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Threshold Optimization for Rate Adaptation
Algorithms in IEEE 802.11 WLANs

Yang Song, Xiaoyan Zhu, Yuguang Fang, and Hailin Zhang

Abstract—Rate adaptation algorithms play a crucial role in
IEEE 802.11 WLANs. While the network performance depends
greatly on the rate adaptation algorithms, the detailed imple-
mentation is left to vendors. Due to its simplicity and prac-
ticality, threshold-based rate adaptation algorithms are widely
adopted in commercial IEEE 802.11 devices. Taking the popular
ARF algorithm for example, the data rate is increased when
ten consecutive transmissions are successful and a date rate
downshift is triggered by two consecutive failed transmissions.
Although widely deployed, the optimal selection of the up/down
thresholds for the rate adaptation algorithms remains an open
problem. In this paper, we first investigate the threshold-based
rate adaptation algorithm via a reverse engineering approach
where the implicit objective function is revealed. Next, we propose
a threshold optimization algorithm which can dynamically adjust
the up/down thresholds and converge to the stochastic optimum
solution in arbitrary stationary random channel environment.
The performance enhancement by tuning the thresholds opti-
mally is validated by simulations.

Index Terms—IEEE 802.11 WLANs, rate adaptation, reverse
engineering, learning algorithms.

I. INTRODUCTION

IEEE 802.11 WLAN has become the dominating technol-
ogy for indoor wireless Internet access. While the original

IEEE 802.11 standard only provides two physical data rates
(1 Mbps and 2 Mbps), the current IEEE standard provides
several available data rates based on different modulation and
coding schemes. For example, IEEE 802.11b supports 1 Mbps,
2 Mbps, 5.5 Mbps and 11 Mbps and IEEE 802.11g provides
12 physical data rates up to 54 Mbps. In order to maximize the
network throughput, IEEE 802.11 devices, i.e., stations, need
to adaptively change the data rate to combat with the time-
varying channel environments. For instance, when the channel
is good, a high data rate which usually requires higher SNR
(signal-to-noise ratio) can be utilized. On the contrary, a low
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data rate which is error-resilient might be favorable for a bad
channel. The operation of dynamically selecting data rates in
IEEE 802.11 WLANs is called rate adaptation in general.

The implementation of rate adaptation algorithms is not
specified by the IEEE 802.11 standard. This intentional omis-
sion flourishes the studies on this active area where a variety of
rate adaptation algorithms have been proposed [1]–[17]. The
common challenge of rate adaptation algorithms is how to
match the unknown channel condition optimally such that the
network throughput is maximized. According to the methods
of estimating channel conditions, rate adaptation algorithms
can be divided into two major categories. The first one is called
closed-loop rate adaptation. Most schemes in this approach
enable the receiver to measure the channel quality and sends
back this information explicitly to the transmitter for rate
adaptation. For example, the receiver records the SNR or
RSSI (received signal strength indication) value of the received
packet and sends this information back to the transmitter via
CTS or ACK packet. Consequently, the transmitter estimates
the channel condition based on the feedback signal and adjusts
the data rate accordingly. By utilizing additional feedback
mechanisms, the close-loop rate adaptation algorithms can
achieve a better performance than the open-loop counterpart.
However, in practice, the close-loop rate adaptation algo-
rithms are rarely used in commercial IEEE 802.11 devices.
This is because that the extra feedback information needs to
be conveyed reliably and hence an inevitable modification
on the current IEEE 802.11 standard is needed. This non-
compatibility hinders the close-loop rate adaptation algorithms
from practical implementations in current off-the-shelf IEEE
802.11 products.

The second category of rate adaptation algorithms, which is
predominantly adopted by the vendors, is labeled as open-loop
algorithms. The widely utilized Auto Rate Fallback algorithm,
a.k.a., ARF, falls into this category. As many other open-loop
rate adaptation algorithms, ARF adjusts the date rate solely
based on the IEEE 802.11 ACK packets. For example, in
Enterasys RoamAbout IEEE 802.11 card [18], two consecutive
frame transmission failures, indicated by not receiving ACKs
promptly, induces a rate downshift, while ten consecutive
successful frame transmissions triggers a rate upshift [19].
Most commercialized IEEE products follow this up/down
scheme [4], [5]. In this paper, we focus on the open-loop
rate adaptation algorithms due to the practical merits. More
specifically, we consider a threshold-based rate adaptation
algorithm which works as follows. If there are 𝜃𝑢 consecutive
successful transmissions, the data rate is upgraded to the next
level. On the other hand, if 𝜃𝑑 consecutive transmissions failed,
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a rate downshift is triggered. Since ARF is merely a special
case of this threshold-based rate adaptation algorithm, our
analysis can be applied to ARF and its variants as well.

As a tradeoff with simplicity, there are several challenges
existing for the threshold-based rate adaptation algorithm.
First, due to the trial-and-error based up/down mechanism,
it inherently lacks the capability of capturing short dynamics
of the channel variations [5]. To tackle this issue, Qiao et.al.
propose a fast responsive rate adaptation solution in [1].
By introducing a measure of “delay factor”, the responsive-
ness of the threshold-based rate adaptation algorithm can be
guaranteed. The second challenge of the threshold-based rate
adaptation algorithm is the indifference to collision-induced
failures and noise-induced failures. It is worth noting that
in a multiuser WLAN, an ACK timeout can be ascribed
to either an MAC layer collision, or an erroneous channel.
However, the threshold-based rate adaptation algorithm is
unable to distinguish them effectively. Therefore, excessive
collisions may introduce unnecessary rate degradations which
significantly deteriorate the system performance. Attributing
the actual reason of a transmission failure, or a packet loss,
is named loss diagnosis [20] and has attracted tremendous
attention from the community. For example, Choi et.al. [21]
propose an algorithmic solution, which is specific to the
threshold-based rate adaptation algorithm, to mitigate the col-
lision effect in multiuser IEEE 802.11 WLANs. Therefore, the
performance deterioration by the “indifference to collisions”
can be compensated effectively.

While the first two challenges of the threshold-based rate
adaptation algorithm have been tackled effectively, the third
major obstacle, namely, the optimal selection of the up/down
thresholds, remains as an open problem. A systematic treat-
ment on how to select the values of 𝜃𝑢 and 𝜃𝑑 in the threshold-
based rate adaptation algorithm is lacking in the literature,
although several heuristic solutions are proposed [2], [3].

The contribution of this paper is twofold. First, we ana-
lytically investigate the behavior of the threshold-based rate
adaptation algorithm from a reverse engineering perspective.
In other words, we answer the essential yet unresolved
question, i.e., “What is the threshold-based rate adaptation
algorithm actually optimizing?”, by unveiling the implicit
objective function. As a result, several intuitive observations of
the threshold-based rate adaptation algorithm can be explained
straightforwardly by inspecting this objective function. There-
fore, our reverse engineering model provides an alternative
means to understand the threshold-based rate adaptation algo-
rithm. Our work is a complement to the recent trend of reverse
engineering studies on existing heuristics-based networking
protocols, such as TCP (transport layer) [22]–[24], BGP
(network layer) [25] and random access MAC protocol (data
link layer) [26]. To the best of our knowledge, this is the first
work of studying threshold-based rate adaptation algorithms
from a reverse engineering perspective. Our results explicitly
show that the values of 𝜃𝑢 and 𝜃𝑑 play an important role in the
objective function and thus the network performance hinges
largely on the selection of the up/down thresholds. In light
of this, we propose a threshold optimization algorithm which
dynamically tunes the up/down thresholds of the threshold-
based rate adaptation algorithm and provably converges to the

stochastic optimum solution in arbitrary stationary random
environments. We show that the optimal selection of the
thresholds significantly enhances the system’s performance.

The rest of paper is organized as follows. Section II briefly
overviews the state-of-the-art rate adaptation algorithms in the
literature. The reverse engineering model of the threshold-
based rate adaptation algorithm is derived in Section III. In
Section IV, the threshold optimization algorithm is proposed.
The performance evaluations are provided in Section V and
Section VI concludes this paper.

II. RELATED WORK

RBAR [12] proposes an SNR-based close-loop rate adapta-
tion algorithm where the rate decision relies on the feedback
signal from the receiver. Specifically, the receiver estimates
the channel condition and determines a proper rate via the
RTS/CTS exchange. While consistently outperforms the open-
loop rate adaptation algorithms such as ARF, RBAR is incom-
patible with the current IEEE 802.11 standard by altering the
CTS frames [5]. In [14], a hybrid rate adaptation algorithm
with SNR-based measurements is proposed, where the mea-
sured SNR is utilized to bound the range of feasible settings
and thus shortens the response time to channel variations. [6]
is another example of the close-loop rate adaptation algorithms
which attempts to improve the throughput by predicting the
channel coherence time, which is nevertheless difficult in prac-
tice. Chen et.al. introduce a probabilistic-based rate adaptation
for IEEE 802.11 WLANs. In [9], a rate-adaptive acknowl-
edgement based rate adaptation algorithm is introduced. The
basic idea is that by varying the ACK transmission rate, the
appropriate rate information is conveyed to the transmitter.
Wang and Helmy [17] propose a traffic-aware rate adaptation
algorithm which explicitly relates the background traffic to
the rate selection problem. However, aforementioned solutions
either rely on altering the frame structures, or do not conform
to the de facto IEEE 802.11 standard in commercial usage1.
CHARM [10] avoids the overhead of RTS/CTS by leveraging
the channel reciprocity. However, modifications on the IEEE
802.11 standardized frame structures, e.g., beacons and probe
signals, are still needed.

In light of the complexity and the incompatibility of the
close-loop rate adaptation algorithms, alternative open-loop
rate adaptation algorithms are proposed. Although usually
providing inferior performance than the close-loop solutions,
open-loop algorithms soon become the predominant technique
in commercial IEEE 802.11 devices due to the simplicity and
the compatibility. The most popular open-loop rate adaptation
algorithm is the ARF protocol proposed by Ad and Leo
[13] where a rate upshift is triggered by ten consecutive
successful transmission while two consecutive failures induce
a rate downshift. SampleRate [11] is another widely adopted
open-loop rate adaptation algorithm which performs arguably
the best in static settings [5]. However, as pointed out by
[5], SampleRate suffers from significant packet losses in fast
changing channels. ONOE [15] is a credit-based mechanism
included in MadWiFi drivers. The credit is determined by the

1For example, they largely rely on the RTS/CTS signaling mechanism
which is hardly used in practice.
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number of successful transmissions, erroneous transmissions
and retransmissions jointly. However, it is pointed in [7] that
ONOE is less sensitive to individual packet failure and behaves
over-conservatively.

As mentioned previously, one of the drawbacks of the
simple open-loop rate adaptation algorithms is the inability
to discriminate the collision-induced losses and the noise-
induced losses. While several collision-aware rate adaptations
are available in the literature [4], [5], [8], [16], they base
on the close-loop solutions which utilize either RTS/CTS
signaling or modifications on the standard. In [19], [21], Choi
et.al. propose a collision mitigation algorithm for open-loop
ARF algorithm based on a Markovian modeling. However,
the channel conditions are assumed to be constant in their
work. In this paper, on the contrary, we particularly focus
on the threshold optimization to combat with fast channel
fluctuations rather than collisions. Therefore, in tandem with
[19], [21], our work provide a solution to jointly mitigate the
channel fluctuations and the multiuser collisions. For example,
the up/down thresholds, i.e., 𝜃𝑢 and 𝜃𝑑 can be first calculated
by our threshold optimization algorithm in Section IV. Next,
they are subjected to further adjustments following [21] to
mitigate the collision effects.

III. REVERSE ENGINEERING FOR THE THRESHOLD-BASED

RATE ADAPTATION ALGORITHM

We consider a station in a multi-rate IEEE 802.11 WLAN.
There are 𝑁 stations in the WLAN where each station, say
𝑖, has a transmission probability of 𝑝𝑖. Note that the equiva-
lence of the 𝑝-persistent model and the IEEE 802.11 binary
exponential backoff CSMA/CA model has been extensively
studied in [26] and [27]. Throughout this paper, we assume
that the transmission probability of each station is fixed. The
interaction of the data rate and the transmission probability
remains as future research. Without loss of generality, we
assume that the stations have a same transmission probability
of 𝑝.

In this work, we focus on the widely deployed open loop
threshold-based rate adaptation algorithm. Not surprisingly,
the speed of channel variations has a great impact on the per-
formance of the rate adaptation algorithm. While the original
intention of the threshold-based rate adaptation algorithm is
to maximize the average throughput, a natural question arises
that whether this is indeed the case. In this section, to better
understand the impact of 𝜃𝑢 and 𝜃𝑑 on the performance of the
threshold-based rate adaptation algorithm, we investigate the
threshold-based rate adaptation algorithm via a reverse engi-
neering approach. We assume that the RTS/CTS signals are
turned off. In a time slot, say 𝑡, we denote the channel state2 as
𝑠(𝑡) and denote the successful transmission probability, given
the current transmission rate 𝑟(𝑡) and the channel condition
𝑠(𝑡), as

𝑃𝑆 (𝑠(𝑡), 𝑟(𝑡)) = 𝑝(1− 𝑝)𝑁−1 (1− 𝑒(𝑠(𝑡), 𝑟(𝑡))) (1)

where 𝑒 denotes the frame error rate (FER) and is given by

𝑒(𝑠(𝑡), 𝑟(𝑡)) = 1− (1− 𝑃𝑒(𝑠(𝑡), 𝑟(𝑡)))
𝐿 (2)

2Note that the number of feasible channel states can be potentially infinite.

and 𝑃𝑒(𝑠(𝑡), 𝑟(𝑡)) is the bit error rate (BER) which is de-
termined by the current data rate, i.e., modulation scheme,
and the current channel condition. 𝐿 is the frame length
of the packet. Similarly, we define 𝑃𝐹 (𝑠(𝑡), 𝑟(𝑡)) = 1 −
𝑃𝑆(𝑠(𝑡), 𝑟(𝑡)) as the transmission failure probability at time
𝑡. It is worth noting that both 𝑃𝑆 and 𝑃𝐹 are functions of
the current data rate 𝑟(𝑡) as well as the instantaneous channel
condition 𝑠(𝑡), which is random. Particularly, we assume that
the threshold-based rate adaptation algorithm will increase
the data rate by an amount of 𝛿 if there are 𝜃𝑢 consecutive
successful transmissions and decrease it by 𝛿 if there are 𝜃𝑑
consecutive failures. Denote 𝑢 = 𝜃𝑢 − 1 and 𝑑 = 𝜃𝑑 − 1 for
notation succinctness. We define a binary indicator function
𝜁(𝑡) where 𝜁(𝑡) = 1 means that the transmission at time slot
𝑡 is successful and 𝜁(𝑡) = 0 otherwise. Mathematically, the
updating rule of the threshold-based rate adaptation algorithm
can be written as

𝑟(𝑡 + 1) = (𝑟(𝑡) + 𝛿)Γ𝜁(𝑡)=1Γ𝜁(𝑡−1)=1 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑢)=1

+(𝑟(𝑡) − 𝛿)Γ𝜁(𝑡)=0Γ𝜁(𝑡−1)=0 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑑)=0

+𝑟(𝑡)Γ𝑜.𝑤. (3)

where

Γ𝑥 =

{
1, if event x is true

0, if event x is false.
(4)

For example, Γ𝜁(𝑡)=1 = 1 if the transmission at time 𝑡 is
successful and Γ𝜁(𝑡)=1 = 0 otherwise. The symbol of 𝑜.𝑤.
denotes the event that neither 𝜃𝑢 consecutive successful nor
𝜃𝑑 consecutive failed transmissions happened. For simplicity,
we assume that the maximum allowable data rate is sufficiently
large and the minimum data rate is zero, i.e., not transmitting.
Define

h(𝑡) = [𝑟(𝑡), 𝑟(𝑡− 1), ⋅ ⋅ ⋅ , 𝑟(1), 𝑒(𝑠(𝑡), 𝑟(𝑡)), ⋅ ⋅ ⋅ , 𝑒(𝑠(1), 𝑟(1))]
(5)

as the history vector. In addition, we define

𝑍(𝑡+ 1) = E {𝑟(𝑡 + 1)∣h(𝑡)} (6)

where E is the expectation operator.

Condition 1: (C.1) The channel states between two con-
secutive successful transmissions or two consecutive failed
transmissions are independent random variables.

We emphasize that the restrictive condition (C.1) is not
our general assumption in the paper. If (C.1) is satisfied,
however, the derivation of the reverse engineering analysis
can be presented in a more concise form, as will be shown
shortly.

First, we obtain

E
{
Γ𝜁(𝑡)=1Γ𝜁(𝑡−1)=1 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑢)=1∣h(𝑡)

}
= Pr

{
Γ𝜁(𝑡)=1 = 1,Γ𝜁(𝑡−1)=1 = 1, ⋅ ⋅ ⋅ ,Γ𝜁(𝑡−𝑢)=1 = 1∣h(𝑡)}

(7)

If condition (C.1) is satisfied, (7) can be further decomposed
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as

E
{
Γ𝜁(𝑡)=1Γ𝜁(𝑡−1)=1 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑢)=1∣h(𝑡)

}
= Pr

{
Γ𝜁(𝑡)=1 = 1∣h(𝑡)}× Pr

{
Γ𝜁(𝑡−1)=1 = 1∣h(𝑡)}

⋅ ⋅ ⋅ × Pr
{
Γ𝜁(𝑡−𝑢)=1 = 1∣h(𝑡)}

=

𝑢∏
𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘)) (8)

Similarly, we have

E
{
Γ𝜁(𝑡)=0Γ𝜁(𝑡−1)=0 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑑)=0∣h(𝑡)

}
= Pr

{
Γ𝜁(𝑡)=0 = 1,Γ𝜁(𝑡−1)=0 = 1, ⋅ ⋅ ⋅ ,Γ𝜁(𝑡−𝑢)=0 = 1∣h(𝑡)}

(9)

If (C.1) is assumed to be valid, we can obtain

E
{
Γ𝜁(𝑡)=0Γ𝜁(𝑡−1)=0 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑑)=0∣h(𝑡)

}
=

𝑑∏
𝑘=0

(1− 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘)) (10)

For notation succinctness, we will temporarily assume that
(C.1) is satisfied. The condition will be relaxed after the
implicit objective function is revealed. Therefore, we can write
(6) as

𝑍(𝑡+ 1) = E {𝑟(𝑡 + 1)∣h(𝑡)}

= (𝑟(𝑡) + 𝛿)

𝑢∏
𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘))

+(𝑟(𝑡) − 𝛿)
𝑑∏

𝑘=0

(1− 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘))

+𝑟(𝑡)

(
1−

𝑢∏
𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘))

−
𝑑∏

𝑘=0

(1− 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡− 𝑘))
)

= 𝑟(𝑡) + 𝛿

(
𝑢∏

𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘))

−
𝑑∏

𝑘=0

(1− 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡− 𝑘))
)

(11)

Let us revisit (3), which can be rewritten as

𝑟(𝑡 + 1) = 𝑟(𝑡) + 𝛿

(
1

𝛿
×
(
(𝑟(𝑡) + 𝛿)Γ𝜁(𝑡)=1 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑢)=1

+ (𝑟(𝑡) − 𝛿)Γ𝜁(𝑡)=0Γ𝜁(𝑡−1)=0 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑑)=0

+ 𝑟(𝑡)Γ𝑜.𝑤. − 𝑟(𝑡)
) )

= 𝑟(𝑡) + 𝛿𝜉(𝑡) (12)

where

𝜉(𝑡) =
1

𝛿
×
{

(𝑟(𝑡) + 𝛿)Γ𝜁(𝑡)=1Γ𝜁(𝑡−1)=1 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑢)=1

+ (𝑟(𝑡) − 𝛿)Γ𝜁(𝑡)=0Γ𝜁(𝑡−1)=0 ⋅ ⋅ ⋅Γ𝜁(𝑡−𝑑)=0

+ 𝑟(𝑡)Γ𝑜.𝑤. − 𝑟(𝑡)
}
. (13)

It should be noted that

E{𝜉(𝑡)∣h(𝑡)} =

𝑢∏
𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡− 𝑘))

−
𝑑∏

𝑘=0

(1− 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘)). (14)

Therefore, we observe that (12) is a form of stochastic ap-
proximation with respect to (11). Next, we present the reverse
engineering theorem for the threshold-based rate adaptation
algorithm.

Theorem 1: The threshold-based rate adaptation algorithm
of (3) is a stochastic approximation which solves an implicit
objective function 𝑈(𝑡), with a constant stepsize of 𝛿, where
𝑈(𝑡) is in the form of

𝑈(𝑡) = 𝑟(𝑡)

{
𝑢∏

𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡− 𝑘))

−
𝑑∏

𝑘=0

(1− 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘))
}
+𝒦 (15)

if condition (C.1) is satisfied and 𝒦 is a constant with respect
to rate 𝑟(𝑡).

Proof: Theorem 1 follows directly from the previous anal-
ysis. Note that the threshold-based rate adaptation algorithm
can be written as

𝑟(𝑡+ 1) = 𝑟(𝑡) + 𝛿𝜉(𝑡) (16)

where 𝜉(𝑡) is the stochastic gradient and satisfies

E{𝜉(𝑡)∣h(𝑡)} =
∂𝑈

∂𝑟(𝑡)

∣∣
h(𝑡) (17)

Hence Theorem 1 holds.

REMARK 1: If condition (C.1) does not hold, we can
replace

𝑢∏
𝑘=0

𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡 − 𝑘))

and
𝑑∏

𝑘=0

(1 − 𝑃𝑆(𝑠(𝑡− 𝑘), 𝑟(𝑡− 𝑘))

in (15) with

Pr
{
Γ𝜁(𝑡)=1, ⋅ ⋅ ⋅ ,Γ𝜁(𝑡−𝑢)=1∣h(𝑡)

}
(18)

and

Pr
{
Γ𝜁(𝑡)=0, ⋅ ⋅ ⋅ ,Γ𝜁(𝑡−𝑑)=0∣h(𝑡)

}
(19)

respectively and the theorem remains valid.

REMARK 2: It is worth noting that the objective function
𝑈(𝑡) is a time-varying function which is determined by the
data rate as well as the channel conditions of the past 𝜏 time
slots where 𝜏 = max(𝜃𝑢, 𝜃𝑑). Note that the data rate within
the last 𝜏 time slots always remains unchanged. However,
the channel fluctuations affect the successful transmission
probability 𝑃𝑆 and thus alter the objective function 𝑈(𝑡).

REMARK 3: The partial derivative of the objective of 𝑈(𝑡)
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given h(𝑡), i.e.,

𝜉(𝑡) =

𝑢∏
𝑘=0

𝑃𝑆(𝑠(𝑡−𝑘), 𝑟(𝑡−𝑘))−
𝑑∏

𝑘=0

(1−𝑃𝑆(𝑠(𝑡−𝑘), 𝑟(𝑡−𝑘))
(20)

is also time-varying. If the probability that the last 𝜃𝑢 trans-
missions are all successful is greater than the probability that
the last 𝜃𝑑 transmissions are all failures, the station tends
to increase the data rate and vice versa. The speed of rate
increasing or deceasing is determined by the difference of
these two probabilities. In other words, the partial derivative
in (20) could be either positive or negative which corresponds
to a rate upshift or a rate downshift. The absolute value of the
instantaneous derivative determines the speed of rate changing.

REMARK 4: A direct computation of the partial derivative
in (20) is challenging, if not impossible, due to the uncertainty
induced by the unpredictable stochastic channel. Therefore,
the threshold-based rate adaptation algorithm, described in
(3), utilizes an alternative stochastic approximation approach
with the unbiased estimation of 𝜉(𝑡), i.e., 𝜉(𝑡) in (13), which
significantly reduces the computational complexity since only
local information based on ACKs is required. This nature of
simplicity and practicability facilitates the popularity of the
threshold-based rate adaptation algorithm and its variants such
as ARF.

To achieve a better understanding of (15), let us consider
the following extreme cases from a reverse engineering stand-
point.

∙ (𝑢 = 0, 𝑑 = 0) ⇒ (𝜃𝑢 = 𝜃𝑑 = 1): In this case,
the threshold-based rate adaptation algorithm increases
the data rate if the current transmission is successful
and decreases otherwise. From (15), we can observe that
this aggressive algorithm merely compares the successful
probability with the failure probability of the current time
slot and expects that the next time slot will remain the
current channel condition.

∙ (𝑢 = +∞, 𝑑 = 0) ⇒ (𝜃𝑢 = +∞, 𝜃𝑑 = 1): From (15),
we can see that the derivative is always negative since
the first part of (20) is zero. Therefore, the threshold-
based rate adaptation will keep decreasing data rate until
the minimum data rate is reached, i.e., zero, which is
consistent with the intuition.

∙ (𝑢 = 0, 𝑑 = +∞) ⇒ (𝜃𝑢 = 1, 𝜃𝑑 = +∞): In this
scenario, the second part of (20) is always zero and
thus the algorithm will keep upgrading data rate until
the maximum data rate is achieved.

∙ (𝑢 = +∞, 𝑑 = +∞) ⇒ (𝜃𝑢 = ∞, 𝜃𝑑 = +∞): The
derivative of (20) is always zero and hence the data rate
never changes.

Hence, by inspecting (15) and (20) directly, we provide an
alternative means to understand the behavior of the threshold-
based rate adaptation algorithm. In (3), we have assumed a
constant stepsize 𝛿 while in current off-the-shelf IEEE 802.11
devices, a discrete set of data rates are provided. However,
continuous rate adaptation can be achieved by controlling the
transmission power jointly or deploying Adaptive-Coding-and-
Modulation (ACM) capable devices. Therefore, our reverse
engineering model, while fits in continuous rate scenarios,

provides an approximate model for discrete rate adaptation
scenarios. We believe that the reverse engineering result in
this paper provides a first step towards a comprehensive un-
derstanding on the good-yet-simple rate adaptation algorithm
designs. In addition, based on the unveiled implicit objective
function of (15), the interactions of rate adaptations among
multiple IEEE 802.11 stations can be investigated in a game
theoretical framework.

It is immediate to observe from (15) and (20) that the selec-
tion of 𝜃𝑢 and 𝜃𝑑 has significant impact on the performance
of the rate adaptation algorithm. Ideally, the rate adaptation
algorithm attempts to find the data rate which maximizes the
expected throughput in the next time slot, i.e.,

𝑟′ = argmax𝑟𝑟 × 𝑃𝑆(𝑠(𝑡+ 1), 𝑟). (21)

Define
𝑉 = 𝑟 × 𝑃𝑆(𝑠(𝑡+ 1), 𝑟). (22)

Therefore, if we can estimate the value of ∂𝑉
∂𝑟 and relate it by

𝜉(𝑡) → ∂𝑉

∂𝑟
, (23)

then the threshold-based rate adaptation algorithm is indeed
optimizing the expected throughput via the stochastic ap-
proximation approach. However, to achieve a derivative es-
timation of a general non-Markovian system is non-trivial
[28] [29]. Moreover, if the channel appears totally random,
e.g., non-stationary and fast fading, there exists no effective
optimization-based solution unless certain level of knowledge
on the channel randomness is available. Therefore, in the
next section, we will consider a stationary random channel
environment. Nevertheless, the stochastic channel can be slow-
varying or fast-varying following arbitrary probabilistic distri-
butions. We propose a threshold optimization algorithm which
provably converges to the stochastic optimum values of 𝜃𝑢 and
𝜃𝑑 and the overall performance of the network is remarkably
enhanced.

IV. THRESHOLD OPTIMIZATION ALGORITHM

In this section, we model the stochastic channel as a
stationary random process denoted by 𝑠(𝑡). It is worth noting
that if the channel is quasi-static, i.e., 𝑠(𝑡) is a piecewise con-
stant function, the probing-based rate adaptation algorithms,
e.g., SampleRate [11], can achieve good performance. It is
interesting to observe that even in a quasi-static environment,
for different channel conditions, the optimal values of 𝜃𝑢 and
𝜃𝑑 may be different. One feasible way to find the optimum
values of 𝜃𝑢 and 𝜃𝑑 with different channel conditions, in
a quasi-static environment, is the sample-path based policy
iteration approach introduced in [30] and a recent survey [31],
based on the Markovian model of the threshold-based rate
adaptation algorithm proposed in [19].

However, it is arguable that the channel environment is
stochastic and time-varying in nature. Therefore, it is not
unusual that the channel condition has already changed before
the optimization algorithm has reached a steady state solution.
The algorithm will be thereby consistently chasing after a
moving object and thus the thresholds are always chosen
suboptimally. This is more severe in a fast fading stochastic
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environment. In light of this, we alternatively pursue the
stochastic optimum values of the thresholds in a time-varying
and potentially fast changing channel environment. That is to
say, we attempt to find the set of values for 𝜃𝑢 and 𝜃𝑑 which
maximize the expected system performance with respect to the
random channel. Before elaborating further, we briefly outline
the learning automata techniques based on which our threshold
optimization algorithm is proposed.

A. Learning Automata

Learning automata techniques are first introduced in the
control community where in many scenarios, the system is
time-varying and stochastic in nature. Therefore, stochastic
learning approaches are desired to address the stochastic
control problem in random systems. The basic idea of learning
automata techniques can be described as follows. We consider
a stochastic environment and a set of finite actions available
for the decision maker. Each selected action induces an output
from the random environment. However, due to the stochastic
nature, the outputs for a given input may be different at
different time instances. Based on observations, a learning
automata algorithm is expected to find an action which is the
stochastic optimum solution in the sense that the expected
system’s objective is maximized.

At each decision instance, the decision maker selects one
of the actions according to a probability vector. The selected
action is fed to the stochastic environment as the input and
a random output is attained. The gist of learning automata
techniques lies in the provable convergence to the 𝜖-optimal
solution, as will be defined later, in arbitrary stationary random
environment. Thanks to the practicality and applicability,
learning automata techniques have been broadly studied in
various aspects of the communication and networking litera-
ture such as [32] [33] [34] [35]. In this paper, we propose
a learning automata based threshold optimization algorithm
which finds the stochastic optimum values of the up/down
thresholds efficiently in any stationary yet potentially fast-
varying random channel environment. The detailed implemen-
tations are introduced next.

B. Achieving the Stochastic Optimal Thresholds

We consider an IEEE 802.11 station as the decision maker
which adjusts the values of 𝜃𝑢 and 𝜃𝑑. Without loss of gen-
erality, we assume that the maximum value of 𝜃𝑢 and 𝜃𝑑 are
𝑚𝑢 and 𝑚𝑑, i.e., the feasible set of 𝜃𝑢 is 𝒜𝑢 = {1, ⋅ ⋅ ⋅ ,𝑚𝑢}
and that of 𝜃𝑑 is given by 𝒜𝑑 = {1, ⋅ ⋅ ⋅ ,𝑚𝑑}. The station
maintains two probability vectors 𝑃𝑢 and 𝑃𝑑 for 𝒜𝑢 and 𝒜𝑑,
respectively. The 𝑘-th element in 𝑃𝑢, i.e., 𝑃 𝑘

𝑢 , denotes the
probability that 𝜃𝑢 is set to 𝑘. 𝑃 𝑘

𝑑 is defined analogously.
Simply put, at each decision instance, the threshold optimiza-
tion algorithm randomly determines the values of 𝜃𝑢 and
𝜃𝑑 according to 𝑃𝑢 and 𝑃𝑑. Next, the probability vectors,
i.e., 𝑃𝑢 and 𝑃𝑑, are updated and the iteration continues until
convergence, i.e., 𝑃𝑚∗

𝑢 = 1 and 𝑃𝑛∗
𝑑 = 1 where 𝑚∗ and 𝑛∗

denote the stochastic optimal values of 𝜃𝑢 and 𝜃𝑑, respectively.
Define a time series denoted by t = [𝑡0, 𝑡1, ⋅ ⋅ ⋅ ] where

𝑡0 denotes the starting time and other elements represent the

exact time instances when the data rate is changed. Denote

𝑇 (𝑗) = [𝑡𝑗−1, 𝑡𝑗 ], 𝑗 = 1, 2, ⋅ ⋅ ⋅
as the 𝑗-th time period, or time duration. It is worth noting that
within a particular time period, say 𝑗, the value of the data
rate, the values of thresholds, i.e., 𝜃𝑢 and 𝜃𝑑 , are all fixed
numbers. We denote these period-dependent parameters as3

𝑟(𝑗), 𝜃𝑢(𝑗) and 𝜃𝑑(𝑗). With this observation, we utilize the
time series t as the time series of decision instances. More
specifically, for example, at time 𝑡𝑗 , a rate change is triggered
either by 𝜃𝑢(𝑗) consecutive successful transmissions or 𝜃𝑑(𝑗)
consecutive failed transmissions. In tandem with the data rate
up/down shift, new values of the thresholds, i.e., 𝜃𝑢(𝑗 + 1)
and 𝜃𝑑(𝑗 + 1) are determined by the threshold optimization
algorithm according to the probability vectors 𝑃𝑢 and 𝑃𝑑.

Besides 𝑃𝑢 and 𝑃𝑑, we introduce additional vectors for
𝒜𝑢 and 𝒜𝑑, namely, the counting vectors 𝐶𝑢, 𝐶𝑑, the surplus
vectors 𝑆𝑢, 𝑆𝑑, the estimation vectors 𝐷𝑢, 𝐷𝑑 and the
comparison vectors 𝑍𝑢, 𝑍𝑑. The definitions of parameters of
the algorithm are provided as follows.

Algorithm:

Parameters4:

– 𝑃𝑢 (𝑃𝑑): The probability vector for 𝜃𝑢 (𝜃𝑑) over 𝒜𝑢 (𝒜𝑑).
– 𝑚𝑢 (𝑚𝑑): The maximum value of 𝜃𝑢 (𝜃𝑑), or equivalently,

the cardinality of 𝒜𝑢 (𝒜𝑑).
– 𝐶𝑢 (𝐶𝑑): The counting vector of 𝜃𝑢 (𝜃𝑑) where the 𝑘-th

element, i.e., 𝐶𝑘
𝑢 (𝐶𝑘

𝑑 ), denotes the times that 𝑘 has been
selected as the value of 𝜃𝑢 (𝜃𝑑).

– 𝑆𝑢 (𝑆𝑑): The surplus vector of 𝜃𝑢 (𝜃𝑑) where the 𝑘-th el-
ement, i.e., 𝑆𝑘

𝑢 (𝑆𝑘
𝑑 ), denotes the accumulated throughput

with 𝜃𝑢 = 𝑘 (𝜃𝑑 = 𝑘).
– 𝐷𝑢 (𝐷𝑑): The estimation vector of 𝜃𝑢 (𝜃𝑑) where the
𝑘-th element, i.e., 𝐷𝑘

𝑢 (𝐷𝑘
𝑑), is calculated by 𝐷𝑘

𝑢 =
𝑆𝑘
𝑢

𝐶𝑘
𝑢

(𝐷𝑘
𝑑 =

𝑆𝑘
𝑑

𝐶𝑘
𝑑

).
– 𝑅: The resolution parameter which is a positive integer

and is tunable by the station.
– 𝛿𝑢 (𝛿𝑑): The stepsize parameter of 𝜃𝑢 (𝜃𝑑) and is given

by 𝛿𝑢 = 1
𝑚𝑢×𝑅 (𝛿𝑑 = 1

𝑚𝑑×𝑅 ).
– 𝜑𝑢 (𝜑𝑑): The perturbation vector of 𝜃𝑢 (𝜃𝑑) where the 𝑘-

th element, i.e., 𝜑𝑘
𝑢 (𝜑𝑘

𝑑), is a zero mean random variable
which is uniformly distributed in [− 𝜌

𝐶𝑘
𝑢(𝐶

𝑘
𝑑
)
,+ 𝜌

𝐶𝑘
𝑢(𝐶

𝑘
𝑑
)
]+1
−1

where 𝜌 is a system parameter and is controllable
by the station. The notation of [𝑎, 𝑏]𝑥𝑦 represents
[max(𝑎, 𝑦),min(𝑏, 𝑥)].

– 𝑍𝑢 (𝑍𝑑): The comparison vector of 𝜃𝑢 (𝜃𝑑) where the
𝑘-th element, i.e., 𝑍𝑘

𝑢 (𝑍𝑘
𝑑 ), is given by 𝑍𝑘

𝑢 = 𝐷𝑘
𝑢 + 𝜑𝑘

𝑢

(𝑍𝑘
𝑑 = 𝐷𝑘

𝑑 + 𝜑𝑘
𝑑).

– 𝐵: The predefined convergence threshold, e.g., 1, which
is determined by the station.

– 𝐽 : A running parameter which records the updated
maximum achieved throughput during one time period.

3Note that with a slight abuse of notation, we use 𝑗 to denote the 𝑗-th time
duration.

4We present the analogous definitions in the parenthesis.
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At time 𝑡0:

Initialization:

- The station sets 𝑃𝑢 = [𝑝1, ⋅ ⋅ ⋅ , 𝑝𝑖, ⋅ ⋅ ⋅ , 𝑝𝑚𝑢 ] where
𝑝𝑖 = 1

𝑚𝑢
for all 1 ≤ 𝑖 ≤ 𝑚𝑢. Similarly, 𝑃𝑑 is

given by [𝑝1, ⋅ ⋅ ⋅ , 𝑝𝑖, ⋅ ⋅ ⋅ , 𝑝𝑚𝑑
] where 𝑝𝑖 = 1

𝑚𝑑
for all

1 ≤ 𝑖 ≤ 𝑚𝑑.
- Initializes 𝐶𝑢, 𝐶𝑑, 𝑆𝑢, 𝑆𝑑, 𝐷𝑢 and 𝐷𝑑 to zeros.
- Randomly selects the values of 𝜃𝑢(1) and 𝜃𝑑(1), say
𝑚,𝑛, according to 𝑃𝑢(1) and 𝑃𝑑(1).

- Transmits with 𝜃𝑢 = 𝑚 and 𝜃𝑑 = 𝑛 until 𝑇 (1) ends, i.e.,
a data rate change is triggered.

- Records the average throughput within 𝑇 (1) as 𝐽 .

At time 𝑡𝑗(𝑗 ≥ 1):

Do:

- Records the average throughput during 𝑇𝑗 as 𝑂(𝑗). If
𝑂(𝑗) > 𝐽 , sets 𝐽 = 𝑂(𝑗) and remains 𝐽 unchanged
otherwise.

- Updates the𝑚-th element in the surplus vector 𝑆𝑢 and the
𝑛-th element in 𝑆𝑑 by adding the measured normalized
throughput of the last time period, as 𝑆𝑚

𝑢 = 𝑆𝑚
𝑢 + 𝑂(𝑗)

𝐽

and 𝑆𝑛
𝑑 = 𝑆𝑛

𝑑 + 𝑂(𝑗)
𝐽 .

- Updates the counting vectors by adding one to the 𝑚-
th counter in 𝐶𝑢 and the 𝑛-th counter in 𝐶𝑑, as 𝐶𝑚

𝑢 =
𝐶𝑚

𝑢 + 1 and 𝐶𝑛
𝑑 = 𝐶𝑛

𝑑 + 1.
- Updates the 𝑚-th element in 𝐷𝑢 and the 𝑛-th element in
𝐷𝑑 by 𝐷𝑚

𝑢 =
𝑆𝑚
𝑢

𝐶𝑚
𝑢

and 𝐷𝑛
𝑑 =

𝑆𝑛
𝑑

𝐶𝑛
𝑑
.

- For every element in 𝑍𝑢 and 𝑍𝑑, updates 𝑍𝑘
𝑢 = 𝐷𝑘

𝑢 +
𝜑𝑘
𝑢, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚𝑢 and 𝑍𝑘

𝑑 = 𝐷𝑘
𝑑+𝜑

𝑘
𝑑, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚𝑑.

- Finds the element in 𝑍𝑢 with the highest5 value of
𝑍𝑘
𝑢, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚𝑢, say, the �̃�-th element in 𝒜𝑢.

- Similarly, finds the element in 𝑍𝑑 which has the highest
𝑍𝑘
𝑑 , 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚𝑑, say, the �̃�-th element in 𝒜𝑑.

- Updates the probability vectors of 𝑃𝑢 and 𝑃𝑑 as

𝑃 𝑘
𝑢 = max

(
𝑃 𝑘
𝑢 − 𝛿𝑢, 0

)
if 𝑘 ∕= �̃�, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚𝑢

𝑃 𝑘
𝑢 = 1−

∑
𝑘 ∕=�̃�

𝑃 𝑘
𝑢 if 𝑘 = �̃� (24)

and

𝑃 𝑘
𝑑 = max

(
𝑃 𝑘
𝑑 − 𝛿𝑑, 0

)
if 𝑘 ∕= �̃�, 𝑘 = 1, ⋅ ⋅ ⋅ ,𝑚𝑑

𝑃 𝑘
𝑑 = 1−

∑
𝑘 ∕=�̃�

𝑃 𝑘
𝑑 if 𝑘 = �̃� (25)

where 𝛿𝑢 = 1
𝑚𝑢×𝑅 and 𝛿𝑑 = 1

𝑚𝑑×𝑅 .
- With the updated probability vectors 𝑃𝑢 and 𝑃𝑑, new

values of 𝜃𝑢 and 𝜃𝑑, i.e., 𝜃𝑢(𝑗 + 1) and 𝜃𝑑(𝑗 + 1), are
selected.

– Starts the transmissions in 𝑇 (𝑗 + 1) with 𝜃𝑢(𝑗 + 1) and
𝜃𝑑(𝑗 + 1).

Until:

- max(𝑃𝑢) ≥ 𝐵 and max(𝑃𝑑) ≥ 𝐵 where 𝐵 is the
predefined convergence threshold.

5Note that a tie can be easily broken by a random selection.

End

The proposed threshold optimization algorithm is similar
to the stochastic estimator learning automata proposed in
[36]. The key feature of this genre of learning automata is
the randomness deliberately introduced by 𝜑𝑘

𝑢 and 𝜑𝑘
𝑑 . Note

that although 𝜑𝑘
𝑢 and 𝜑𝑘

𝑑 are zero mean random variables,
their variances are dependent on the values of 𝐶𝑘

𝑢 and 𝐶𝑘
𝑑 ,

respectively. Specifically, the variances approach to zeros with
the increase of the number of times that the corresponding
values of 𝜃𝑢 and 𝜃𝑑 are selected. As a consequence, the
threshold optimization algorithm inclines to more reliable
stochastic estimates and thus possesses a faster convergence
behavior than other learning algorithms [36]. The values that
have been selected less frequently still have the chance of
being considered as optimal. However, the missing probability
diminishes to zero along iterations. In the algorithm, the
resolution parameter 𝑅 controls the stepsize of probability
adjustment in the algorithm. A smaller value of 𝑅 produces
a fine-grained probability adjustment yet unavoidably pro-
longs the convergence time. The convergence threshold 𝐵
determines the stopping criteria of the algorithm. Therefore,
a tradeoff between optimality and convergence rate can be
adjusted by tuning the value of 𝐵.

The steady state behavior of the proposed threshold opti-
mization algorithm is provided in the following theorem.

Theorem 2: The proposed threshold optimization algorithm
is 𝜖-optimal for any stationary channel environment with
arbitrary distribution. Mathematically, for any arbitrarily small
𝜖 > 0 and 𝛾 > 0, there exists a 𝑡′ satisfying

Pr{∣1− 𝑃𝑚∗
𝑢 ∣ < 𝜖} > 1− 𝛾 ∀𝑡 > 𝑡′ (26)

and
Pr{∣1− 𝑃𝑛∗

𝑑 ∣ < 𝜖} > 1− 𝛾 ∀𝑡 > 𝑡′ (27)

where 𝑚∗ and 𝑛∗ are the stochastic optimal values of 𝜃𝑢 and
𝜃𝑑, respectively.

The proof of Theorem 2 follows similar lines as in [36] and
is omitted for brevity. For more discussions on the stochastic
estimator algorithms, refer to [37] and [38]. In the next section,
we will demonstrate the efficacy of our proposed threshold
optimization algorithm via simulations.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed threshold optimization algorithm with simulations. For
comparisons, we first implement the heuristics-based threshold
adjustment algorithms in [2] and [3]. In [2], the downshift
threshold 𝜃𝑑 is fixed to 1 and the default value of 𝜃𝑢 is 10.
After 𝜃𝑢 successful transmissions, a data upshift is triggered
and if the first transmission after the rate upshift is successful,
the algorithm assumes that the link quality is improving
rapidly [2]. Consequently, 𝜃𝑢 is set to a small number, e.g.,
𝜃𝑢 = 3, in order to capture the fast improving channel.
Otherwise, the algorithm assumes that the channel is changing
slowly and thus a larger value of 𝜃𝑢 is desired, e.g., 𝜃𝑢
= 10. We denote this threshold adaptation scheme as DLA
in our simulations. Another well-known threshold adjusting
scheme, namely, AARF, is proposed in [3]. Similarly, the rate
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downshift threshold is fixed to 𝜃𝑑 = 2 empirically. However,
for 𝜃𝑢, a binary exponential backoff scheme is applied. If the
first transmission after a rate upshift failed, the data rate is
switched back to the previous rate and the value of 𝜃𝑢 is
doubled with a maximum value of 50. The value of 𝜃𝑢 is
reset to 10 whenever a rate downshift is triggered.

To simulate the indoor office environment for IEEE 802.11
WLANs, we simulate a Rayleigh fading channel environment.
In other words, we assume a flat fading environment. However,
it could be either a fast fading or slow fading channel. The
Doppler spread (in Hz) corresponds to the channel fading
speed where a large Doppler spread value represents a fast
fading channel and a small Doppler spread indicates a slow-
varying channel. It should be noted that the Doppler spread
value describes the time dispersive nature of the wireless
channel [39], which is inversely proportional to the channel
coherence time. More specifically, we relate the channel
coherence time 𝑇𝑐 and the Doppler spread value 𝑓𝑚 as [39]

𝑇𝑐 =
0.423

𝑓𝑚
. (28)

Therefore, a larger Doppler spread value indicates a small
channel coherence time which represents a fast fading sce-
nario. We conduct the simulations under various channel
fading conditions via different Doppler spread values. We
consider the IEEE 802.11b PHY specification, i.e., the avail-
able data rates are 1 Mbps, 2 Mbps, 5.5 Mbps and 11 Mbps
and the RTS/CTS signalling scheme is turned off. Since the
objective of our proposed threshold optimization algorithm is
to combat with the channel variation, the collision effect is
omitted. Therefore, we consider a WLAN with one station
consistently transmitting packets to the AP. However, note
that [21] provides a complementary solution to mitigate the
collision effect and thus our algorithms can work collectively
as a joint solution. We emphasize that this simplification does
not induce any loss of generality since although seemingly
simple, it produces all the challenging problems involved in
rate adaptation algorithms in a time-varying stochastic channel
environment. The data traffic is generated using constant bit
rate UDP traffic sources and the frame size is set to 1024
octets. The power of the transmitter and the power of thermal
noise are set to 50 mW and 1 mW, respectively. The SNR-
BER relation is given by Table 1 which is derived from [40].

We vary the Doppler spread value to simulate the various
channel fading speeds. For each value of Doppler spread
value, the simulation is executed for 1000 seconds and the
average throughput of the following algorithms6, which are
commonly based on the threshold-based up/down mechanism,
are compared: (1), OP - the optimum throughput attained by
assuming an oracle which foresees the variation of channel
and adapts the data rate optimally. This curve is attained as a
performance comparison benchmark; (2), ARF - the threshold-
based rate adaptation algorithm with 𝜃𝑢 = 10 and 𝜃𝑑 = 2; (3),
DLA - the dynamic threshold adjustment algorithm proposed
in [2]; (4), AARF - the threshold adjustment algorithm pro-

6The performance comparison of ARF and other open-loop rate adaptation
algorithms such as SampleRate and ONOE has been studied extensively in
[5] and [7] for various channel conditions.

TABLE I
SNR V.S. BER FOR IEEE 802.11𝑏 DATA RATES

SNR BPSK QPSK CCK CCK
(dB) (1Mbps) (2Mbps) (5.5 Mbps) (11 Mbps)
1 1.2𝐸−5 5𝐸−3 8𝐸−2 1𝐸−1

2 1𝐸−6 1.2𝐸−3 4𝐸−2 1𝐸−1

3 6𝐸−8 2.1𝐸−4 1.8𝐸−2 1𝐸−1

4 7𝐸−9 3𝐸−5 7𝐸−3 5𝐸−2

5 2.3𝐸−10 2.1𝐸−6 1.2𝐸−3 1.3𝐸−2

6 2.3𝐸−10 1.5𝐸−7 3𝐸−4 5.2𝐸−3

7 2.3𝐸−10 1𝐸−8 6𝐸−5 2𝐸−3

8 2.3𝐸−10 1.2𝐸−9 1.3𝐸−5 7𝐸−4

9 2.3𝐸−10 1.2𝐸−9 2.7𝐸−6 2.1𝐸−4

10 2.3𝐸−10 1.2𝐸−9 5𝐸−7 6𝐸−5
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Fig. 1. Average throughput v.s. Doppler spread values.

posed in [3]; (5), TOA - the threshold optimization algorithm
proposed in this paper. The algorithms are compared with
each other in terms of the average system throughput (in
Mbps). For TOA, without loss of generality, we assume that
𝑚𝑢 = 𝑚𝑑 = 10 and the resolution parameter 𝑅 is 1. The
convergence threshold 𝐵 is 0.999 and 𝜌 is 1. The performance
curves of the aforementioned algorithms are plotted in Fig. 1.

In Fig. 1, we observe that except the OP curve, all other
rate adaptation algorithms suffer from performance degrada-
tions with large Doppler spread values. Recall that a large
Doppler spread value indicates a fast fading channel envi-
ronment and hence the average throughput deteriorates due
to the incompetency of capturing short channel fluctuations.
Among which, ARF and AARF provide worst performance
with a slight difference. DLA performs better due to the
capability of switching between the large value and the small
value of 𝜃𝑢 for different channel conditions. Our proposed
threshold optimization algorithm, as demonstrated in Figure
1, consistently outperforms other open-loop rate adaptation
algorithms and bridges the performance gap with the OP
curve. This superiority becomes remarkably significant in fast
fading stochastic channel environments, i.e., scenarios with
large Doppler spread values. While other algorithms are jeop-

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:00:42 UTC from IEEE Xplore.  Restrictions apply. 



326 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 1, JANUARY 2010

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

10

Number of Transmissions

T
ra

je
ct

o
ri

es
 o

f θ
u
 a

n
d

 θ
d

θ
d

θ
u

Fig. 2. The trajectories of 𝜃𝑢 and 𝜃𝑑 in achieving the stochastic optimum
values.

ardized by the unmature rate changes due to the uncertainty
caused by the random and fast-varying channel environment,
our proposed threshold optimization algorithm, based on the
learning automata techniques, is able to find the stochastic
optimum values of 𝜃𝑢 and 𝜃𝑑 which maximize the expected
system performance. Therefore, our scheme is particularly
suitable for fast changing yet statistically stationary random
channel environments where other open-loop rate adaptation
solutions usually provide unsatisfactory performance.

To illustrate the process of finding the stochastic optimum
values of 𝜃𝑢 and 𝜃𝑑, in Figure 2, we provide the trajectories
of 𝜃𝑢 and 𝜃𝑑 in a sample simulation run with a fixed Doppler
spread value of 10. It is observable that starting from the initial
point, the threshold optimization algorithm adapts the values
of 𝜃𝑢 and 𝜃𝑑 on the fly along with the rate changes. The
algorithm soon finds the stochastic optimum values and 𝜃𝑢
and 𝜃𝑑 converge to the optimum solutions effectively. The
evolutions of the probability vectors, i.e., 𝑃𝑢 and 𝑃𝑑, are
demonstrated in Figure 3 and Figure 4, respectively. Note that,
in Figure 3, the sixth curve which represents the value of 𝑃 6

𝑢

soon excels others and approaches to 1. Correspondingly, the
value of 𝜃𝑢 converges to 6 rapidly as depicted in Figure 2.
In Figure 4, the second curve approaches to unity gradually
while others diminish to zeros. As a consequence, in Figure
2, the value of 𝜃𝑑 converges to the stochastic value, i.e., 2. In
this sample run of simulation, the stochastic optimum values
of 𝜃𝑢 and 𝜃𝑑, which maximizes the expected throughput of
the system, is given by 𝜃𝑢 = 6 and 𝜃𝑑 = 2. The proposed
threshold optimization algorithm finds these values effectively
and efficiently, while providing superior performance than
other non-adaptive threshold-based rate adaptation algorithms,
as demonstrated in Figure 1.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the threshold-based rate adap-
tation algorithm which is predominantly utilized in practical
IEEE 802.11 WLANs. Although widely deployed, the obscure
objective function of this type of rate adaptation algorithms,
commonly based on the heuristic up/down mechanism, is
less comprehended. In this work, we study the threshold-
based rate adaptation algorithm from a reverse engineering
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Fig. 3. Evolution of the probability vector 𝑃𝑢.
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Fig. 4. Evolution of the probability vector 𝑃𝑑.

perspective. The implicit objective function, which the rate
adaptation algorithm is maximizing, is unveiled. Our results
provide, albeit approximate, an analytical model from which
the threshold-based rate adaptation algorithm, such as ARF,
can be better understood.

In addition, we propose a threshold optimization algorithm
which dynamically adapts the up/down thresholds, based on
the learning automata techniques. Our algorithm provably con-
verges to the stochastic optimum solutions of the thresholds
in arbitrary stationary yet potentially fast changing random
channel environment. Therefore, by combining our work with
the threshold adaptation scheme in [21], where the thresholds
are adjusted to mitigate the collision effects, a joint collision
and random channel fading resilient solution can be attained.

In this paper, to emphasize on the impact of random channel
variations, we restrict ourselves to the scenario where all
stations have a fixed and known transmission probability 𝑝.
The interaction of the transmission probabilities and the data
rates seems interesting and needs further investigation. Due to
the competitive nature of channel access, a stochastic game
formulation may be utilized. Moreover, our work assumes a
fixed length 𝐿 for every packet. A natural extension to the
joint threshold and frame size optimization is our on-going
research following [41] and [42].
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