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Summary

We consider the motion estimation problem in video coding. In our previous work, we proposed a new motion
estimation method where motion estimation is formulated as an optimization problem and an adaptive system under
the minimum error entropy (MEE) criterion is used for motion estimation. In this paper, we develop an adaptive
system under the criterion of maximum mutual information to address the motion estimation problem. Our proposed
motion estimation algorithms have very low encoding complexity and hence are ideally suited for wireless video
sensor networks where limited bandwidth, restricted computational capability, and limited battery power supply

impose stringent constraints on the video encoding system. Copyright © 2007 John Wiley & Sons, Ltd.

KEY WORDS: video coding; motion estimation; adaptive system; mutual information; wireless video sensor

networks

1. Introduction

The last several years have seen a surging interest in
transmission of video over wireless networks, which
leads to considerable increase in the use of mobile
communication devices equipped with video cameras.
Many of the mobile communication devices are small
and battery operated and they possess very limited
power and low computation capability. Therefore, there
is a constant need for video compression algorithms of
higher computation and coding efficiency.

To achieve higher efficiency in the video coding
system, intra-frame coding and inter-frame coding

are employed to reduce spatial redundancy within
a single frame, and temporal redundancy between
adjacent frames respectively. As a key component of
most video compression systems, motion estimation
exploits the temporal redundancy by predicting the
subsequent frames from reference frames. In a typical
video system, motion estimation constitutes 70% of
the computation load in an encoder [1]. Therefore, it is
critical for a motion estimation scheme to achieve low
computational complexity for resource-constrained
wireless video applications.

Among all motion estimation methods, one
important category is a pixel-based approach, where
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motion vectors (MVs) are estimated for every pixel.
Then each pixel can be predicted from the previously
coded reference frame based on the MV of each pixel.
The prediction error and the MVs are transmitted or
stored for the reconstruction of the frames.

Another major category is a block-based approach,
which is also the most widely used motion estimation
technique in various video compression standards. In
block-based schemes, each video frame is divided into
square blocks of equal size. Within each block, all the
pixels are assumed to undergo the same translational
motion specified by the MV of this block. Therefore,
each block can be predicted from the previously coded
reference frame based on the MV of the block. And the
resulting prediction error is coded with intra-frame cod-
ing techniques. The MV is estimated by searching for
the best matching block within a search window cen-
tered at the corresponding block in the reference frame.

In wireless video applications, an exhaustive block
match algorithm (EBMA) might be neither realistic
due to its formidable computation complexity nor cost-
effective as the motion is not completely random.
Many algorithms were developed to perform motion
estimation with reduced computational complexity,
among which are two-dimensional logarithmic (TDL)
search [2], block-based gradient descent search [3],
three-step search (TSS) [4], a new three-step search
[5], the four-step (4SS) search [6], to name a few.

None of the block-based motion estimation
algorithms mentioned above effectively utilizes the
previous knowledge gained in calculating the MVs
from one frame to the next. For each step of search,
memory of the previous MVs is erased and initial
conditions are reset.

To fully utilize the information gained from the
past frames for the estimation of future frames,
one solution is to formulate the motion estimation
problem as an adaptive filtering problem. In such a
video compression system, MVs are modeled by an
adaptive system, while the traditional approach does
not attempt to model the MVs.

Based on this system, we present in this paper a
new approach to determine the MV in an information-
theoretic framework. The advantage of our scheme lies
mainly in the extremely low computation complexity it
achieves. Furthermore, since the motion vector model
is to be replicated at the decoder, given knowledge
about the model and the initial conditions, there is no
need to transmit MVs. Therefore, it provides savings
in bandwidth on top of the saving in computation.

The remainder of the paper is organized as
follows. In Section 2, we introduce an adaptive
motion estimation system and the maximum mutual
information criterion. Section 3 presents our schemes
based on the system framework and optimization cri-
terion. The pixel-based maximum mutual information
scheme (PMaxMI) and block-based maximum mutual
information method (BMaxMI) will be described
in subsections 3.1 and 3.2, respectively, which is
followed by the computational complexity analysis in
subsection 3.3. In Section 4, we present the simulation
results in terms of root mean squared error (RMSE).
Section 5 concludes the paper.

2. Adaptive Motion Estimation System
Under Maximum Mutual Information
Criterion

The organization of this section is as below. We
first formulate the motion estimation problem as an
adaptive prediction problem in subsection 2.1. Then,
we introduce the general notion of mutual information
and the maximum mutual information criterion in
subsection 2.2.

2.1. Adaptive Motion Estimation Approach

Consider the block diagram of a general adaptive
prediction system in Figure 1.

At some discrete time n + 1, the past frame of the
video sequence f(n) serves as the filter input, while
the present frame of the sequence f(n + 1) serves as
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Fig. 1. Adaptive motion estimation system diagram.
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the desired response. The filter produces an output,
Sfp(n +1). This output is the best estimate of the
current value f(n + 1) given f(n) and MV d(n). M is
the known mapping function of the filter. Our object is
to search for the best d(n) based on the values of f(n)
and f(n + 1), so that the pre-defined cost function J
of f(n) and f(n + 1) is optimized.

Thus the motion estimation problem can be
formulated as follows:

S +1) = M(f(n), dn)) (D

em+1)=f(n+1)— fp(n +1) 2)

fin+ 1) = frn+ D +e(n+1) 3
oJ

din+1)=dn) + nm, (C))

where 7 is a user-defined fixed parameter (used as a
step size).

In this paper, we will focus on motion estimation
and assume that lossless transmission is used for error
signal so that the image can be reconstructed perfectly.
In reality, due to bandwidth restriction, the error signal
is quantized and it leads to error accumulation. This
problem can be solved by introducing intra frames
periodically.

Given the system formulation in Equation (1), if the
cost function takes the form of mean square of the error
signal, ¢ (MSE), we can use the popular least mean
square (LMS) algorithm to solve the problem. If the
cost function takes the form of the entropy of the error
signal, e, we can use the minimum error entropy (MEE)
method proposed in Reference [7]. Motivated by all
these works, we used the maximum mutual information
criterion to develop our pixel-wise and block-wise
motion estimation schemes. The intuition behind using
the maximum mutual information criterion is that
mutual information is a good measurement of the dis-
crepancy or dependency between two data sources. In
our application scenario, when the mutual information
between the original frame and the predicted frame is
maximized, the predicted frame f,(n + 1) preserves
the most information of the real frame f(n + 1).

However, there are no analytical methods to
calculate mutual information without presuming
knowledge of prior probability density function (pdf).
Therefore, we use a non-parametric pdf estimator
with Parzen Windowing for the estimation of mutual
information. This combination yields an estimator
simple to compute without imposing any assumptions
about the pdf of the data. Thus the method can
manipulate mutual information as straightforwardly as

Copyright © 2007 John Wiley & Sons, Ltd.

the MSE or error entropy. Next, we will introduce the
maximum mutual information criterion.

2.2. Maximum Mutual Information Criterion

This section is organized as follows. First, a brief
review of non-parametric pdf estimator with Parzen
windowing is given in subsection 2.2.1. It is followed
by the definition of mutual information as the
cost function for the motion estimation system in
subsection 2.2.2, which will facilitate the derivation
of motion estimation schemes in Section 3.

2.2.1. Non-parametric pdf estimator

Given N pairs of samples for random variables x and
y, the pdf of the 2-D random vector z = [x, y]” can be
approximated by Parzen windowing estimation with
a two-dimensional Gaussian kernel of mean zero and
variance matrix X,

N

lmﬂmw=%g;u@—MJ—ﬁ) (5)
where «y is the Gaussian kernel in Parzen windowing
and X represents the size of the kernel.

Similarly, the marginal pdf of random variable x, y
can be approximated with the sum of a one-dimensional
Gaussian kernel located on the samples of x and y as

1 N
Px() = ) Kz (x —x) ©)
i=1
and
1 N
Pr(y) =5 D K (v =) (7)
i=1

where 0)2( = ¥ and 012, = Xy are the kernel variance
of x and vy, respectively. We will use ¥ = 7! to
represent the inversion of X.

The pdf estimators above are solely based on the
data without assuming any a priori knowledge of the
distribution of the data obtained. They are to be used in
the development of the mutual information estimator
in next section.

2.2.2. Mutual information and its
non-parametric estimator

In the signal processing area, mutual information is
often used as a measurement of the similarity and
dependence between different data sources.
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For two random variables x and y, the mutual
information is defined as

//PX y(x. y)log Px(®)py(y) dxdy

I,(X;Y
. pxy(xy)

)

where pyx y(x,y) is the joint pdf of x, y, px(x), and
py(y) are the marginal PDFs of x, y, respectively.
Equation (8) can be simplified as

E <log PX(X)PY()’)> ©)

I(X;Y) =
XY px,y(x,y)

where the expectation E is with respect to px y(x, y).

In Reference [8], a stochastic gradient estimator
was developed by employing the standard complexity
reduction techniques to Renyi’s Entropy by considering
only part of the data set. By applying the same
technique, when only one pair of subsequent samples
of (x, y)T at the instants n 4+ 1 and n are available, a
non-parametric estimator for mutual information is
obtained

1 N
L. )~ > log
n=1

ks (Xn+1 = Xns Yntr1 — Yn)
K51 Xn1 — XK 5y, Ynt1 — Yn)

(10)

Thus by exploiting the Parzen windowing technique,
the estimator for mutual information solely based on
the data without assuming any a priori knowledge
of the distribution of the data is obtained. In the next
section, a stochastic gradient estimator is developed
by applying the complexity reduction techniques in
References [8,9].

3. Schemes Based on Maximum Mutual
Information Criterion

Depending on the scale we are looking at, we can apply
this technique of simple-to-calculate entropy estimator
on the pixel level, thus generating the PMaxMI scheme,

or on the block level, thus generating the BMaxMI
scheme, which will be discussed in subsections 3.1
and 3.2, respectively. The complexity analysis will be
presented in subsection 3.3.

3.1. Pixel-based Maximum Mutual
Information Scheme (PMaxMI)

Considering the motion estimation problem on pixel
level, the problem statement can be specified as
follows:

Let f(p,n) denote the image intensity at spatio-
temporal position (p, n), where p = [x, y] is the pixel
location in two-dimensional space, n is the time index.
Given two subsequent frames f(n)and f(n + 1),aMV
d(p,n) = [dy(p, n), dy(p, n)] is defined for each pixel
as the 2-D vector field that maps the point in f(r) onto
their corresponding location in f(n 4 1). Our goal is to
find an estimate of d for each pixel based on values of
f(n)and f(n + 1), so that the pre-defined cost function
J, the mutual information between the predicted frame
and the real frame in this case, is maximized. The
modified system diagram is shown below.

The motion estimation system described above can
be modified as follows

folp,n+1)= f(p+d(p,n),n) (11)

e(p,n+1)=f(p,n+1)— fo(p.n+1) (12)

é(p,n+1)= Qle(p,n+1)] (13)

filpon+1) = fo(pn+D+e(p.n+1) (14)
oJ

d(p,n+1)=d(p, n)+nm (15)

where Q[-] in Equation (13) is a quantization function.

As shown in Figure 2, the filter input is the pixel
intensity of the most recent frame, f(p, n). For the
adaptive filter, the desired output is the pixel intensity
of the present frame f(p,n + 1). At some discrete
time, n + 1, the output of the filter, f,(p, n + 1), is the
estimate of the f(p, n 4 1) given its most recent values

o
rl '+
f(p.n+1) f(p.n) 7 f (p.n+l)
= Delay = (p.n+1)=fip+d,n) r 3
w P p i p ﬂ\.__/rt“’p‘ [1+|jl
v
"""""" L( fip.n+1), r'r,(p n+1))

Fig. 2. Pixel-based maximum mutual information motion estimation system diagram.
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f(p, n). The estimation error, e(p, n + 1), is defined
as the difference between the filter output f,(p, n + 1)
and the desired output f(p,n+ 1), which will
be transmitted and used for the reconstruction of
the frame in the decoder side. The cost function
I(f(p,n+1), fp(p,n + 1))is the mutual information
between the predicted intensity f,(p,n + 1) and real
intensity f(p,n + 1) for each pixel

J(fp(p,n), f(p,n) = I(fp(p,n), f(p,n)) (16)

which can be estimated as Equation (10).

Suppose we are given only the current sample
f(p,n+1) and the previous sample f(p,n), by
applying the same technique as in Reference [8], a non-
parametric stochastic estimator for mutual information

I is obtained in the following step:

For the current sample n 4 1, letting x(n 4+ 1) =
fo(p,n+1) and y(n +1) = fp(p,n+ 1) in Equa-
tion (11), we obtain the cost function in Figure 2 based
on the most recent frames at n and n + 1 only, that is,

J(fplp,n+ D), f(p.n+ 1)

kx(fo(psn+1) = fo(p.n), f(p,n+1) = f(p,n))
k2 (Fo(pon+ 1) = fo(p, Moy (f (P + 1) = f(p. m)

(17

where fp(p, n + 1) can be obtained from Equation (1)
based on the previous frame f(p,n) and the MV
d(p, n).

The parameter to determine is d(p,n). So the
gradient of this expression with respect to d(p, n) is
needed for updating. Note that d(p, n — 1) is a known
constant at this time, since it is the displacement from
the previous frame.

To simplify the representation of the following
discussion, let

o} =2n (18)
ch =X (19)

K = KE(fp(Pa I’l) - fp(pv n— 1)3
f(p,n) = f(p,n—=1) (20)

K> =K211(fp(P’ n)_fp(pa”_ 1)) (21)
K3 = ks, (f(p,n) = f(p,n = 1)). (22)

Then, Equation (17) is simplified as

J(folp,n+ 1), f(p,n+1)) =log K| —log K>
—log K3 (23)

Copyright © 2007 John Wiley & Sons, Ltd.

Among the three terms, only K; and K, depend on
d(p, n). Thus, the partial derivatives of K; and K> with
respect to d(p, n) are obtained as

0K 0K
A ) _ Ao

- 24)
ad(p, n) K K>

where

0K,
ad(p, n)

_ aKE(fp(P’ n) - fp(Pvn - 1)9 f(pv i’l) - f(p’n - 1))
- ad(p. n)

1
=-5X (ks(fo(p,n) = folp,n = 1), f(p,n)

—f(p.n— D) x (T}, + Ty (f(p.n+ 1)
— f(p.m) + 23, (f(p +d(p.n). n)
— f(p+d(p,n—1),n—1)))

y [<f<p+e1,n)— f(p—el,n»/z] os)

(f(p+e,n)— f(p—ez,n)/2

and
K>
ad(p, n)

ks, (fp(p,n) — fo(p,n = 1))
B d(p, n)

1
= __zKrrfp(fp(Pa I’l) - fp(pv n— 1))
O'fp
x(f(p+d(p,n),n)— f(p+d(p,n—1),n—1))
" [(f(p+e1,n)—f(p—e1,n))/2}

(26)
(f(p+ex,n)— f(p—en)/2

which leads to a simple expression of the stochastic
gradient:

oJ
ad(p, n)

1 /
= 5 x (=22, (F(p +d(p,m, m)
— f(p+d(p,n—1),n— 1)
— (S + =)o+ 1) = f(p.n))
2
+ Z—“(f(p +d(p,n),n)
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— f(p+d(p,n—1),n — 1))))

(f(p+e1,n)— f(p—e1,n)/2
x (27)
(f(p+exn)— f(p—ex,n)/2

where e; = [1, 017, e; = [0, 1]7.

By far we have obtained a stochastic gradient
estimator for the mutual information with respect to
a MV by following a methodology similar to the
LMS algorithm and the MEE algorithm [7,8]. By
substituting the gradient obtained from Equation (27) in
Equations (1-4) and imposing a smoothness constraint
that the neighboring MV cannot differ by more than a
pre-determined threshold, we have defined completely
PMaxMI motion estimation scheme.

3.2. Block-Based Maximum Mutual
Information Scheme

Considering the motion estimation problem on block
level, the problem statement can be specified as
follows:

Given an image which can be divided into B square
blocks of S pixels each. The intensity of each pixel
in this image is denoted uniquely with f (pf ,n). The
spatio-temporal position of one pixel is denoted with
( pé’ , n), where b is the index of the block, s is the index
of the pixel within the bth block, and » is the time
index. Given two successive frames f(n 4+ 1) and f(n),
aMV db(n) = [dx, dy]T is defined for the bth block as
the 2-D vector field that maps the blocks in f(n) onto
their corresponding location in f(n + 1). Our goal is

to find an estimate cfb for each block based on values
of f(n+ 1) and f(n), so that some pre-defined object
function J is optimized.

The block diagram of a general adaptive prediction
system is shown in Figure 3. For the bth block,
the filter input is the intensity function of the most
recent frame, f(p?,n). The desired output of the
adaptive filter is the intensity function of the present

frame, f( pﬁ,’ ,n + 1). At some discrete time, n + 1, the
output of the filter, fj( pé’ ,n + 1), is the estimation, or
prediction of the f (pé7 ,n+ 1) given its most recent
values f( p? ,n). The estimation error, e(p? ,n+1)
is defined as the difference between the filter output
fo(pl,n+ 1), and the desired output f(p%, n+ 1).
J(fo(pb,n+1), f(pb,n+1)) is the optimization
criterion, which is a function of fp(pi7 ,n+1) and
fplon+1).

For spatio-temporal position (p?,n), the motion
estimation problem can be expressed as follows

T(Fo(plon+ 1), (P4 1)

— 1, (fp(pf,n+1),f(p’;,n+1)) (28)

fo(Plon+1) = f(p? +db®).n) (29)
e(plon+1) = f(pl.n+1) = fo(pl.n+1) (30)
¢(plin+1) = Q[e(pf,n+ 1)] 31)
Ll +1) = fo(Phon+ 1)+ (plin+1) (32)

d®(n+1) = d>(n) +n (33)

adP(n)

where Q[-] in Equation (31) is a quantization
function.

Similarly, a stochastic gradient estimator must be
developed in order to apply the maximum mutual
information criterion in our problem. By utilizing
the same complexity reduction techniques to mutual
information entropy of N samples of random variable
[x, y]T, a non-parametric stochastic estimator for
mutual information is obtained:

Substituting fp(pi’, n+ 1) and f(pf, n—+1) for x
and y, respectively and the block size S for sample
number N in Equation (10), we obtain the cost
function for the bth block based on the most recent

fipb.n+1) o fip®.n) i

Delay

b=

= (b _"fh
Tp{p ,n+|}-rI[|1 Yd,n)

A

v - -

Illf]:l-,n+l} -

l . e(p® n+l)
¥

___________ | P o
| I{f(p5 n+1), £ (phint1)

Fig. 3. Block-based maximum mutual information motion estimation system diagram.
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frames only

L (folpbon+1), £(phon+ 1))

- 1), fp(l’?’") - fp(l’?v n- 1))

(34)

S
(f(p.n) = f(PL.n
Zl Kzp f(p;, ) f(p?,n

Thus, we can obtain the derivative of the cost
function J with respect to the MV d for the bth block
following this step. Let

Kis = «x(f(p? +d>n), n)
—f(p+dm—1),n-1),
f(pln+1) = £(pb.n)) (36)

KZ,s =Kz (f(p? + db(n)’ I’l)
~ f( =10 1)) G

Kas = sy (f(Phon) = f(phon—1))  G38)

Therefore,

I, (fp(pb, n+ 1), f(phon + 1))

S S S
1
= 3 ( E log Ky s — E log K> s — E logK3,5>
s=1 s=1 s=1

(39)

Similarly, among the three terms, K3 ; does not depend
ond.

dlog K ¢
od

= _ﬁ<<2,12 + lel)(f(P? n+ 1) — f(pf,n)) +23),
x (f(pf +d(n),n) - f(pf fdbn—1),n— 1)))

X Ky, (f(P_}f +d"(n), n) - f(]?f +d°n—1),n— 1),

f(p,'?,n+ 1) —f(p?Jl))

[(f(p? +ern) = f(p - el,n))/z} o)
(£(pt+erm) = £(pt = en)) 2

and
dlog Ky ¢
adb
1

T Kay 2%1 (f(pf +d' (), ”) - f(pf +dbn—1),n— 1))

Copyright © 2007 John Wiley & Sons, Ltd.

- 1))K>:22 (fP(p?’ n) -

35
ACEED) &

XKy, (f(pf +d"(n), n) - f(p’; +dn—1),n— 1))

[t

(f P +e. n) (p?—ez,n))ﬁ

where e; = [1, 017, > = [0, 1]7.
Therefore, the stochastic gradient to be used for the
update of the MV is

oL(fo(pb.n+1). f(pb.n+1))

8d(p§’,n)
S s
_l 0K s 0K> s
= S;Bd(ps n KLS ;a (ph.n )Kzs

(42)
The result can be obtained by substituting BBA and

d(ph.n)
0Krs . .
o (p?"n) with Equations (40) and (41).

So far we have obtained an stochastic gradient
estimator for the cost function J with respect to
MV d? for each block. By substituting Equation (42)
in Equations (28-33), and imposing a smoothness
constraint that the neighboring MVs cannot differ by
more than a pre-determined threshold, we obtain the
BMaxMI motion estimation scheme.

3.3. Computation Complexity Analysis

Assuming the image size is M x M, with a search
range of R x R and a block size of B x B, we proceed
to calculate the number of operations required per pixel.

Here we assume that the above operations can be
executed in a single instruction cycle. This is justified
because the current DSP and FPGA technology can
perform all the operations, except the exponential
operation, in a single cycle. The exponential operation
can be efficiently implemented using an 8-bit table
lookup which can also be executed in a single
instruction cycle.

Table I summarizes the number of additions, subtrac-
tions, exponentials, absolute values, multiplications,
and conditionals (i.e., ‘if” statements) required by the
algorithm at the encoder [3,4,10].
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Table I. Number of instructions per pixel in encoder.

Operations Pixel-based Block-based EBMA
per pixel MaxMI MaxMI search
Additions 4 4 2R+ 1)?
Subtractions 5 5 QR+ 1)
Exponentials 0 0 0
Multiplication 4 4 (2R + 1)?
Division 0 0 0
Conditionals 4 % QR+ 1)?
Total 17 13+ 42R+1)
Operations Block-based 3-Step search

per pixel gradient descent

Additions B>+ (R—-2)(2B—1) 8(log,(R/2)+ 1)+ 1
Subtractions B>+ (R-2)(2B—1) 8(log,(R/2)+ 1)+ 1
Exponentials 0 0
Multiplication B>+ (R—2)(2B-1) 8(logr(R/2) + 1)+ 1
Division 0 0
Conditionals B>+ (R—-2)(2B-1) 8(logr(R/2)+ 1)+ 1
Total 4(B>+(R—-2)(2B—1)) 4(8(log,(R/2)+ 1)+ 1)

Table II. Number of instructions per pixel for R = 16 and B = 3 in
encoder.

Method Number of operations in encoder
Pixel-based MaxMI 17

Block-based MaxMI 1 3+%

EBMA search 4356

Block-based gradient descent 316

Three step search 132

A snapshot of Table I is provided in Table II for
illustration for the case when R =16 and B =3,
assuming all the above operations are executed in single
instruction cycle.

The results in Table I and Table II show that
compared to the traditional methods, our algorithms
have extremely low computational complexity on the
encoder side. It is nearly 256 times faster than EBMA,
18 times faster than gradient descent, and nearly 8
times faster than the TSS. The BMaxMI algorithm
and the pixel-based algorithm have almost the same
complexity. Due to this characteristic, the algorithms
have great potential for the application where devices
on the encoder side are of limited computational
capability, for example, wireless video sensors and
mobile handsets.

Table IIT summarizes and compares the decoding
complexity of our schemes and the traditional
methods.

Copyright © 2007 John Wiley & Sons, Ltd.

Table III. Number of instructions per pixel in decoder.

Operations PMaxMI BMaxMI EBMA Block-based 3-Step
per pixel gradient  search
descent
Additions 4 4 2 2 2
Subtractions 5 5 0 0 0
Exponentials 0 0 0 0 0
Multiplication 4 4 0 0 0
Division 0 0 0 0 0
Conditionals 4 % 0 0 0
Total 17 134 2 2 2

A snapshot of Table III is provided in Table IV
for illustration for the case when R = 16 and B = 3,
assuming all the above operations are executed in single
instruction cycle.

The results in Table III and Table IV show that our
algorithms also have moderately higher computation

Table IV. Number of instructions per pixel for R = 16 and B = 3 in
decoder.

Method Number of operations in decoder
Pixel-based MaxMI 17

Block-based MaxMI 13+ %

EBMA search 2

Block-based gradient descent 2

Three step search 2
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complexity on the decoder side, about 8.5 times
more complexity than other schemes which have only
two operations per pixel. Because in our motion
estimation system, the encoder and the decoder have
the same configuration and they carried out the
same computation process, therefore, decoder does
not require a separate hardware for the decoder.
Due to this reason, it is of the same complexity
as its corresponding encoder. However, considering
the application scenario, the devices on the decoder
side (i.e., sink nodes in the wireless sensor network
or base stations in the ordinary wireless network),
generally possess higher computation capability and
more power resources. The increased computation
complexity compared to the traditional schemes will
not pose a serious burden on the system.

4. Simulation

In this section, we implement our adaptive motion
estimation algorithms based on the maximum mutual
information criterion as described in subsections 3.1
and 3.2. We choose the luminance component of
several video sequences in QCIF format for the
encoding process. For EBMA, a block size of 8 x
8 is chosen with integer-pel accuracy. The search
range is 16 x 16 pixels. The block-based gradient
descent search algorithm is implemented as described
in Reference [3] with a block size of 3 x 3 and a search
range of 16 x 16 pixels with integer-pel accuracy.
For the three-step algorithm [6], we use a block size
of 8 x 8 and a search range of 16 x 16 pixels with
integer-pel accuracy. The mean absolute error (MAE)
distortion function is used as the block distortion
measure for the two algorithms. Since we focus on the
study of motion estimation, hence DCT, quantization,
and entropy coding are excluded in the simulation.

In each algorithm, motion is estimated and
compensated using perfectly reconstructed reference
frames. The first frame is intra-coded and the rest are
inter-coded. The experiment is conducted using frame
rates of 10, 5, and 2, respectively. The values of RMSE
for the four different QCIF sequences are shown in
Tables V-VII. Note that the mutual-information-based
coding algorithm does not necessarily minimize the
RMSE, since the optimality criterion for determining
the MVs is maximum mutual information. Therefore,
it is natural that the least-squares based competing
methods result in smaller RMSE error levels.

For low bit rate applications, the typical frame rate is
usually 10 frames/s or lower. As frame rate decreases,

Copyright © 2007 John Wiley & Sons, Ltd.

Table V. RMSE for four-test video sequences at 10 fps.

Method Miss Coastguard Suzie Foreman
America

EBMA search 2.88 9.29 492 8.16

3-Step search 4.06 12.14 9.57 16.24

Block-based gradient descent  6.78 1427  16.28 23.69

Pixel-based MaxMI 6.29 20.36 1149 20.52

Block-based MaxMI 6.37 22.13 1328 20.42

Table VI. RMSE for four-test video sequences at 5 fps.

Method Miss Coastguard Suzie Foreman
America

EBMA search 3.16 11.18 6.35 11.00

3-Step search 5.28 1194 1293 21.96

Block-based gradient descent  8.51 18.03  19.32 28.55

Pixel-based MaxMI 8.89 2325 1828 29.24

Block-based MaxMI 8.99 2371  20.08 29.48

Table VII. RMSE for four-test video sequences at 2 fps.

Method Miss Coastguard Suzie Foreman
America

EBMA search 3.63 14.29 8.69 1791

3-Step search 9.71 2339 1799 31.92

Block-based gradient descent  12.40 22.18 2410 37.76

Pixel-based MaxMI 12.06 29.52 2532 39.39

Block-based MaxMI 17.42 29.78  21.12 37.26

the temporal correlation between two consecutive
video frames decreases. The more the skip rate, the
smaller is the probability of finding the true motion
vector. From Tables V-VII, we notice that there is
a 3dB difference in Y-PSNR values between our
algorithm and the TSS. However, our scheme saves
the bit budget for MVs, which usually constitutes
about 50% of the total budget for low bit-rate video
applications. Therefore, the 3 dB performance loss can
be compensated by the bandwidth savings due to not
transmitting MVs in our scheme, and the adaptive
motion estimation provides a trade-off between com-
putational complexity and video presentation quality.

5. Conclusion

In this paper, we consider the motion estimation
problem in video encoding. Existing motion estimation
techniques do not effectively utilize the past knowledge
in motion prediction, leading to inefficiency in compu-
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tation. To address this problem, we proposed adaptive
model-based motion estimation algorithms using mu-
tual information. In our schemes, the MVs of the cur-
rent frame are iteratively computed from the previous
frame, based on a model. This leads to computational
savings because of the knowledge gained in the com-
putation of the previous MVs. Our results showed that
our scheme significantly reduces the computational
complexity, as compared to the existing algorithms.
The salient feature of our adaptive motion estimation
algorithm is its very low computational complexity.
Hence, our algorithmis ideally suited for wireless video
sensor networks, in which computational complexity
and energy consumption impose major constraints.
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