to a cell in a
cellular network, then the cell traffic is in fact the switched
traffic merge fromN sources: a new call arrival belongs to
the kth source with probabilityβk (k = 1,2, . . . , N). We
will investigate self-similar traffic using the hyper-Erlang
models in more detail elsewhere.

3. Analytical results for channel holding times

In this section, we concentrate on the study of the channel
holding time for the wireless networks and mobile comput-
ing systems (WINMOC) under hyper-Erlang cell residence
time. In a WINMOC, service areas are equipped with cel-
lular structure, where mobile users get their service via the

Figure 3. The time diagram for call holding time and cell residence time.

base station in the cell they are traveling. The time the mo-
bile users spend in the cell (not necessarily engaging in a
service) is called thecell residence time, which character-
izes the users’ mobility. The time a mobile user locks on a
channel in the cell is called thechannel holding time, which
corresponds to the service time in queueing systems study.
In [8], we have studied the channel holding time under gen-
eral cell residence time distributions. We have obtained the
following result. As in the self-similar traffic study [11],
variations of service time at certain node may result in the
self-similar traffic downstream. In this section, we apply the
hyper-Erlang distributions to model the cell residence time
and investigate how integrated services will affect the chan-
nel holding time distribution.

As in [8], figure 3 shows the time diagram for our study.
Let tc be the call holding time (the time of the requested con-
nection to a wireless network) for a typical new call,tm be
the cell residence time in themth cell the mobile user travels,
r be the time between the instant the new call is initiated at
and the instant the new call moves out of the cell if the new
call is not completed (we call it the residual cell residence
time), letrm (m > 1) be the residual call holding time when
the call finishesmth handoff successfully. Assume that the
call holding times are exponentially distributed with para-
meterµ and the cell residence time is generally distributed
with mean 1/η. Let tnh andthh denote the new call channel
holding time and the handoff call channel holding time, re-
spectively (i.e., the channel holding times for new calls and
handoff calls, respectively). Then, from figure 3, the new
call channel holding time is

tnh= min{tc, r}, (7)

and the handoff call channel holding time is

thh = min{rm, tm}. (8)

Let λ andλh denote the arrival rates for new calls and hand-
off calls, respectively. Lettch denote the channel holding
time (i.e., the channel holding time no matter whether the
call is new call or handoff call), thus,tch = tnh with proba-
bility λ/(λ+λh) andtch = thh with probabilityλh/(λ+λh).

Let fc(t), f (t), fr(t), fnh(t), fhh(t) andfch(t) denote,
respectively, the probability density functions oftc, tm, r,
tnh, thh andtch with their corresponding Laplace transforms
f ∗c (s), f ∗(s), f ∗r (s), f ∗nh(s), f

∗
hh(s) andf ∗ch(s), respectively.

In [8], we obtain the following result.
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Theorem 2. For a wireless network with exponential call
holding times and Poisson new call arrivals with arrival
rateλ, we have the following statements:

(i) The Laplace transform of the probability density func-
tion of the new call channel holding time is given by

f ∗nh(s) =
µ

s + µ +
ηs

(s + µ)2
[
1− f ∗(s + µ)], (9)

and the expected new call channel holding time is

E[tnh] = 1

µ
− η

µ2

[
1− f ∗(µ)]. (10)

(ii) The Laplace transform of the probability density func-
tion of the handoff call channel holding time is given
by

f ∗hh(s) =
µ

s + µ +
s

s + µf
∗(s + µ), (11)

and the expected handoff call channel holding time is

E[thh] = 1

µ

(
1− f ∗(µ)). (12)

(iii) Let λh denote the handoff call arrival rate to a cell, then
the Laplace transform of the probability density func-
tion of channel holding time is given by

f ∗ch(s) =
λ

λ+ λh
f ∗nh(s)+

λh

λ+ λh
f ∗hh(s), (13)

and the expected channel holding time is given by

E[tch] = 1

µ
− λη

(λ+ λh)µ2

[
1−

(
1− λhµ

λη

)
f ∗(µ)

]
.

(14)

(iv) The handoff call arrival rateλh is given by

λh=−η(1− po)λ

×
∑
p∈σc

Res
s=p

1− f ∗(s)
s2[1− (1− pf )f ∗(s)]f

∗
c (−s), (15)

whereσc is the set of poles off ∗c (−s) on the right com-
plex plane, Ress=p is the residue at a poles = p, po
andpf are the blocking probabilities for the new calls
and handoff calls, respectively.

In the current literature, we observe that most perfor-
mance analyses were carried out under the assumption that
the channel holding times for new calls and handoff calls are
identically distributed (some with exponential distribution),
i.e., any calls, either new calls and handoff calls, were as-
sumed to have the same identically distributed channel hold-
ing time with the same parameter, in which case the one-
dimensional Markov chain can be used to obtain the block-
ing probabilities for new calls and handoff calls. From theo-
rem 2 we could show that the new call channel holding time
and the handoff call channel holding time are having differ-
ent distributions, even having different average values. Fig-
ure 4 shows that the average channel holding times for new

Figure 4. Average channel holding times for new calls and handoff calls:
solid line for the new calls and the dashed line for the handoff calls.

calls and handoff calls are different. In this figure, we as-
sume that the cell residence time is Gamma-distributed with
shape parameter varying atγ = 0.1, γ = 0.5, γ = 2, and
γ = 10. The average channel holding times for new calls
and handoff calls can be computed using the formulae in the-
orem 2. We observe in the figure that the difference is some-
times very significant. Thus, the one-dimensional Markov
chain model for call blocking performance assuming that the
new calls and handoff calls are identically distributed may
not be appropriate, the multidimensional Markov chain (ba-
sically two-dimensional Markov chain) may be needed. This
observation calls for the necessity of characterizing new call
channel holding time and handoff call holding time under
more general mobility assumption.

As we mentioned earlier, the hyper-Erlang distribution
model is general enough for field data and simple enough for
tractable analysis. We can apply this hyper-Erlang distribu-
tion to model the cell residence time (mobility). Assume that
the cell residence time is hyper-Erlang distributed as in (2)
with parameter 1/η =∑M

i=1 αi/ηi and the call holding time
is exponentially distributed, applying theorem 2 with some
mathematical manipulations, we can obtain

Theorem 3. For a wireless network or mobile computing
system with exponential call holding time, Poisson new call
arrivals and hyper-Erlang distributed cell residence time, we
have

(i) The Laplace transform of the density function of the
new call channel holding time is given by

f ∗nh(s) =
M∑
i=1

αi

[
µ

s + µ +
ηs

(s + µ)2

− ηs

(s + µ)2
(

miηi

s +miηi
)mi]

, (16)
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whereη = [∑M
i=1 αi/ηi ]−1, and the expected new call

channel holding time is

E[tnh] = 1

µ
− η

µ2
+ η

µ2

[ M∑
i=1

αi

(
miηi

µ+miηi
)mi]

.

(17)

(ii) The Laplace transform of the density function of the
handoff call channel holding time is given by

f ∗hh(s) =
M∑
i=1

αi

[
µ

s + µ+
s

s + µ
(

miηi

s + µ+miηi
)mi]

,

(18)
and the expected handoff call channel holding time is

E[thh] = 1

µ

[
1−

M∑
i=1

αi

(
miηi

µ+miηi
)mi]

. (19)

(iii) The Laplace transform of the density function of chan-
nel holding time is given by

f ∗ch(s) =
λ

λ+ λh
f ∗nh(s)+

λh

λ+ λh
f ∗hh(s), (20)

and the expected channel occupancy time is given by

E[tch] = λ

λ+ λh
E[tnh] + λh

λ+ λh
E[thh]. (21)

(iv) The handoff call arrival rateλh can be computed by the
following formula:

λh = η(1− po)[1− f ∗(µ)]λ
µ[1− (1− pf )f ∗(µ)] , (22)

where

f ∗(µ) =
M∑
i=1

αi

(
miηi

µ+miηi
)mi

.

In current PCS (Personal Communications Services) net-
works and some mobile computing systems with high trans-
mission rates, services are mainly accomplished via the cir-
cuit switching mode (session switching in mobile comput-
ing). In this scenario, call holding time (session time) can
still be appropriately modeled by exponential distributions.
Thus, the above result can be applied to study the channel
holding time for performance evaluation and design. We ob-
serve two important features about the above result. The
first is the simplicity. All computations involved with the
result are the manipulations of the rational functions, hence
the partial fractional expansion technique can be used to find
the probability density functions of the channel holding time
(the inverse Laplace transform). The second feature is the
generality. Due to the universal approximation capability of
the hyper-Erlang models, we can use the hyper-Erlang distri-
butions to approximate any distribution function of cell resi-
dence time. Since the cell residence time captures the users’
mobility, we can use the hyper-Erlang distribution models to

characterize the users’ mobility. Thus, if field data is avail-
able, then we can apply statistical method to fit the field data
by the hyper-Erlang distribution, as such the channel holding
time distribution is determined.

If the call holding time is not exponentially distributed,
then results for handoff call channel holding time both in
theorem 3 and in [8] cannot be applied, where the memory-
less property had been used. In the reminder of this section,
we give some results for this case.

Let rc denote the residual life of the call holding time (it is
rm if the call has been handed offm times). The statistics for
rc can be obtained in a similar way as we do for the call hold-
ing time tc and the cell residence timeti , which do not in-
volve the network operation. Letfrc(t) denote the probabil-
ity density function forrc with the Laplace transformf ∗rc(s)
and letFrc(t) denote the cumulative distribution function of
thh. For handoff call channel holding time, we have

thh= min{rc, tm}. (23)

From equation (23), we obtain

Fhh(t)=Pr(thh6 t)
=Pr(trc 6 t or tm 6 t)
=Pr(trc 6 t)+ Pr(tm 6 t)− Pr(trc 6 t, tm 6 t)
=Pr(trc 6 t)+ Pr(tm 6 t)− Pr(trc 6 t)Pr(tm 6 t).

(24)

Differentiating (24), we obtain

fhh(t)= frc(t)+ f (t)− frc(t)Pr(tm 6 t)
− Pr(trc 6 t)f (t)

= frc(t)
∫ ∞
t

f (τ ) dτ + f (t)
∫ ∞
t

frc(τ ) dτ. (25)

Notice that the Laplace transform of
∫∞
t
g(τ ) dτ is

(1− g∗(s))/s whereg(t) can befrc(t) or f (t), applying
Laplace transform to both sides of equation (25) and the in-
verse Laplace transform theorem, we obtain

f ∗hh(s)=
∫ ∞

0
frc(t)

[ ∫ ∞
t

f (τ ) dτ

]
e−st dt

+
∫ ∞

0
f (t)

[ ∫ ∞
t

frc(τ ) dτ

]
e−st dt

=
∫ ∞

0

1

2πj

∫ σ+j∞

σ−j∞
f ∗rc(z)ezt dz

×
[ ∫ ∞

t

f (τ ) dτ

]
e−st dt

+
∫ ∞

0
f (t)

1

2πj

×
∫ σ+j∞

σ−j∞
1− f rc∗(z)

z
ezt dz e−st dt

= 1

2πj

∫ σ+j∞

σ−j∞
f ∗rc(z)

×
∫ ∞

0

[ ∫ ∞
t

f (τ ) dτ

]
e−(s−z)t dt dz
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+ 1

2πj

∫ σ+j∞

σ−j∞
1− f ∗rc(z)

z

×
∫ ∞

0
f (t)e−(s−z)t dt dz

= 1

2πj

∫ σ+j∞

σ−j∞
f ∗rc(z)

1− f ∗(s − z)
s − z dz

+ 1

2πj

∫ σ+j∞

σ−j∞
1− f ∗rc(z)

z
f ∗(s − z) dz

= 1

2πj

∫ σ+j∞

σ−j∞

[
f ∗rc(z)

1− f ∗(s − z)
s − z

+ 1− f ∗rc(z)
z

f ∗(s − z)
]

dz, (26)

whereσ is the real number appropriately chosen for the use
of the inverse Laplace transforms. Letσrc andσp denote the
sets of poles off ∗rc(−s) andf ∗(−s) in the right half of the
complex plane, respectively. It can be verified thatz = s is a
removable singular point of the integrand of the last equation
of (26). From the residue theorem [20], we obtain (using a
contour in the right half of the complex plan)

f ∗hh(s)=−
∑
p∈σp

Res
z=s+p

[
f ∗rc(z)

1− f ∗(s − z)
s − z

+ 1− f ∗rc(z)
z

f ∗(s − z)
]
, (27)

=−
∑
p∈σrc

Res
z=s+p

[
f ∗rc(z)

1− f ∗(s − z)
s − z

+ 1− f ∗rc(z)
z

f ∗(s − z)
]
. (28)

In particular, if the call holding timetc is exponentially
distributed, from the strong memoryless property [6]trc is
also exponentially distributed with the same distribution as
tc, sof ∗rc(s) = µ/(s + µ). From (28), we obtain

f ∗hh(s)=−
∑
p∈σrc

Res
z=s+p

{
f ∗(z)

[
1− µ

s − z+ µ
]

+ 1− f ∗(z)
z

µ

s − z + µ
}

= Res
z=s+µ

{
f ∗(z) 1

z− (s + µ)
+ 1− f ∗(z)

z

µ

z − (s + µ)
}

= µ

s + µ +
s

s + µf
∗
c (s + µ),

which is the same as in [8].

3.1. Remarks

(1) We witness the powerful approximation of the hyper-
Erlang distribution models, hence, we can use hyper-
Erlang distributions to approximately model the residual
life of the call holding time and cell residence time. In

this case, the complex functions under the Res operator
in (27) and (28) will be rational functions, hence, the
partial fractional expansion techniques can be used to
find the inverse Laplace transform, i.e., the probability
density functionfhh(t).

(2) For the new call channel holding time, we can obtain the
similar result by substituting therc with tc andtm with
r, respectively. This is left to the readers.

(3) As a final remark, the probability distribution forrc can
be approximately modeled by the Residual Life Theo-
rem [18], so the Laplace transform of the probability
density function ofrc can be given by

f ∗rc(s) =
µ[1− f ∗c (s)]

s
, (29)

which also gives the exponential distribution when the
call holding time is exponentially distributed.

4. Performance studies

In this section we present our findings on how the distribu-
tion of cell residence time affects the distribution of channel
holding time. We use the hyper-Erlang distribution to model
the cell residence time.

We use the hyper-Erlang distribution model of two Er-
lang terms for our numerical study. Our idea here is as
follows: if the users’ mobility could be described by the
hyper-Erlang distribution, what would happen to the result-
ing channel holding time distribution? Could we still use
the exponential model to approximate it? Can we use the
first and second order statistics of the cell residence time to
characterize the channel holding time distribution?

There are two approaches for these problems. First, we
compare the channel holding time distribution and its ap-
proximation when the cell residence time is approximated
by exponential fit. In this case, the channel holding time
distributions can be obtained from our analytical results by
taking the hyper-Erlang and exponential cell residence times
into theorem 3. Figures 5 and 6 show the comparisons. In
figure 5, we use one Erlang term and one exponential term in
our hyper-Erlang model, we vary the coefficient of variation
in order to observe the change of channel holding time dis-
tribution and its approximation. Obviously, the exponential
distribution model does not have good fit for the real distrib-
ution, even when the coefficient of variation is close to unity
(a signature for exponential distribution). Figure 6 displays
the cases when the hyper-Erlang distribution model has two
Erlang terms. This figure exhibits more mismatches between
the real channel holding time distribution and its approxima-
tions.

The second approach is to use the exponential approxi-
mation directly to the channel holding time. Figure 7 shows
the comparison between the channel holding time distribu-
tion and its exponential approximation where the coefficient
of variation (CoV) for cell residence time is very close to
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Figure 5. Handoff call channel holding time and its statistical fit (dashed
line) when the exponential fit for cell residence time is used: one term in

hyper-Erlang model is exponential.

Figure 6. Handoff call channel holding time and its statistical fit (dashed
line) when the exponential fit for cell residence time is used.

unity. The mismatch between the channel holding time dis-
tribution and its exponential approximation is obvious.

From preceding discussions, we observe that the expo-
nential modeling is not appropriate, the first and second or-
der statistics of cell residence time do not provide sufficient
information to determine the channel holding time distrib-
ution. The statistical details (the distributions) of the cell
residence time are needed to characterize the channel hold-
ing time. The hyper-Erlang distribution gives a good set of
distribution models for approximation, and our analytical re-
sults provide the tools for the analytical evaluation of chan-
nel holding time. If we could draw a good approximation
using hyper-Erlang model from the field data for users’ mo-
bility, then we could fully characterize the channel holding
time (and other performance metrics such as blocking prob-
abilities).

Figure 7. Handoff call channel holding time and the exponential fit (dashed
line) for the channel holding time.

5. Conclusions

In this paper, we present some new properties of the hyper-
Erlang model we proposed for mobility modeling. We show
the generality of such model, which can be used to model
not only cell residence time (users’ mobility) but also other
time variables in wireless networks and mobile computing
systems. The future work is to study how the hyper-Erlang
model can be used to approximate the network traffic. In the
wireless and mobile systems, each cell can be modeled as a
queueing system with two streams of arrivals (new calls and
handoff calls) with distinct channel holding time distribu-
tions, it will be possible to use the multidimensional Markov
chain to study the call blocking performance. This work in
relation to call admission control is under way, which will
be presented in a separate paper.
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