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Minimum Energy Scheduling in
Multi-Hop Wireless Networks with Retransmissions

Yang Song, Chi Zhang, Student Member, IEEE, and Yuguang Fang, Fellow, IEEE

Abstract—MaxWeight algorithm, a.k.a., back-pressure algo-
rithm [1]–[4], has received much attention as a viable solution
for dynamic link scheduling in multi-hop wireless networks. The
basic principle of the MaxWeight algorithm is to select a set of
interference-free links with the maximum overall link weights
in the network, where the link weight is determined by the
queue difference between the transmitter and the receiver. While
the throughput-optimality of the MaxWeight algorithm is well
understood in the literature, the energy consumption induced by
the MaxWeight algorithm is less studied, which is of great interest
in energy-constrained wireless networks such as wireless sensor
networks.

In this paper, we propose a minimum energy scheduling (MES)
algorithm for multi-hop wireless networks with stochastic traffic
arrivals and time-varying channel conditions. We show that our
algorithm is energy optimal in the sense that the proposed MES
algorithm can achieve an energy consumption which is arbitrarily
close to the global minimum solution. Moreover, the energy
efficiency of the MES algorithm is achieved without losing the
throughput-optimality. In other words, the proposed MES algo-
rithm is still throughput optimal whereas the average consumed
energy in the network is significantly reduced, as compared to
the traditional MaxWeight algorithm. The theoretical results are
substantiated via simulations.

Index Terms—Multi-hop wireless networks; performance anal-
ysis; stochastic network optimization; energy efficiency; schedul-
ing algorithms.

I. INTRODUCTION

THERE has been a lot of interest over the past few years
in characterizing the network capacity region as well as

designing efficient scheduling algorithms in multi-hop wireless
networks. Due to the stochastic traffic arrivals and time-
varying channel conditions, supporting high throughput and
high quality communications in multi-hop wireless networks
is inherently challenging. To utilize the scarce wireless band-
width resource effectively, scheduling algorithms which can
dynamically allocate the network resource, i.e., select active
links, are investigated intensively in the community. For ex-
ample, MaxWeight algorithm, a.k.a., back-pressure algorithm,
has been extensively studied in the literature, e.g., [5]–[9],
following the seminal work of [1]. The MaxWeight algorithm
enjoys the merit of self-adaptability due to its online nature.
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In addition, MaxWeight algorithm is known to be throughput
optimal [10]. That is to say, the MaxWeight algorithm can
stabilize the network under arbitrary traffic load that can be
stabilized by any other possible scheduling algorithms. There-
fore, the MaxWeight algorithm attracts significant attention and
becomes an indispensable component for link scheduling in
network protocol designs, e.g., [4], [11], [12].

While the throughput-optimality of the MaxWeight algo-
rithm is well understood, the energy consumption induced by
the MaxWeight algorithm is less studied in the literature. How-
ever, due to the scarcity of energy supplies in wireless nodes, it
is imperative to study the energy consumption of the schedul-
ing algorithm which is of special interest in energy-constrained
wireless networks such as wireless sensor networks. Is the
throughput optimal MaxWeight scheduling algorithm also en-
ergy optimal? In this paper, we show that the answer to this
question is no. The reason is that the vast energy consumptions
during packet retransmissions are completely neglected by
the MaxWeight algorithm. For example, in [13], an energy
optimal control scheme is proposed where a minimum power
expenditure is achieved. However, as in other related works,
e.g., [10], the wireless channels in [13] are assumed to be
error-free, i.e., all the transmissions are assumed to be suc-
cessful. Nevertheless, in practice, wireless channels are error-
prone and data transmissions are subject to random failures
due to the hostile channel conditions. Therefore, before a
packet can be successfully removed from the transmitter’s
queue, several transmissions may have occurred, including
the original attempt and the posterior retransmissions, which
deplete a significant amount of energy for the transmitter.
However, in the traditional MaxWeight algorithm, such energy-
consuming retransmissions induced by channel errors are
overlooked. Intuitively, the possibility that a particular link is
selected for transmissions should rely on not only the queue
difference between the transmitter and the receiver, which is
the design rationale of the traditional MaxWeight algorithm,
but also the potential energy consumptions of retransmissions
induced by erroneous channels. We will make this intuition
precise and rigorous in the following sections.

In this paper, we propose a minimum energy scheduling
(MES) algorithm which consumes an amount of energy that
can be pushed arbitrarily close to the global minimum solu-
tion. In addition, the energy efficiency attained by the MES
algorithm incurs no loss of throughput-optimality. The pro-
posed MES algorithm significantly reduces the overall energy
consumption compared to the traditional MaxWeight algorithm
and remains throughput optimal. Therefore, our proposed
MES algorithm is more favorable for dynamic link scheduling
and network protocol designs in energy-constrained wireless
networks such as wireless sensor networks.
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The rest of this paper is organized as follows. Section II
describes the system model used in this paper. The proposed
MES algorithm is introduced in Section III where the perfor-
mance analysis is provided. Simulation results are shown in
Section IV and Section V concludes this paper.

II. SYSTEM MODEL

We consider a static multi-hop wireless network denoted by
a directed graph (𝒩 ,ℒ) where 𝒩 is the set of nodes and ℒ
denotes the set of links in the network. We use ∣𝑋 ∣ to represent
the cardinality of set 𝑋 . Time is slotted by 𝑡 = 0, 1, 2, ⋅ ⋅ ⋅
and in every time slot, the instantaneous channel state of a
link (𝑎, 𝑏) ∈ ℒ is denoted by 𝑆𝑎,𝑏(𝑡) where 𝑎 and 𝑏 are the
transmitter and the receiver of the link. In this paper, we use
S(𝑡) to denote the channel state vector of the whole network.
Note that S(𝑡) remains constant within one time slot, however,
it is subject to changes on time slot boundaries. We assume
that S(𝑡) has a finite but potentially large number of possible
values and evolves following an irreducible Markovian chain
with well defined steady state distributions. Nevertheless, the
steady state distribution and the transition probabilities are
unknown to the network. Given an instantaneous channel state
𝑆𝑎,𝑏(𝑡), the transmission of a packet on link (𝑎, 𝑏) is successful
with a probability of 𝑝𝑎,𝑏(𝑡), if link (𝑎, 𝑏) is active and suffers
no interference from concurrent transmissions. From the net-
work’s perspective, at each time slot 𝑡, an interference-free link
schedule, denoted by 𝐼(𝑡), is selected from a feasible set Ω(𝑡),
which is constrained by the underlying interference model,
e.g.,𝐾-hop interference model [3], as well as other limitations
such as duplex constraints and peak power limitations. Denote
𝑢𝑎,𝑏(𝑡) as the nominal link rate if link (𝑎, 𝑏) is selected by
the network and the channel is error-free, i.e., 𝑝𝑎,𝑏(𝑡) = 1.
The actual data rate of link (𝑎, 𝑏) is hence represented by
𝑢𝑎,𝑏(𝑡) = 𝑢𝑎,𝑏(𝑡)𝑝𝑎,𝑏(𝑡). We assume that 𝑢𝑎,𝑏(𝑡) is upper
bounded by a constant 𝑢max for all (𝑎, 𝑏) ∈ ℒ. In practice,
𝑢max can be determined by the number of antennas equipped
in a single node as well as the coding/modulation schemes
available to the network. We denote u(𝑡) as the link rate vector
of the network at time 𝑡. Apparently, u(𝑡) is a function of both
𝐼(𝑡) and S(𝑡).

The network consists of ∣ℱ∣ flows indexed by 𝑓 =
1, 2, ⋅ ⋅ ⋅ , ∣ℱ∣. Each flow 𝑓 is associated with a routing path
𝑅𝑓 = [𝑛𝑓0 , 𝑛

𝑓
1 , ⋅ ⋅ ⋅ , 𝑛𝑓𝜄𝑓 ] where 𝑛𝑓𝑗 , 𝑗 = 0, ⋅ ⋅ ⋅ , 𝜄𝑓 denotes the

nodes on the path of flow 𝑓 . At each time slot 𝑡, the stochastic
exogenous arrivals of flow 𝑓 , i.e., the number of new packets
that are initiated by node 𝑛𝑓0 , is denoted by 𝐴𝑓 (𝑡). For the
ease of exposition, we assume that 𝐴𝑓 (𝑡) is i.i.d. for every
time slot with an average rate of 𝜆𝑓 . In addition, the arrival
processes of all flows are assumed to be independent. We
further assume that the maximum number of new packets
generated by a flow during one time slot is upper bounded, i.e.,
𝐴𝑓 (𝑡) ≤ 𝐴max, ∀𝑓, 𝑡. We emphasize that the i.i.d. assumption
incurs no loss of generality and our model can be extended
to cases where 𝐴𝑓 (𝑡) is non-stationary in a straightforward
fashion, as in [5].

Every node in the network maintains a separate queue
for each flow that passes through it. Denote 𝑄𝑓

𝑛(𝑡) as the
queue backlog at time 𝑡, for node 𝑛, where 𝑓 is one of the

flows that traverses through 𝑛, i.e., 𝑛 ∈ 𝑅𝑓 . We assume that
𝑄𝑓

𝑛(𝑡) = 0, ∀𝑡 if 𝑛 = 𝑛𝑓𝜄𝑓 . That is to say, if a packet reaches
the destination, we consider the packet as leaving the network
immediately. Define the overflow function of 𝑄𝑓

𝑛 as

𝑂(𝑀) = lim sup
𝑡→∞

1

𝑡

𝑡−1∑
𝜏=0

Pr(𝑄𝑓
𝑛(𝜏) > 𝑀). (1)

The queue is stable if [5]

lim
𝑀→∞

𝑂(𝑀) → 0 (2)

and the network is stable if all individual queues are stable
concurrently.

For notation brevity, we define the network admission rate
vector as 𝜆𝜆𝜆 = {𝜆𝑛,𝑓 , ∀𝑛, 𝑓} where 𝜆𝑛,𝑓 is the average
exogenous arrival rate of flow 𝑓 on queue1 𝑄𝑓

𝑛. We have
𝜆𝑛,𝑓 = 𝜆𝑓 if 𝑛 = 𝑛𝑓0 and 𝜆𝑛,𝑓 = 0 otherwise. Denote Λ as
the network capacity region [1], namely, the set of all feasible
admission rate vectors, i.e., 𝜆𝜆𝜆, that the network can support,
in the sense that there exists a scheduling algorithm which
stabilizes the network under traffic load 𝜆𝜆𝜆. It is shown in [1]
and [5] that Λ is convex, closed and bounded.

Without loss of generality, we consider an energy consump-
tion model as follows. Recall that the successful transmission
probability of link (𝑎, 𝑏) is 𝑝𝑎,𝑏(𝑡). Therefore, for a particular
packet to be transmitted from 𝑎 to 𝑏, on average, a number
of 1

𝑝𝑎,𝑏(𝑡)
transmissions are needed in order to “erase" this

packet from the queue of node 𝑎. From the transmitter’s
perspective, however, every transmission, either the original
attempt or retransmissions, costs the same amount of energy.
Denote 𝛼𝑎,𝑏 as the energy needed to transmit a packet on link
(𝑎, 𝑏). For example, 𝛼𝑎,𝑏 can be proportional to the distance
between node 𝑎 and 𝑏. Therefore, in order to transmit a
packet successfully on (𝑎, 𝑏), node 𝑎 needs to spend a total
energy of 𝛼𝑎,𝑏

𝑝𝑎,𝑏(𝑡)
on average. For the receiver 𝑏, we assume

that the energy depletion on successful packets receptions are
dominant, i.e., the energy spent for overhearing and short
ACK messages are neglected. Denote 𝛽𝑎,𝑏 as the energy
consumed for a successful packet reception in demodulation
and decoding on node 𝑏. With a data rate2 of 𝑢𝑎,𝑏(𝑡) on link
(𝑎, 𝑏), the overall energy spent during time slot 𝑡 is given by

𝐺𝑎,𝑏(𝑡) = 𝑢𝑎,𝑏(𝑡)

(
𝛼𝑎,𝑏
𝑝𝑎,𝑏(𝑡)

+ 𝛽𝑎,𝑏

)
= 𝑢𝑎,𝑏(𝑡) (𝛼𝑎,𝑏 + 𝛽𝑎,𝑏𝑝𝑎,𝑏(𝑡)) . (3)

Note that due to the stochastic nature of wireless channels,
𝐺𝑎,𝑏 is a random variable. We stress that the simple energy
consumption model above is not essential and our analysis can
be extended to other more complex forms of energy models
straightforwardly, as will be shown in the next section.

In addition, we assume that the energy consumption of the
whole network during one single time slot is upper bounded,
i.e., ∑

(𝑎,𝑏)∈ℒ
𝐺𝑎,𝑏(𝑡) ≤ 𝐺max, ∀𝑡. (4)

1Note that with a slight abuse of notation, we use 𝑄𝑓
𝑛 to denote both the

queue itself and the number of packets in the queue.
2The unit of data rate in this paper is defined as packets/slot. It is worth

noting that other units such as bits/slot are also applicable.
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Therefore, to minimize the energy consumption, the
objective of the network is to find a scheduling algorithm
which solves

Minimum Energy Scheduling Problem:

minimize 𝐶 = lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝐺(𝑡) (5)

s.t.
the network remains stable, and

𝐺(𝑡) = 𝐸

⎛⎝ ∑
(𝑎,𝑏)∈ℒ

ℎ𝑎,𝑏(𝑡)

(
𝛼𝑎,𝑏
𝑝𝑎,𝑏(𝑡)

+ 𝛽𝑎,𝑏

)⎞⎠ (6)

is the expected overall network energy consumption during
time slot 𝑡, with respect to the randomness of arrival processes
and channel variations. Note that ℎ𝑎,𝑏(𝑡) is the actual number
of successfully transmitted packets on link (𝑎, 𝑏) during time
slot 𝑡 and3 ℎ𝑎,𝑏(𝑡) ≤ 𝑢𝑎,𝑏(𝑡).

In the next section, we will propose a minimum energy
scheduling (MES) algorithm which minimizes the average
network energy consumption asymptotically subject to net-
work stability. In addition, the proposed MES algorithm is
throughput optimal, in the sense that the MES algorithm can
ensure the network stability for all feasible network admission
rate vectors in the network capacity region. Restated, the set
of feasible arrival rates supported by the MES algorithm is the
superset of all other possible scheduling algorithms, including
those with a priori knowledge on the futuristic arrivals and
channel conditions.

III. MINIMUM ENERGY SCHEDULING ALGORITHM

A. Algorithm Description

The minimum energy scheduling (MES) algorithm is given
as follows.

MES ALGORITHM:

At every time slot 𝑡:

∙ Every link (𝑎, 𝑏) ∈ ℒ finds the flow 𝑓∗ which maximizes

max
𝑓 :(𝑎,𝑏)∈𝑅𝑓

(
2𝑄𝑓

𝑎(𝑡)−
𝐾𝛼𝑎,𝑏
𝑝𝑎,𝑏(𝑡)

− 2𝑄𝑓
𝑏 (𝑡)−𝐾𝛽𝑎,𝑏

)
(7)

where 𝐾 is a positive constant which is tunable as a
system parameter.

∙ Every link (𝑎, 𝑏) ∈ ℒ calculates the link weight as

𝐻𝑎,𝑏(𝑡) =

[
2𝑄𝑓∗

𝑎 (𝑡)− 𝐾𝛼𝑎,𝑏
𝑝𝑎,𝑏(𝑡)

− 2𝑄𝑓∗
𝑏 (𝑡)−𝐾𝛽𝑎,𝑏

]+
(8)

where [𝑥]+ denotes max(𝑥, 0).
∙ For the network, a link schedule 𝐼∗(𝑡) is selected which

solves
max

𝐼(𝑡)∈Ω(𝑡)

∑
(𝑎,𝑏)∈ℒ

𝑢𝑎,𝑏(𝑡)𝐻𝑎,𝑏(𝑡) (9)

3The inequality holds when node 𝑎 has less packets to transmit than the
allocated data rate 𝑢𝑎,𝑏(𝑡).

END

Remark 1: Note that the proposed MES algorithm is dif-
ferent from the MaxWeight algorithm proposed in [1], [2]. In
the original MaxWeight algorithm, the weight of a particular
link (𝑎, 𝑏) is the queue difference between node 𝑎 and 𝑏.
However, in the MES algorithm, as indicated by (8), the link
weight 𝐻𝑎,𝑏(𝑡) is related to the potential energy consumptions
on this link under the current channel condition as well.
More specifically, the link weight in the MES algorithm is
the queue difference subtracted by a weighted energy con-
sumption factor, i.e., 𝐾

(
𝛼𝑎,𝑏

𝑝𝑎,𝑏(𝑡)
+ 𝛽𝑎,𝑏

)
, where 𝐾 represents

the weight. Intuitively, if the current channel is unfavorable,
i.e., 𝑝𝑎,𝑏(𝑡) is small, the energy required for a successful
transmission is remarkably large due to the retransmissions
and thus the link should be selected less likely. Therefore,
the link weight in the MES algorithm, i.e., 𝐻𝑎,𝑏(𝑡), can be
viewed as a balance between the queue difference and the
energy consumptions under the current channel condition.
More specifically, in the original MaxWeight algorithm, if a
link has a larger queue difference, the link is more likely to be
selected for transmissions. However, in the MES algorithm,
both the queue difference and the energy expenditure are
taken into consideration. In addition, as indicated by (7), by
replacing 𝐾

(
𝛼𝑎,𝑏

𝑝𝑎,𝑏(𝑡)
+ 𝛽𝑎,𝑏

)
with other metrics, our MES

algorithm can incorporate other forms of energy consumption
models straightforwardly.

Remark 2: Observe that if 𝐾 = 0, the MES algorithm
reduces to the original MaxWeight algorithm, i.e., the energy
consumptions during retransmissions are omitted. Therefore,
the MaxWeight algorithm is a special case of our MES
algorithm. Therefore, 𝐾 denotes a weight to which the energy
expenditure is biased towards by the scheduling algorithm.
Apparently, the original MaxWeight algorithm completely ne-
glects the energy consumption, i.e.,𝐾 = 0. On the other hand,
if we let 𝐾 → ∞, the performance of the MES algorithm can
be pushed arbitrarily close to the global minimum solution,
as will be shown analytically in Section III-C. However, as
illustrated in (7) and (8), when 𝐾 increases, the network
becomes more reluctant to transmissions, for the sake of
energy conservation, unless the accumulated queue backlogs
are significantly large. Intuitively, a larger average queue
size induces a longer experienced delay for transmissions.
Therefore, the system parameter 𝐾 is essentially a control
knob which provides a tradeoff between the energy-optimality
and the experienced delay in the network.

Remark 3: Note that similar to the traditional MaxWeight
algorithm, the calculation in (9) is centralized. However,
following [1], much progress has been made in easing the
computational complexity and deriving decentralized solutions
for the centralized MaxWeight algorithm, e.g., [3], [4], [7],
[9], [12], [14]–[21]. We note that, although distributed imple-
mentation is not the focus of this paper, our proposed MES
algorithm can be approximated well by the solutions suggested
in the above papers.
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B. Throughput-optimality

We first show that the proposed MES algorithm is through-
put optimal, as given in the following theorem.

Theorem 1: The proposed MES algorithm is throughput
optimal, i.e., for an arbitrary network admission rate vector
𝜆𝜆𝜆 which is inside of the network capacity region Λ, MES
stabilizes the network under 𝜆𝜆𝜆.

Proof: We first provide the queue updating equation of
𝑄𝑓

𝑛. Note that a packet is removed from the transmitter’s
queue if and only if it is received by the receiver successfully.
Therefore, the queue updating dynamic is given by

𝑄𝑓
𝑛(𝑡+ 1) ≤ [𝑄𝑓

𝑛(𝑡)− 𝑢𝑜𝑢𝑡𝑛,𝑓 (𝑡)]
+ + 𝑢𝑖𝑛𝑛,𝑓(𝑡) +𝐴𝑛,𝑓 (𝑡) (10)

where 𝑢𝑜𝑢𝑡𝑛,𝑓(𝑡) and 𝑢𝑖𝑛𝑛,𝑓(𝑡) are the allocated data rate on the
outgoing link and the incoming link of node 𝑛, with respect to
flow 𝑓 . Note that 𝑢𝑜𝑢𝑡𝑛,𝑓(𝑡) = 𝑢

𝑜𝑢𝑡
𝑛,𝑓(𝑡)𝑝

𝑜𝑢𝑡
𝑛,𝑐 (𝑡) and 𝑝𝑜𝑢𝑡𝑛,𝑐 (𝑡) is the

current successful transmission probability on this link. Note
that 𝑢𝑜𝑢𝑡𝑛,𝑓(𝑡) = 0, ∀𝑡 if node 𝑛 is the destination node of flow
𝑓 and 𝑢𝑖𝑛𝑛,𝑓(𝑡) = 0, ∀𝑡 if node 𝑛 is the source node of flow 𝑓 .
Furthermore, 𝐴𝑛,𝑓 (𝑡) = 𝐴𝑓 (𝑡) if 𝑛 is the source node of flow
𝑓 and 𝐴𝑛,𝑓 (𝑡) = 0 otherwise.

From (10), we have

(𝑄𝑓
𝑛(𝑡+ 1))2 − (𝑄𝑓

𝑛(𝑡))
2 ≤ ((𝑢max)2 + (𝑢max + 𝐴max)2

)
−2𝑄𝑓

𝑛(𝑡)
(
𝑢𝑜𝑢𝑡
𝑛,𝑓 (𝑡)− 𝑢𝑖𝑛

𝑛,𝑓 (𝑡)− 𝐴𝑛,𝑓 (𝑡)
)
. (11)

Next, we sum (11) over the whole network on all data queues
and obtain∑

𝑛,𝑓

(𝑄𝑓
𝑛(𝑡+ 1))2 −

∑
𝑛,𝑓

(𝑄𝑓
𝑛(𝑡))

2

≤ 𝐵 − 2
∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)

(
𝑢𝑜𝑢𝑡𝑛,𝑓 (𝑡)− 𝑢𝑖𝑛𝑛,𝑓(𝑡)−𝐴𝑛,𝑓 (𝑡)

)
(12)

where

𝐵 = ∣𝒩 ∣∣ℱ∣ ((𝑢max)2 + (𝑢max +𝐴max)2
)

(13)

is a constant.
Denote 𝑄𝑄𝑄(𝑡) = {𝑄𝑓

𝑛(𝑡), ∀𝑓, 𝑛} as the instantaneous queue
backlogs in the network. We take the conditional expectation
with respect to 𝑄𝑄𝑄(𝑡) on (12) and have

𝐸

⎛
⎝∑

𝑛,𝑓

(𝑄𝑓
𝑛(𝑡+ 1))2∣𝑄𝑄𝑄(𝑡)

⎞
⎠− 𝐸

⎛
⎝∑

𝑛,𝑓

(𝑄𝑓
𝑛(𝑡))

2∣𝑄𝑄𝑄(𝑡)

⎞
⎠

≤ 𝐵 − 2
∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)𝐸

(
𝑢𝑜𝑢𝑡
𝑛,𝑓 (𝑡)− 𝑢𝑖𝑛

𝑛,𝑓 (𝑡)− 𝐴𝑛,𝑓 (𝑡)∣𝑄𝑄𝑄(𝑡)
)
.

Define

𝐺𝑀𝐸𝑆
𝑄 (𝑡) = 𝐸

⎛
⎝∑

𝑛,𝑓

(
ℎ𝑜𝑢𝑡
𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡
𝑛,𝑓

𝑝𝑜𝑢𝑡𝑛,𝑓 (𝑡)
+ ℎ𝑖𝑛

𝑛,𝑓 (𝑡)𝛽
𝑖𝑛
𝑛,𝑓

)
∣𝑄𝑄𝑄(𝑡)

⎞
⎠

where 𝛼𝑜𝑢𝑡𝑛,𝑓 (𝛽𝑖𝑛𝑛,𝑓 ) denotes the energy needed for a packet
transmission (reception) on the outgoing (incoming) link of
node 𝑛, with respect to flow 𝑓 .

In addition, we define

𝐺𝑀𝐸𝑆(𝑡) = 𝐸

⎛⎝∑
𝑛,𝑓

(
ℎ𝑜𝑢𝑡𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡𝑛,𝑓

𝑝𝑜𝑢𝑡𝑛,𝑓(𝑡)
+ ℎ𝑖𝑛𝑛,𝑓 (𝑡)𝛽

𝑖𝑛
𝑛,𝑓

)⎞⎠

as the expected network-wide energy consumption during time
slot 𝑡, by following the proposed MES algorithm. Apparently,
we have

𝐸
(
𝐺𝑀𝐸𝑆

𝑄 (𝑡)
)
= 𝐺𝑀𝐸𝑆(𝑡).

Next, we add both sides by 𝐾𝐺𝑀𝐸𝑆
𝑄 (𝑡) where 𝐾 is a

positive constant, and have

𝐸

⎛
⎝∑

𝑛,𝑓

(𝑄𝑓
𝑛(𝑡+ 1))2∣𝑄𝑄𝑄(𝑡)

⎞
⎠− 𝐸

⎛
⎝∑

𝑛,𝑓

(𝑄𝑓
𝑛(𝑡))

2∣𝑄𝑄𝑄(𝑡)

⎞
⎠

+𝐾𝐺𝑀𝐸𝑆
𝑄 (𝑡)

≤ 𝐵 − 2
∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)𝐸

(
𝑢𝑜𝑢𝑡
𝑛,𝑓 (𝑡)− 𝑢𝑖𝑛

𝑛,𝑓 (𝑡)−𝐴𝑛,𝑓 (𝑡)∣𝑄𝑄𝑄(𝑡)
)

+𝐾𝐺𝑀𝐸𝑆
𝑄 (𝑡)

≤ 𝐵 − 2
∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)𝐸

(
𝑢𝑜𝑢𝑡
𝑛,𝑓 (𝑡)− 𝑢𝑖𝑛

𝑛,𝑓 (𝑡)−𝐴𝑛,𝑓 (𝑡)∣𝑄𝑄𝑄(𝑡)
)

+𝐾𝐸

⎛
⎝∑

𝑛,𝑓

(
𝑢𝑜𝑢𝑡
𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡
𝑛,𝑓

𝑝𝑜𝑢𝑡𝑛,𝑓 (𝑡)
+ 𝑢𝑖𝑛

𝑛,𝑓 (𝑡)𝛽
𝑖𝑛
𝑛,𝑓

)
∣𝑄𝑄𝑄(𝑡)

⎞
⎠ . (14)

Denote the R.H.S. of (14) as Θ. It is of great importance
to observe that, from the algorithm description of the MES
algorithm above, at every time slot 𝑡, the MES algorithm
essentially minimizes the R.H.S. of (14) over all possible
scheduling algorithms.

Since 𝜆𝜆𝜆 lies in the interior of the network capacity region
Λ, it immediately follows that there exists a small positive
constant 𝜖 > 0 such that

𝜆𝜆𝜆+ 𝜖𝜖𝜖 = {(𝜆1,1 + 𝜖), ⋅ ⋅ ⋅ , (𝜆𝑛,𝑓 + 𝜖), ⋅ ⋅ ⋅ } ∈ Λ. (15)

By invoking Corollary 3.9 in [10], we claim that there ex-
ists a randomized scheduling policy, denoted by 𝑅𝐴, which
stabilizes the network while providing a data rate of

𝐸
(
𝑢𝑜𝑢𝑡𝑛,𝑓 (𝑡)− 𝑢𝑖𝑛𝑛,𝑓(𝑡)∣𝑄𝑄𝑄(𝑡)

)
= 𝜆𝑛,𝑓 + 𝜖, ∀𝑡 (16)

where 𝑢𝑜𝑢𝑡𝑛,𝑐 (𝑡), 𝑢𝑖𝑛𝑛,𝑐(𝑡) are the link data rates induced by the
randomized policy 𝑅𝐴. Therefore, we have

Θ𝑅𝐴 = 𝐵 − 2𝜖
∑

𝑛,𝑓 𝑄
𝑓
𝑛(𝑡)

+𝐾𝐸
(∑

𝑛,𝑓

(
𝑢𝑜𝑢𝑡𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡
𝑛,𝑓

𝑝𝑜𝑢𝑡
𝑛,𝑓 (𝑡)

+ 𝑢𝑖𝑛𝑛,𝑓(𝑡)𝛽
𝑖𝑛
𝑛,𝑓

)
∣𝑄𝑄𝑄(𝑡)

)
.(17)

Note that the last term in (17) is the actual energy consumption
by 𝑅𝐴 algorithm during time slot 𝑡. Following (4), we have

Θ𝑅𝐴 ≤ 𝐵 − 2𝜖
∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡) +𝐾𝐺

max. (18)

In light of (14), we have

𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(𝑡+ 1))2∣𝑄𝑄𝑄(𝑡)

)
− 𝐸

(∑
𝑛,𝑓 (𝑄

𝑓
𝑛(𝑡))

2∣𝑄𝑄𝑄(𝑡)
)

+𝐾𝐺𝑀𝐸𝑆
𝑄 (𝑡) ≤ Θ𝑀𝐸𝑆 ≤ Θ𝑅𝐴

≤ 𝐵 − 2𝜖
∑

𝑛,𝑓 𝑄𝑓
𝑛(𝑡) +𝐾𝐺max. (19)

Next, we take the expectation with respect to 𝑄𝑄𝑄(𝑡) on (19)
and have

𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(𝑡+ 1))2

)
− 𝐸

(∑
𝑛,𝑓(𝑄

𝑓
𝑛(𝑡))

2
)

+𝐾𝐺𝑀𝐸𝑆(𝑡) ≤ 𝐵 − 2𝜖𝐸
(∑

𝑛,𝑓 𝑄
𝑓
𝑛(𝑡)

)
+𝐾𝐺max.(20)

Authorized licensed use limited to: University of Florida. Downloaded on May 07,2010 at 22:32:49 UTC from IEEE Xplore.  Restrictions apply. 



352 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 1, JANUARY 2010

Note that the above inequality holds for any time slot 𝑡. Hence,
we sum over from time slot 0 to 𝑇 − 1 and obtain

𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(𝑇 ))

2
)
− 𝐸

(∑
𝑛,𝑓 (𝑄

𝑓
𝑛(0))

2
)

+𝐾
∑𝑇−1

𝑡=0 𝐺
𝑀𝐸𝑆(𝑡)

≤ 𝑇𝐵 − 2𝜖
∑𝑇−1

𝑡=0

∑
𝑛,𝑓 𝐸

(
𝑄𝑓

𝑛(𝑡)
)
+ 𝑇𝐾𝐺max. (21)

Next, we rearrange terms and divide (21) by 𝑇 and have

2𝜖
1

𝑇

𝑇−1∑
𝑡=0

∑
𝑛,𝑓

𝐸
(
𝑄𝑓

𝑛(𝑡)
)

≤ 𝐵 +𝐾𝐺max +
𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(0))

2
)

𝑇

−𝐾 1

𝑇

𝑇−1∑
𝑡=0

𝐺𝑀𝐸𝑆(𝑡)−
𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(𝑇 ))

2
)

𝑇
. (22)

Note that the last two terms of (22) are both non-positive. By
taking lim sup𝑇→∞ on both sides of (22), we attain

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

∑
𝑛,𝑓

𝐸
(
𝑄𝑓

𝑛(𝑡)
) ≤ 𝐵 +𝐾𝐺max

2𝜖
<∞. (23)

Therefore, for every individual queue 𝑄𝑓
𝑛, we have

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝐸
(
𝑄𝑓

𝑛(𝑡)
) ≤ 𝐵 +𝐾𝐺max

2𝜖
<∞. (24)

Finally, by invoking Markov inequality, we have

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

Pr
(
𝑄𝑓

𝑛(𝑡) > 𝑀
)
<
𝐵 +𝐾𝐺max

2𝜖𝑀
. (25)

Therefore, by taking lim𝑀→∞, we obtain the stability result
of the MES algorithm and thus completes the proof.

C. Asymptotic Energy-optimality

In this section, we show that the MES algorithm yields
an asymptotic optimal solution to (5), i.e., the average energy
consumption induced by the MES algorithm can be arbitrarily
close to the global minimum solution of (5), by selecting a
sufficiently large value of 𝐾 .

Theorem 2: Define 𝐶𝑀𝐸𝑆 and 𝐶∗ as the average energy
consumption induced by the MES algorithm and the optimal
(minimum) solution of (5), respectively. The performance of
the MES algorithm is given by

𝐶𝑀𝐸𝑆 ≤ 𝐶∗ +
𝐵

𝐾
(26)

where 𝐵 is defined in (13). Therefore, by choosing 𝐾 →
∞, the performance of the MES algorithm can be pushed
arbitrarily close to the optimum solution 𝐶∗.

Proof: First, denote the optimal sequence of link
rates, which generates the optimum solution 𝐶∗, as
𝑢𝑢𝑢∗(0),𝑢𝑢𝑢∗(1), ⋅ ⋅ ⋅ ,𝑢𝑢𝑢∗(𝑡), ⋅ ⋅ ⋅ . Next, let us consider a deter-
ministic policy, denoted by 𝐷𝐸, which allocates exactly the
optimum link data rates on every time slot 𝑡. Similar to (19),
we have

𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(𝑡+ 1))2∣𝑄𝑄𝑄(𝑡)

)
− 𝐸

(∑
𝑛,𝑓 (𝑄

𝑓
𝑛(𝑡))

2∣𝑄𝑄𝑄(𝑡)
)

+𝐾𝐺𝑀𝐸𝑆
𝑄 (𝑡) ≤ Θ𝑀𝐸𝑆 ≤ Θ𝐷𝐸 (27)

where (28).

It is worth noting in (28), only the data rates are replaced
by the ones generated by the 𝐷𝐸 algorithm whereas all other
values remain the same. Note that in this case, the optimal
data rates 𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡) and 𝑢∗𝑖𝑛𝑛,𝑓(𝑡) are known as a priori by the
𝐷𝐸 algorithm and thus are constants with respect to 𝑄𝑓

𝑛(𝑡).

We take the expectation on both sides of (27) and have

𝐸

⎛⎝∑
𝑛,𝑓

(𝑄𝑓
𝑛(𝑡+ 1))2

⎞⎠− 𝐸
⎛⎝∑

𝑛,𝑓

(𝑄𝑓
𝑛(𝑡))

2

⎞⎠
+𝐾𝐺𝑀𝐸𝑆(𝑡) ≤ 𝐵

−2𝐸

⎛⎝∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)𝐸

(
𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)− 𝑢∗𝑖𝑛𝑛,𝑓(𝑡)− 𝜆𝑛,𝑓 ∣𝑄𝑄𝑄(𝑡)

)⎞⎠
+𝐾𝐸

⎛⎝∑
𝑛,𝑓

(
𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡𝑛,𝑓

𝑝𝑜𝑢𝑡𝑛,𝑓(𝑡)
+ 𝑢∗𝑖𝑛𝑛,𝑓(𝑡)𝛽

𝑖𝑛
𝑛,𝑓

)⎞⎠ . (29)

We emphasize that, however, in this scenario, at arbitrary time
slot 𝑡, the value of

𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)− 𝑢∗𝑖𝑛𝑛,𝑓(𝑡)− 𝜆𝑛,𝑓 (30)

could be either non-positive or nonnegative. In other words,
the relationship of (16) does not hold. To circumvent this, we
first sum (29) over time slots 𝑡 = 0, ⋅ ⋅ ⋅ , 𝑇 − 1 and divide it
by 𝑇 . Thus, we attain

𝐾
1

𝑇

𝑇−1∑
𝑡=0

𝐺𝑀𝐸𝑆(𝑡) ≤ 𝐵

+𝐾
1

𝑇

𝑇−1∑
𝑡=0

𝐸

⎛⎝∑
𝑛,𝑓

(
𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡𝑛,𝑓

𝑝𝑜𝑢𝑡𝑛,𝑓(𝑡)
+ 𝑢∗𝑖𝑛𝑛,𝑓(𝑡)𝛽

𝑖𝑛
𝑛,𝑓

)⎞⎠
+
𝐸
(∑

𝑛,𝑓 (𝑄
𝑓
𝑛(0))

2
)

𝑇
− 2

1

𝑇

𝑇−1∑
𝑡=0

Ξ(𝑡)

where

Ξ(𝑡) = 𝐸

⎛⎝∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)𝐸

(
𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)− 𝑢∗𝑖𝑛𝑛,𝑓 (𝑡)− 𝜆𝑛,𝑓 ∣𝑄𝑄𝑄(𝑡)

)⎞⎠ .
(31)

By taking lim sup𝑇→∞, we have

𝐾 lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝐺𝑀𝐸𝑆(𝑡) ≤ 𝐵 +𝐾𝐶∗

−2 lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

Ξ(𝑡). (32)

Note that
lim(𝐴𝐵) = lim(𝐴) lim(𝐵) (33)
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Θ𝐷𝐸 = 𝐵 − 2
∑
𝑛,𝑓

𝑄𝑓
𝑛(𝑡)𝐸

(
𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)− 𝑢∗𝑖𝑛𝑛,𝑓(𝑡)−𝐴𝑛,𝑓 (𝑡)∣𝑄𝑄𝑄(𝑡)

)
+𝐾𝐸

⎛⎝∑
𝑛,𝑓

(
𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡)

𝛼𝑜𝑢𝑡𝑛,𝑓

𝑝𝑜𝑢𝑡𝑛,𝑓(𝑡)
+ 𝑢∗𝑖𝑛𝑛,𝑓 (𝑡)𝛽

𝑖𝑛
𝑛,𝑓

)
∣𝑄𝑄𝑄(𝑡)

⎞⎠ . (28)

if lim(𝐴) and lim(𝐵) exist and are bounded. Recall that in
the previous section, we have shown that

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

∑
𝑛,𝑓

𝐸
(
𝑄𝑓

𝑛(𝑡)
)

(34)

exists and is finite. Moreover, since 𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡) and 𝑢∗𝑖𝑛𝑛,𝑓(𝑡) are
the optimum solution to (5), the network stability is achieved
under 𝜆𝜆𝜆. Therefore, we have

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑢∗𝑜𝑢𝑡𝑛,𝑓 (𝑡) ≥ lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑢∗𝑖𝑛𝑛,𝑓(𝑡) + 𝜆𝑛,𝑓

since otherwise, the network stability cannot be ensured by
𝑢𝑢𝑢∗. Finally, we conclude that

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

Ξ(𝑡) (35)

is nonnegative and thus the last term of (32) can be omitted.
Consequently, by dividing 𝐾 on both sides of (32), we have

lim sup
𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝐺𝑀𝐸𝑆(𝑡) ≤ 𝐵

𝐾
+ 𝐶∗. (36)

Therefore, Theorem 2 holds.

IV. SIMULATIONS

We consider a multi-hop wireless network illustrated in
Figure 1. There are three flows in the network, denoted by
Flow 1, 2, 3. The routing paths of flows are specified by 𝑅1 =
{𝐴,𝐵,𝐶,𝐷}, 𝑅2 = {𝐹,𝐺,𝐶,𝐷} and 𝑅3 = {𝐸,𝐹,𝐺,𝐻}.
The exogenous arrival processes are Bernoulli processes with
an average rate of 5 packets per slot for all three flows. Without
loss of generality, we assume a two-hop interference model
which represents the general IEEE 802.11 MAC protocols [9],
[18]. The nominal link rate of a wireless link is assumed
to be 20 packets per slot. For a particular link, there are
three equally possible channel states, i.e., Good, Medium, Bad
where the corresponding successful transmission probabilities
are 0.8, 0.6, 0.3, respectively.

For the ease of exposition, we assume that 𝛼𝑎,𝑏 = 𝛽𝑎,𝑏 =
50𝜇𝐽 for all links in the network [22]. We investigate the aver-
age energy consumption induced by the MaxWeight algorithm
and the proposed MES algorithm with different values of 𝐾 ,
i.e., 50, 100, 200, 500, 800, 1000, 2000, 5000, 8000, 10000,
12000, 14000, 16000, 18000, 20000, 25000. Every simulation
is executed for 10000 time slots. Note that since both the
MaxWeight algorithm and the MES algorithm are throughput-
optimal, the long term average throughput are expected to be
identical in both scenarios.

Figure 2 depicts the average energy consumption per time
slot for the MaxWeight algorithm and the MES algorithm

F
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B
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A

Flow 1

Flow 2

Flow 3

Fig. 1. Network topology with interconnected queues.
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Fig. 2. Comparison of the energy consumptions of the MaxWeight algorithm
and the MES algorithm.

with different values of 𝐾 . As illustrated in Figure 2, when
𝐾 = 0, the MES algorithm reduces to the original MaxWeight
algorithm and yields the same amount of energy expenditure.
However, as 𝐾 increases, the energy consumption induced
by the MES algorithm decreases remarkably. In addition, as
shown analytically in Theorem 2, the MES algorithm ap-
proaches to the global minimum energy expenditure gradually
as 𝐾 increases. Note that, however, the amount of energy
reduction by increasing 𝐾 becomes less appreciable when
𝐾 > 10000. To achieve a better understanding on the impact
of larger values of 𝐾 , we compare the average queue backlogs
of all data queues, with 𝐾 = 50, 150, 350 and 500, in
Figure 3 and Figure 4, where the queues in the network
are indexed by 1 to 9 in the order of 𝑄1

𝐴, 𝑄1
𝐵 , 𝑄1

𝐶 , 𝑄2
𝐹 ,

𝑄2
𝐺, 𝑄2

𝐶 , 𝑄3
𝐸 , 𝑄3

𝐹 and 𝑄3
𝐺. It is worth noting that, as 𝐾

grows, the average queue backlogs in the network increases
correspondingly. Therefore, while the network-wide energy
expenditure is noticeably reduced, a larger value of 𝐾 yields
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Fig. 3. The average queue backlogs in the network for 𝐾 = 50 and 150.
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Fig. 4. The average queue backlogs in the network for 𝐾 = 350 and 500.

a longer average delay in the network. As a consequence, a
tradeoff between the optimality and the delay can be attained
by tuning 𝐾 properly.

So far, throughout this paper, we have assumed that the
energy in each node is constrained yet sufficiently large. Next,
we investigate the performance of the MES algorithm in multi-
hop wireless networks where each node has a limited and
finite amount of energy. More specifically, the same network
in Figure 1 is considered, however, we assume that each node
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Fig. 5. Comparison of the lifetime of the MaxWeight algorithm and the MES
algorithm.

in the network has a battery with an initial energy of 1 Joule.
We compare the performance of the MaxWeight algorithm with
the MES algorithm for different values of 𝐾 , in terms of the
network lifetime, which is defined as the time instance when
the first node in the network depletes the battery completely.
The values of 𝐾 are 50, 200, 500, 800, 1000, 2000, 5000,
8000, 10000, 15000 and 20000.

Figure 5 pictorially compares the network lifetime induced
by the MaxWeight algorithm and that of the MES algorithm for
different values of 𝐾 . Similar to the previous scenario, when
𝐾 is small, the MES algorithm yields similar performance,
in terms of the network lifetime, compared to the MaxWeight
algorithm. However, when 𝐾 increases, the MES algorithm
significantly outperforms the traditional MaxWeight algorithm.
It is worth noting that when 𝐾 = 20000, the MES algorithm
prolongs the network lifetime by more than twice as much as
that of the MaxWeight algorithm! By the same token, a tradeoff
between the network lifetime and the experienced delay of the
network can be controlled effectively by tuning the value of
𝐾 .

V. CONCLUSIONS

In this paper, we investigate the energy consumption issue
of the scheduling algorithms in multi-hop wireless networks.
We show that the traditional MaxWeight algorithm, which is
well known to be throughput optimal, is not energy optimal
due to the overlook of the energy consumptions induced by
inevitable packet retransmissions. In light of this, we pro-
pose a minimum energy scheduling (MES) algorithm which
significantly reduces the energy consumption compared to
the original MaxWeight algorithm. In addition, we analyt-
ically show that the MES algorithm is essentially energy
optimal in the sense that the average energy expenditure of
the MES algorithm can be pushed arbitrarily close to the
global minimum solution. Moreover, the improvement on the
energy efficiency is achieved without losing the throughput-
optimality. Therefore, the proposed MES algorithm is of great
importance for network protocol designs in energy-constrained
multi-hop wireless networks such as wireless sensor networks.

Authorized licensed use limited to: University of Florida. Downloaded on May 07,2010 at 22:32:49 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: MINIMUM ENERGY SCHEDULING IN MULTI-HOP WIRELESS NETWORKS WITH RETRANSMISSIONS 355

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks," IEEE Trans. Automatic Control, vol. 37, pp.
1936-1949, 1992.

[2] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks," IEEE J. Sel. Areas
Commun., vol. 23, pp. 89-103, Jan. 2005.

[3] Y. Yi, A. Proutiere, and M. Chiang, “Complexity in wireless scheduling:
impact and tradeoffs," in Proc. 9th ACM International Symp. Mobile Ad
Hoc Netw. Computing (Mobihoc), 2008.

[4] A. Warrier, S. Janakiraman, and I. Rhee, “Diffq: practical differential
backlog congestion control for wireless networks," IEEE INFOCOM,
2009.

[5] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels," Ph.D. dissertation, Mass.
Institute of Technology, LIDS, 2003.

[6] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,"
IEEE INFOCOM, 2005.

[7] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
layer rate control in wireless networks," IEEE INFOCOM, 2005.

[8] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm," Queueing Syst., vol. 50, pp. 401-457,
2005.

[9] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed schedul-
ing algorithms for wireless networks," IEEE INFOCOM, 2007.

[10] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-Layer Control in Wireless Networks. Foundations and Trends in
Networking, 2006.

[11] B. Radunovic, C. Gkantsidis, D. Gunawardena, and P. Key, “Horizon:
balancing TCP over multiple paths in wireless mesh network," in
Proc. 14th ACM International Symp. Mobile Ad Hoc Netw. Computing
(Mobicom), 2008.

[12] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee, and A. Stolyar,
“Joint scheduling and congestion control in mobile ad-hoc networks,"
IEEE INFOCOM, 2008.

[13] M. J. Neely, “Energy optimal control for time varying wireless net-
works," IEEE Trans. Inf. Theory, vol. 52, pp. 2915-2934, July 2006.

[14] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping," ACM SIGMETRICS, 2006.

[15] L. Jiang and J. Walrand, “A distributed CSMA algorithm for throughput
and utility maximization in wireless networks," in Proc. Allerton Conf.
Commun., Control, Computing, 2008.

[16] S. Rajagopalan and D. Shah, “Reversible networks, distributed optimiza-
tion, and network scheduling: what do they have in common?" in Proc.
Conf. Inf. Sciences Syst. (CISS), 2008.

[17] X. Wu, R. Srikant, and J. Perkins, “Scheduling efficiency of distributed
greedy scheduling algorithms in wireless networks," IEEE Trans. Mobile
Computing, 2007.

[18] C. Joo, “A local greedy scheduling scheme with provable performance
guarantee," in Proc. 9th ACM International Symp. Mobile Ad Hoc Netw.
Computing (Mobihoc), 2008.

[19] A. Brzezinski, G. Zussman, and E. Modiano, “Distributed through-
put maximization in wireless mesh networks via pre-partitioning,"
IEEE/ACM Trans. Netw., 2008.

[20] C. Joo, X. Lin, and N. Shroff, “Understanding the capacity region of the
greedy maximal scheduling algorithm in multi-hop wireless networks,"
IEEE INFOCOM, 2008.

[21] A. Stolyar, “Dynamic distributed scheduling in random access net-
works," J. Applied Probability, vol. 45, pp. 297-313, 2008.

[22] T. Hou, Y. Shi, and H. D. Sherali, “Rate allocation in wireless sensor
networks with network lifetime requirement," in Proc. Fifth ACM
International Symp. Mobile Ad Hoc Netw. Computing (MobiHoc), 2004.

Yang Song received his B.E. and M.E. degrees
in Electrical Engineering from Dalian University
of Technology, Dalian, China, and University of
Hawaii at Manoa, Honolulu, U.S.A., in July 2004
and August 2006, respectively. Since September
2006, he has been working towards the Ph.D. degree
in the Department of Electrical and Computer En-
gineering at the University of Florida, Gainesville,
Florida, USA. His research interests are wireless
networks, algorithmic game theory, network eco-
nomics, and stochastic network optimization. He is

a student member of IEEE, a student member of ACM, and a member of
Game Theory Society.

Chi Zhang received the B.E. and M.E. degrees in
Electrical Engineering from Huazhong University
of Science and Technology, Wuhan, China, in July
1999 and January 2002, respectively. He is work-
ing toward the Ph.D. degree at the Department of
Electrical and Computer Engineering, University of
Florida, Gainesville. His research interests include
network and distributed system security, wireless
networking and mobile computing, with emphasis
on mobile ad hoc networks, wireless sensor net-
works, wireless mesh networks, and heterogeneous

wired/wireless networks.

Yuguang Fang (S’92-M’97-SM’99-F’08) received
a Ph.D. degree in Systems Engineering from Case
Western Reserve University in January 1994 and a
Ph.D degree in Electrical Engineering from Boston
University in May 1997. He was an assistant pro-
fessor in the Department of Electrical and Computer
Engineering at New Jersey Institute of Technology
from July 1998 to May 2000. He then joined the
Department of Electrical and Computer Engineering
at University of Florida in May 2000 as an assistant
professor, got an early promotion to an associate

professor with tenure in August 2003 and to a full professor in August 2005.
He holds a University of Florida Research Foundation (UFRF) Professorship
from 2006 to 2009, a Changjiang Scholar Chair Professorship with Xidian
University, Xi’an, China, from 2008 to 2011, and a Guest Chair Professorship
with Tsinghua University, China, from 2009 to 2012. He has published
over 250 papers in refereed professional journals and conferences. Dr. Fang
received the National Science Foundation Faculty Early Career Award in 2001
and the Office of Naval Research Young Investigator Award in 2002, and is
the recipient of the Best Paper Award in IEEE International Conference on
Network Protocols (ICNP) in 2006 and the recipient of the IEEE TCGN
Best Paper Award in the IEEE High-Speed Networks Symposium, IEEE
Globecom in 2002. Dr. Fang is also active in professional activities. He is
a Fellow of IEEE and a member of ACM. He is currently serving as the
Editor-in-Chief for IEEE WIRELESS COMMUNICATIONS and serves/served
on several editorial boards of technical journals including IEEE TRANS-
ACTIONS ON COMMUNICATIONS, IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, IEEE WIRELESS COMMUNICATIONS MAGAZINE and
ACM WIRELESS NETWORKS. He was an editor for IEEE TRANSACTIONS
ON MOBILE COMPUTING and currently serves on its Steering Committee.
He has been actively participating in professional conference organizations
such as serving as the Steering Committee Co-Chair for QShine from 2004 to
2008, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical
Program Symposium Co-Chair for IEEE Globecom’2004, and a member of
Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003-2010)
and ACM Mobihoc (2008-2009).

Authorized licensed use limited to: University of Florida. Downloaded on May 07,2010 at 22:32:49 UTC from IEEE Xplore.  Restrictions apply. 


