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Abstract—It is increasingly common for enterprises and other
organizations to outsource firewalls to public clouds in order to
reduce the cost and complexity in deploying and maintaining ded-
icated hardware middleboxes. However, this poses a serious threat
to the enterprise network security because sensitive network
policies, such as firewall rules, are revealed to cloud providers,
which may be leaked and exploited by attackers. In this paper,
we design and implement a SE-FWaaS, a secured system that
enables cloud providers to support middlebox (e.g., firewall)
outsourcing while preserving the network policy confidentiality.
The key ingredients in our SE-FWaaS are the distribution
of the firewall primitives, namely policy checking and verdict
enforcing, to two independent public clouds, and the enabling
techniques of efficient firewall rule obfuscation and oblivious
rule-matching. Our SE-FWaaS provides the maximum achievable
level of protection of network policies by enforcing the principle
of the least privilege and removing the threat of offline probing
attacks. We evaluate the proposed system over real-world firewall
rules and demonstrate its effectiveness and feasibility.

Keywords—Firewall; Network Function Outsourcing; Middle-
box Outsourcing; Cloud Computing; Security and Privacy

I. INTRODUCTION

Today’s private networks of homes, businesses and insti-
tutions rely on a wide spectrum of network functions (or
middleboxes) to improve network security (e.g., firewalls and
intrusion detection systems), provide better performance (e.g.,
proxies or load balancers), and reduce bandwidth costs (e.g.,
WAN optimizers). Recent studies [1] show that roughly one in
three network devices in an enterprise network is a middlebox
that inspects, transforms or modifies packets instead of simply
forwarding packets as normal routers or switches. However,
traditional hardware-based in-house middleboxes also bring
significant problems including high cost, inflexibility, and
complex management. They incur significant capital invest-
ment due to peak-demand provision, are cumbersome to
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maintain because of expert knowledge required, and cannot
be easily extended to accommodate new functionalities when
new operational requirements emerge.

With the rise of public cloud computing paradigm, enterpris-
es have started to explore an alternate approach: outsourcing
dedicated middleboxes from their private networks entirely to
the public cloud, and hence promising many of the well-known
benefits of cloud computing such as decreased costs and
ease of deployment and management. In this new outsoucing
paradigm - termed network function outsourcing (NFO) [2],
[3] or network function virtualization (NFV) [4] in industry
- middleboxes are run on virtual machines (VMs) built from
commodity server hardware in a public cloud, operating as
software processes to provide required network functions
on a pay-per-use basis. Now NFO has gained a significant
momentum with over 270 industry participants and several
successful product offerings [4].

Despite the growing adoption of NFO techniques, serious
security concerns are raised because the NFO in its current
setting requires customers fully trust the cloud provider and
reveal all the detailed network policies, which instruct how
network functions are to be performed, to the cloud provider.
More specifically, the correctness of current NFO systems
is based on two strong security assumptions. Firstly, the
remote software middlebox (and therefore the public cloud)
is assumed to be honest in the sense that it faithfully work as
intended [5]. Secondly, the public cloud is assumed not to be
curious, in the sense that it does not collect or leak information
on customer’s network policies. Unfortunately, the principle
of designed-in security requires that such assumptions cannot
be made and instead all participants in the system should be
considered as potentially malicious [6].

To keep the discussion concrete, in this paper we use
firewall service as an exemplary network function to illustrate
the methodology of securing NFO. Firewalls monitor and
control the incoming and outgoing network traffic based on
predetermined network policies, and are the cornerstone of
today’s network security. A rational NFO customer must adopt
a trust-but-verify strategy, i.e., she must be able to verify that
the outsourced firewall applies the intended network policies
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on incoming and outgoing packets, just like it running on a
dedicated middlebox inside the customer’s network under her
direct control. We call this the “verifiable policy enforcement
problem.” We note that this problem has been extensively
studied in the literature (see [5] for an example) and therefore
is not within the scope of this paper.

In this paper, we try to address a more challenging “policy
confidentiality problem,” i.e., how to design a firewall out-
sourcing scheme while preserving firewall policy confidential-
ity. Firewall policies often contain sensitive information (e.g.,
IP addresses of hosts, network topology and defense strategies)
and often have uncovered security vulnerabilities that can be
exploited by attackers. Therefore, in practice, even within the
same organization, often no employees other than the firewall
administrator are allowed to access the firewall policies. To
expose this information to the public cloud will bring high
security risk because even the cloud can be trusted as an
organization, information leakage through employee theft is
still a serious concern [7].

We tackle the above problem by leveraging the features
of heterogeneous cloud environment. More specifically, we
assume each customer can utilize two kinds of independent
public clouds. The telecom clouds which are operated by
telecommunication companies can offer cloud services with
higher communication qualities because they are closer to
customers and can utilize the existing network infrastructures
controlled by themselves. Normally the operators of telecom
clouds are also the Internet service providers (ISPs). Larger
cloud service providers such as Amazon and Google, which
are called IT service cloud providers, normally have much
richer computation and storage resources and can provide
customers with cheaper cloud services. In general, we can
safely assume these two kinds of cloud providers are inde-
pendent and have no incentive to collude. The customers will
combine the advantages of both clouds and achieve a higher
performance/cost ratio especially in mobile cloud settings [8].

In this paper, we present the design and implementation of
our SE-FWaaS, a Security-Enhanced FireWall as a Service
that utilizing two independent clouds to provide outsourced
firewall services while preserving firewall policy confiden-
tiality from the clouds. What distinguishes this work from
the previous NFO security design is the following. First,
we limit information leakage by distributing the firewall’s
basic primitives, namely policy checking and verdict enforcing,
to the IT service cloud and the telecom cloud respectively.
Secondly, we enforce the principle of the least privilege,
which applied here states that the clouds providing firewall
services should have the lowest amount of privileges they
need in order to do their work. For example, at the policy-
checking point (PCP) in an IT service cloud, we obfuscate the
firewall rules and perform oblivious rule-matching. Therefore,
the PCP does not know which rule matches which packet; thus
it makes the selective policy updating attacks infeasible. The
PCP can only observe the inbound and outbound traffic. The
information gained by the verdict enforcement point (VEP)
in a telecom cloud does not differ significantly from that of
a regular ISP. Thirdly, most NFO security schemes proposed
in the literature are vulnerable to offline probing attack, i.e.,

the hosting cloud can generate dummy traffic and probe and
learn the firewall ruleset through brute-force trial and error.
In our scheme, by decoupling firewall functionality into two
steps and placing them separately in two independent clouds,
it is impossible for each of the clouds to launch probing attack
independently and successfully. Therefore, we postulate that
our SE-FWaaS provides the maximum achievable level of
protection of customer’s network policies in NFO scenarios.

The rest of the paper proceeds as follows. First we review
related work in Section II. We then introduce our system model
and trust assumptions in Section III. In section IV we present
our scheme SE-FWaaS in detail and the performance of our
scheme is analysed in Section V.

II. RELATED WORK

Khakpour and Liu [9] present Ladon, the first framework
in the literature attempting to preserve cloud-based firewall
policy confidentiality. The basic idea is to convert the original
access policy to an Firewall Decision Diagram (FDD) and
anonymize the FDD with Bloom filters. The limitation of
Ladon is that it cannot prevent the public cloud from deducing
the original firewall policy by offline probing or just by traffic
eavesdropping and analysis. To address this problem, Ladon
Hybrid Cloud is proposed to augment Ladon by leveraging a
hybrid cloud model (i.e., a combination of public and private
clouds) [10]. The drawback of this remedy approach is that
the customer still needs to maintain a firewall in her private
cloud. In our SE-FWaaS, the firewall is entirely outsourced
to public clouds and therefore we can take the full advantage
of NFO. Furthermore, the security of these two schemes are
based on the one-wayness assumption of Bloom filter, which
may not be true in practice [11].

Shi, Zhang, and Zhong [12] propose the framework SOFA
which utilizing cryptographic multilinear map to obfuscate the
original firewall rules. The cloud provider can perform the
firewall functionality by filtering inbound and outbound traffic
with this configured obfuscated firewall but cannot recover the
original firewall rules. The construction scheme of multilinear
map adopted in SOFA is from Coron, Lepoint and Tibouchi
(CLT) [13], which has been found recently to be insecure [14].
Also SOFA is vulnerable to offline probing attacks.

The work of Melis et al. [15] considers not only the firewall
outsourcing but also other network functions such as load bal-
ancer, carrier-grade NAT, intrusion detection system, and deep
packet inspection. Based on different trust assumptions on
VMs on the public cloud servers, the authors of [15] propose
two solutions by utilizing partial homomorphic encryption
and public-key encryption with keyword search (PEKS). The
drawback of this scheme is that it cannot outsource the
entire network function to the cloud, and the customer still
requires her own middlebox to carry out the remaining network
function. Note that when outsourcing firewall to the cloud, the
cloud middlebox has to send all the results of every rule in
the firewall to the client middlebox due to the fact that cloud
middlebox does not know which rule the packet matches. This
increases communication overhead because the results to be
transmitted increase linearly with the number of firewall rules.



Fig. 1. The System Settings for SE-FWaaS

Moreover, the client middlebox has to decrypt the results one
by one until the client middlebox finds that the packet matches
a rule and this increases the computation cost.

III. SYSTEM MODEL AND TRUST ASSUMPTIONS

A. System Model

We consider a scenario where an enterprise, the customer
private network, outsources its firewall services to two in-
dependent clouds as illustrated in Figure 1. The outsourced
firewall functionalities run within VMs on the cloud servers,
and are called policy checking point (PCP) and verdict enforce-
ment point (VEP) in this scenario. The PCP is installed in an
IT service cloud, as it requires more computation resources
while the VEP in a telecom cloud with more networking
resources. This scenario is realistic in the sense that two kinds
of clouds have their own advantages, coexist in the market,
and show a strong complementarity. Rational customers can
achieve better performance/cost ratio by combining the uti-
lization of both kinds of cloud resources. We illustrate the two
redirection setups for supporting NFO in Figure 1. The PCP
receives inbound traffic destined for the customer, processes
the policy-checking function assigned to it, and forward the
checking results and related inbound traffic to the VEP which
processes the verdict enforcing function. Outbound traffic is
the one originating from the customer private network which
is forwarded to the PCP through a VPN channel, processed
by the PCP and VEP sequentially, and finally relayed to its
intended destination in the Internet. The obfuscated network
policies which describe how the network functions are to be
processed are installed in the PCP and VEP by the customer.

A typical IP firewall is a packet filter which looks at the
network addresses, ports and protocol type of the packet and
determines if that packet should be allowed or blocked. A
firewall rule is composed of 5-tuple (source IP, source port,
destination IP, destination port, protocol type) and correspond-
ing action (verdict), as shown in Table I. In [9], [12], only
one public cloud is involved and knows the corresponding
action of a firewall rule. Although this cloud does not know
what the obfuscated firewall really is, it knows how to handle
the packet when finding the packet matches an obfuscated
firewall rule. In our SE-FWaaS, we split the firewall function
into two independent clouds. The PCP does not know the
action of a firewall rule and is only responsible for the policy
checking. The PCP relays the traffic and the corresponding

policy checking results to the VEP. The VEP reveals the
matching results and processes the traffic accordingly.

TABLE I
FIREWALL RULE EXAMPLES

Rule Source Destination Proto ActionID IPsrc srcPort IPdst dstPort type
1 192.168.*.* * * * * Block
2 192.168.*.* * 202.38.64.1 23 TCP Block
3 202.38.*.* 8090 * * UDP Allow
4 10.*.*.* * 115.25.*.* 8080 TCP Block

Throughout the paper, for each rule in the firewall we
denote it as r = (−→v ,W,A), where −→v ∈ {0, 1}n is the
bitwise representation of the field values in each rule. The
i-th bit of −→v , i.e. −→v [i], is 0 or 1 as expected if i /∈ W
(i.e., the non-wildcard bits) and the set W ⊆ [k] represents
the wildcard bits (or don’t care bits). Note that the set W is
often the subnet mask for IP addresses. We use A to denote
the corresponding action (allow/block). For example, the rule
1 in Table I “192.168. ∗ .∗, · · · ” can be presented as −→v =
“11000000 10101000 00000000 · · · ”, W = {17, 18, · · · , 32},
and A = {block}. Similarly, for a packet’s header, we also
present it as an n-bit vector −→p ∈ {0, 1}n, with −→p [i] = 0 or 1.

B. Trust Assumptions

In the traditional outsource setting, network functions are
run on dedicated hardware middleboxes located within the
customer private network. As a result, the network policies are
hidden from outsiders as long as the hardware is secure. Once
a network function is outsourced to the cloud as a software,
obviously, it is no longer the case. Ideally, the customer
would want its network policies to remain confidential while
maintaining the same standards of networking services.

We assume the PCP and VEP to be honest-but-curious, i.e.,
they performs network functions dutifully yet wishes to infer
the customer’s policies. The PCP or VEP may intercept and
analyze traffic and try to infer network policies based on the
pattern of inbound and outbound packets. Likewise, the PCP
or VEP may generate its own traffic destined for the customer
and analyze the packets it receives in response (i.e., offline
probing attacks). Note that we do not need to provide any
confidentiality beyond what can be achieved in the traditional
setting (when firewalls are set within the customer private
network). Furthermore, we assume that the PCP and VEP will



TABLE II
A RUNNING EXAMPLE OF SE-FWAAS

To ease presentation, we assume that there are m = 3 rules and only one header field with n = 4 bits. The rules are only known to the customer.
� Rule 1: r1 = (−→v 1,W1, A1) = ((1, 0, 1), {}, {allow});
� Rule 2: r2 = (−→v 2,W2, A2) = ((1, 1, 1), {}, {block});
� Rule 3: r3 = (−→v 3,W3, A3) = ((0, 1, ∗), {3}, {block}).

Policy Obfuscating and Decoupling:
The customer obfuscates each rule and constructs a new firewall

{
r′j

}
j∈[3]

as follows:

r′j
(u0,1,j , v0,1,j) (u0,2,j , v0,2,j) (u0,3,j , v0,3,j) u4,j

(u1,1,j , v1,1,j) (u1,2,j , v1,2,j) (u1,3,j , v1,3,j) v4,j Aj

r′1

(
gα0,1,1 , β0,1,1h

α0,1,1
x

) (
gα0,2,1 , β0,2,1h

α0,2,1
x

) (
gα0,3,1 , β0,3,1h

α0,3,1
x

)
gα4,1(

gα1,1,1 , β1,1,1h
α1,1,1
x

) (
gα1,2,1 , β1,2,1h

α1,2,1
x

) (
gα1,3,1 , β1,3,1h

α1,3,1
x

)
β1,1,1β0,2,1β1,3,1 · h

α4,1
y allow

r′2

(
gα0,1,2 , β0,1,2h

α0,1,2
x

) (
gα0,2,2 , β0,2,2h

α0,2,2
x

) (
gα0,3,2 , β0,3,2h

α0,3,2
x

)
gα4,2(

gα1,1,2 , β1,1,2h
α1,1,2
x

) (
gα1,2,2 , β1,2,2h

α1,2,2
x

) (
gα1,3,2 , β1,3,2h

α1,3,2
x

)
β1,1,2β1,2,2β1,3,2 · h

α4,2
y block

r′3

(
gα0,1,3 , β0,1,3h

α0,1,3
x

) (
gα0,2,3 , β0,2,3h

α0,2,3
x

) (
gα0,3,3 , β3,3h

α0,3,3
x

)
gα4,3(

gα1,1,3 , β1,1,3h
α1,1,3
x

) (
gα1,2,3 , β1,2,3h

α1,2,3
x

) (
gα1,3,3 , β3,3h

α1,3,3
x

)
β0,1,3β1,2,3β3,3 · h

α4,3
y block

Then the customer separates r′j into two parts, i.e. r′j,PCP and r′j,VEP, and sends them to the PCP and VEP respectively.
� Note that in the above table the boxed items belong to the set {r′j,VEP}j∈[3], and other items belong to the set {r′j,PCP}j∈[3].

Policy Checking:
For the newly arrived packet with header −→p = (0, 1, 1), the PCP computes U−→p ,j , V−→p ,j and (u4,j)

y for each rule r′j by selecting the encodings
for each bit −→p [i] (i ∈ [3]) in the above obfuscated table and sends {j, U−→p ,j , V−→p ,j · (u4,j)

y}j∈[3] with the corresponding traffic to the VEP:

� For rule r′1, U−→p ,1 = gα0,1,1+α1,2,1+α1,3,1, and V−→p ,1 = β0,1,1β1,2,1β1,3,1 · h
α0,1,1+α1,2,1+α1,3,1
x ;

� For rule r′2, U−→p ,2 = gα0,1,2+α1,2,2+α1,3,2, and V−→p ,2 = β0,1,2β1,2,2β1,3,2 · h
α0,1,2+α1,2,2+α1,3,2
x ;

� For rule r′3, U−→p ,3 = gα0,1,3+α1,2,3+α1,3,3, and V−→p ,3 = β0,1,3β1,2,3β3,3 · h
α0,1,3+α1,2,3+α1,3,3
x .

Verdict Enforcing:

Upon receiving a new policy checking result {j, U−→p ,j , V−→p ,j · (u4,j)y , j}j∈[3] from the VEP, the VEP calculates (U−→p ,j)
x with its private key x

and checks whether V−→p ,j · (u4,j)
y = (U−→p ,j)

x · v4,j holds for each rule r′j .
� Only for rule r′3, we have V−→p ,3 · (u4,3)

y = (U−→p ,3)
x · v4,3;

� Therefore the VEP will block the traffic according to A3 in the rule r′3.

not collude. Malicious PCP or VEP is not within the scope
of this paper, as verifying outsourced functionality is another
research topic (see [5] for a good survey on this topic).

IV. SECURITY-ENHANCED FIREWALL AS A SERVICE

Our proposed firewall outsourcing scheme SE-FWaaS pre-
serves network policy confidentiality in four phases of oper-
ations: offline construction of obfuscated firewall rulesets on
the customer side, distribution of obfuscated firewall rulesets to
different clouds, online policy checking for new connections
on the IT service cloud side, and per-packet based verdict
enforcement on the telecom cloud side. In Table II, we
illustrate our SE-FWaaS by a simplified firewall ruleset.

A. Offline Obfuscated Firewall Construction

In this phase, the customer first bootstraps the whole SE-
FWaaS system by setting the cryptographic parameters and
keys for all involved parties. The obfuscating construction
of our scheme is based on the ElGamal encryption sys-
tem [16]. The customer generates a cyclic group G of order
q with generator g, and then chooses x and y randomly from
{1, · · · , q − 1} as the private keys for the VEP and PCP
respectively. The customer computes hx = gx and hy = gy

as the corresponding public keys and publishes hx and hy

with the security parameters G, q and g. Note that for the
ElGamal encryption, the ciphertext of a message z under
the public key hx = gx is a message pair in the form of
Enchx

(z) = (gu, z · hux), for random u ∈ {1, · · · , q− 1}.
Therefore ElGamal encryption is probabilistic and achieves
semantic security if the decisional Diffie-Hellman assumption
holds in G [16]. For two messages z1 and z2 with two
random u1 and u2, the following homomorphic property holds:
Enchx(z1) · Enchx(z2) = (gu1 , z1 ·hu1

x ) · (gu2 , z2 ·hu2
x ) =

(gu1+u2 , z1z2 · hu1+u2
x ) = Enchx

(z1 · z2).
For a given firewall with m rules rj = (−→v j ,Wj , Aj)j∈[m],

the customer obfuscates the predicate part (i.e., Predicatej =
(−→v j ,Wj)) of each rule, and generates a new firewall ruleset
in the form of r′j = (Predicate′j , Aj)j∈[m] as follows. Note
that (−→v j ,Wj) defines a predicate on n-bit packet header
inputs. To obfuscate the original predicate of rule j, for each
input bit i ∈ [n], the customer picks four numbers {α0,i,j ,
β0,i,j ;α1,i,j , β1,i,j} from {1, · · · , q−1} in an independent and
uniformly random way. If i ∈ Wj , namely the entry is a
wildcard “∗”, we add an additional constraint that β0,i,j =
β1,i,j = βi,j . Then the customer can compute two pairs of
encodings {ub,i,j , vb,i,j}b∈{0,1} for each bit i ∈ [n] in the
original predicate j as follows:
ub,i,j = gαb,i,j ; vb,i,j = βb,i,j ·h

αb,i,j
x = βb,i,j · gx·αb,i,j . (1)

Note that (ub,i,j , vb,i,j) = Enchx
(βb,i,j) with random αb,i,j .



To facilitate oblivious policy matching, the customer still
needs to generate two more encodings {un+1,j , vn+1,j} with
a random αn+1,j selected from {1, · · · , q−1} as follows:

un+1,j = gαn+1,j ; vn+1,j = gy·αn+1,j ·
∏
i∈[n]

β−→vj [i],i,j . (2)

Obviously, (un+1,j , vn+1,j) = Enchy

(∏
i∈[n] β−→vj [i],i,j

)
with

random αn+1,j . Finally the obfuscated rule r′j is given by
r′j =

(
{ub,i,j , vb,i,j}b∈{0,1},i∈[n], {un+1,j , vn+1,j}, Aj

)
.

Note that this firewall obfuscation phase is done offline
and once on the customer side. If there are some updates for
the original firewall rules, the customer just reconstructs the
obfuscation for related rules and replaces the old ones easily.

B. Offline Decoupling of Firewall Functionality

In our SE-FWaaS, the firewall functionality is decomposed
into two steps: policy checking and verdict enforcement. We
choose to assign the policy-checking operation to the PCP in
an IT service cloud and the verdict enforcement to the VEP
in a telecom cloud. In order to facilitate the separated firewall
operations, the customer first securely sends the private keys
y and x to the PCP and VEP, respectively. Then, for each
obfuscated rule r′j , the customer separates it into two parts,
i.e., r′j,PCP =

(
{ub,i,j , vb,i,j}b∈{0,1},i∈[n], un+1,j

)
and r′j,VEP =

(vn+1,j , Aj), and sends r′j,PCP with rule ID to the PCP and
r′j,VEP with rule ID to the VEP securely. After this phase, the
configurations of a distributed firewall in the clouds are settled,
and the outsourced firewall is ready to perform packet filtering
to protect the customer’s enterprise network.

C. Online Per-connection based Policy Checking

In the third phase, the PCP performs policy checking
operations on the inbound or outbound traffic of the protected
enterprise with its obfuscated ruleset {r′j,PCP}j∈[m].

For each newly initiated connection, the packet header −→p =
{0, 1}n is checked with each firewall rule r′j,PCP. The PCP
selects encodings from {ub,i,j , vb,i,j}b={0,1},i∈[n] according to
every bit −→p [i] (i ∈ [n]) in the packet header, and calculates
two numbers U−→p ,j and V−→p ,j as follows:

U−→p ,j =
∏
i∈n

u−→p [i],i,j = g
∑

i∈[n] α−→p [i],i,j ; (3)

V−→p ,j =
∏
i∈n

v−→p [i],i,j =

(∏
i∈n

β−→p [i],i,j

)
·h(

∑
i∈[n] α−→p [i],i,j)

x . (4)

Then the PCP calculates V−→p ,j · (un+1,j)
y with its private

key y and sends {j, U−→p ,j , V−→p ,j · (un+1,j)
y}j∈[m] with the

corresponding traffic to the VEP. Note that this policy checking
operation occurs only at the time of connection setup.

D. Online Per-packet based Verdict Enforcement

Upon receiving a new policy checking result {j, U−→p ,j , V−→p ,j ·
(un+1,j)

y}j∈[m] from the PCP, the VEP first calculates
(U−→p ,j)

x with its private key x. Then the VEP performs
oblivious policy matching by testing the following equalities:

V−→p ,j · (un+1,j)
y
=
(
U−→p ,j

)x · vn+1,j , for ∀j ∈ [m]. (5)

Equation (5) holds for rule j if and only if:

∏
i∈[n]

β−→p [i],i,j =
∏
i∈[n]

β−→vj [i],i,j , (6)

which means that the packed header −→p satisfies the predicate
(−→v j ,Wj) of rule j, i.e., ∀i /∈ Wj : −→p [i] = −→v j [i]. Note that
this oblivious matching occurs only once for a newly initiated
connection. The VEP can cache the action Aj in the matched
rule r′j,VEP as the verdict of this connection, and perform the
per-packet filtering task for the subsequent data packets.

E. Security Analysis

The aim of firewall obfuscation is to make it unintelligible
to an adversary, or impossible to reverse-engineer, while
preserving its original functionality. It is easy to check that our
obfuscation construction preserves the functionality of each
firewall rule’s predicate and matching condition (cf. Equation
(6)). To maintain the confidentiality of firewall rulsets from
the clouds, our SE-FWaaS utilizes two mechanisms. First,
we obfuscate the firewall rules in a secure way, such that
the information an adversary can learn from this obfuscated
firewall can also be learned from observing the input and out-
put packets from the original firewall. Secondly, we separate
the obfuscated firewall into two parts and install them into
two independent clouds. Based on the assumption that these
two clouds will not collude, the adversary even cannot learn
the wildcard locations (which means that for an obfuscated
predicate we can hide which bits are ignored and which ones
are influential). By separating the firewall functionality, our
scheme also makes it impossible for each individual cloud to
launch offline probing attacks successfully.

Previous obfuscation constructions (like SOFA in [12]) are
based on the existence of multilinear maps [17]. Unfortunately,
all candidate instantiations of multilinear maps in the literature
are found recently to be insecure. By separating the firewall
functionality, our obfuscation construction does not rely on
any multilinear mapping scheme. Our construction is based on
ElGamal encryption, which is proven semantically secure [16].

V. EXPERIMENTAL EVALUATION

To demonstrate the practicality of our SE-FWaaS, we
implement a prototype system and evaluate the performance of
it through the experimentation with real-life firewall rules. We
conduct our experiments on three machines running Windows
7 professional with a 3.4 GHz Inter(R) Core(TM) i3-4310
CPU and 4GB RAM. The firewall rules are randomly selected
from the real network database. We are interested in the delays
associated with the phases of our SE-FWaaS operations.

Overhead of Policy Obfuscating Phase: This phase incurs
a one-time cost and only needs to be re-initiated if the
firewall rules are modified. We measure the computation and
communication delay involved, from the moment the customer
begin to obfuscate the original firewall rules until the PCP
and VEP receive the obfuscated firewall rulsets. The result is
shown in Fig. 2 as a function of the number of firewall rules.
We observe an approximate linear increase in overhead with
the increase in mumbler of rules. We also find that obfuscating
time is about 112 seconds for 30 firewall rules. We argue that
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Fig. 2. Overhead of Policy Obfuscating Phase

the time is acceptable because the policy obfuscating needs to
be done only once and can be processed offline.

Overhead of Policy Checking Phase: This phase takes
place for every new connection through the firewall. We
measure the delay that is used for calculating the policy
checking result for each new connection. Fig. 3 shows the
computational delay as a function of the number of firewall
rules. The computational delay in this phase is almost linear
with the number of the firewall rules. The checking time for
a packet and one firewall rule (5-tuple of 104-bit length) is
about 3.46 ms as shown in Fig. 3. Thus our scheme is much
more efficient comparing with the schemes in [12], in which
the execution time of three proposed schemes is 300 ms, 100
ms and 6 ms.

Overhead of Verdict Enforcing Phase: This phase consists
in performing oblivious rule matching and checking for the
verdicts stored, and consequently applying this verdict. The
experiments shows that it takes about 1 ms in verdict enforcing
for one packet, and this delay grows logarithmically with the
number of rules.

The measurements in both policy checking and verdict
enforcing phases show a remarkable increase in latency with
increasing number of firewall rules. However our experiments
are performed on an ordinary PC and no firewall optimization
techniques are adopted. In practice, when these two phases
are executed in the clouds, many parallelism and acceleration
mechanisms can be utilized to greatly reduce the latency.

VI. CONCLUSION

This paper addressed the problem of outsourcing network
function like firewalling to public clouds, where network
function policies need to be kept confidential from the clouds
and third parties. We design and implement the SE-FWaaS
by leveraging the unique features of heterogeneous cloud
environment. The key ingredients in our SE-FWaaS are the
distribution of the firewall primitives, namely policy checking
and verdict enforcing, to two independent public clouds, and
the enabling techniques of efficient firewall obfuscation and
oblivious rule matching.

Although in this paper we choose firewalls, a typical and
indispensable middlebox, as the case study to present the
details of SE-FWaaS, we believe that the techniques and
framework developed in SE-FWaaS can be applied to secure
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other middleboxes outsourced to heterogeneous clouds, includ-
ing IDSs, NATs, deep packet inspections and HTTP proxies.
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