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Performance Evaluation of Wireless Cellular
Networks with Mixed Channel Holding Times

Wei Li, Senior Member, IEEE, and Yuguang Fang, Fellow, IEEE

Abstract—In most analytical models for wireless cellular net-
works, the channel holding times for both new and handoff
calls are usually assumed to be independent and identically
distributed. However, simulation study and field data show that
this assumption is invalid. In this paper, we present a new
general analytical model in wireless cellular networks where
channel holding times for new and handoff calls are distinctly
distributed with different average values. For our proposed
model, we first derive the explicit matrix product-form solution of
the stationary probability for number of new and handoff calls in
the system. We then show that the expression of the stationary
probability for total number of calls in the system possesses
a scalar product-form solution if and only if the expected
channel holding times for both new and handoff calls are the
same. Moreover, we derive analytical results for the blocking
probabilities of new and handoff calls. Finally, we compare
our new theoretical results with the corresponding simulation
results and two already existing approximations. Through this
comparison study, we show that our analytical results are indeed
the same as the simulation results and that there are certainly
significant estimation errors for the existing approximations.

Index Terms—Teletraffic, product-form solution, blocking
probability, cellular networks.

I. INTRODUCTION

IN wireless cellular networks, there are usually two classes
of calls, viz., new calls and handoff calls. The new calls in a

cell are the ones which are initiated in this cell and the handoff
calls are the ones which are the ongoing calls handed off to this
cell (see [2], [3], [10], [11], [12] and the references therein).
In the existing literature [8] [10], to simplify the analysis, the
handoff call holding time is always assumed to be the same
as that of the new call holding time, and the handoff call cell
residence time is always assumed to be the same as that of the
new call cell residence time. However, recent studies in [2], [3]
[4] and the references therein showed that the new call channel
holding time and the handoff call channel holding time may
have different distributions. Worse yet, they may have different
average values. Simulation study and field data also confirmed
that they are different random variables [4]. The four diagrams
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of Figure 1 in paper [5] showed the difference of the average
channel holding times for new calls and handoff calls. In this
paper, we present an analytical model to show how difficult
it could be if the handoff call holding time is different from
the new call holding time and the handoff call cell residence
time is different from the new call cell residence time. We
want to point out that although our model targets at the second
generation wireless cellular systems, it can easily modified for
future generation wireless cellular systems. Surprisingly, the
problem itself is not addressed well for even the early wireless
cellular systems.

To simplify the analysis, we assume that the cellular system
is homogeneous [16], i.e., the underlying traffic processes and
the parameters for all cells within the cellular networks are
statistically identical. The detailed assumptions and notation
for this wireless mobile network are as follows:

1) Each cell consists of C channels. In addition, there is a
buffer of size K ≥ 0 for holding the waiting type-two
calls (e.g., handoff calls) in each cell (base station site).

2) Type-i calls in the cell are generated as a Poisson process
with rate λi (i=1,2). Here, type-1 calls are for new calls
while type-2 calls are for handoff calls.

3) The requested call connection time of type-i calls at each
cell, say, Hi, is assumed to be exponentially distributed
with mean 1/hi (i=1,2).

4) The cell residence time of type-i calls in each cell , say,
Ri, the interval that a type-i call stays in this cell, is
exponentially distributed with mean 1/ri.

5) When the number of the busy channels at base station
(BS) is i (i = 0, 1, ..., C − 1), a type-1 call is admitted
with probability αi (0 ≤ αi ≤ 1). Otherwise, a type-1
call will be blocked and then cleared from the system.

6) When the number of the busy channels at BS is i (i =
0, 1, ..., C−1), a type-2 call is admitted with probability
βi (0 ≤ βi ≤ 1) and is blocked and cleared from the
system with probability 1 − βi; When the number of
the type-2 calls at BS (including the calls in the buffer
and the calls in communication) is i where i = C, C +
1, ..., C+K−1, a type-2 call is buffered with probability
βi and is blocked and cleared from the system with
probability 1− βi. If a call is put on hold in the buffer,
it will stay in the buffer until either it gains a channel
for service or until it departs from the current cell due
to mobility; When the number of the type-2 calls at BS
is C + K , a type-2 call will be blocked and cleared
from the system. If the type-2 call moves out of the cell
before it gains a channel, it will terminate at the current
BS and cleared from the system. In all other cases, a
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Fig. 1. Flowchart of type 1 call for the proposed thinning scheme.

Fig. 2. Flowchart of type 2 call for the proposed thinning scheme.

type-2 call is blocked and cleared from the system.

The diagrams for the type-1 call and type-2 call control
process in our proposed scheme are given in Figure 1 and
Figure 2, respectively.

From the above description, we observe the following:

• The major differences in our model from the existing
wireless cellular models are that (1) different types of
calls possess different call holding time and different
cell residence time distributions and (2) type-2 calls have
higher priority in terms of buffer usage.

• If there are no priority on either reservation or buffer
for the type-2 calls, the model can be reduced to the
standard two dimensional traffic model by specifying the
admission probabilities (αi and βj). In this case, product
form results can be derived in terms of reversible Markov
process, from which a generalized two-dimensional Er-
lang’s loss formula can be then obtained [17]. If the
admitted rates are all the same for new calls and handoff
calls, and the call holding time and cell residence time
for two types of calls have the same rates, our model
is the same as the thinning scheme I in [1] and [5]. If
two types of calls have the same call holding time and
the same cell residence time, the model is reduced to the
well known cutoff priority model ([9], [11]).

• We also remark that the proposed schemes can be gen-
eralized to handle the call admission control problem
in wireless multimedia networks with different priori-
tized services. For example, we can classify multimedia

Fig. 3. Transition rate diagram when C = 3.

services into different priority levels according to the
QoS requirements, then apply multiple thresholds for
call admission control or choose different admission
probabilities for different priority levels to reflect the
QoS. We will present such studies in a separate paper.

• The proposed call admission schemes are ones in which
an arrived call is admitted with certain probability. The
idea behind these schemes is to smoothly throttle the both
new call and handoff call stream as the network traffic
is building up. Thus, when the network is approaching
the congestion, the admitted call stream becomes thinner.
Due to the flexible choice of the call admission proba-
bilities, these schemes can be made very general. For
example, in paper [5], the authors studied several specific
thinning schemes, called “new call thinning scheme” and
“fractional guard channel scheme” etc.

II. ANALYTICAL RESULTS

The purpose of this section is to find the stationary proba-
bility of the system when there are i type-1 calls and j type-2
calls in the cell, where i = 0, 1, ..., C; j = 0, 1, ..., C +K and
i + j ≤ C + K . Let X(t) be the number of type-1 calls in
the cell at time t, and Y (t) be the number of the type-2 calls
(including those in the buffer) in a cell at time t. It is easy
to show that {(X(t), Y (t))} forms a two-dimensional Markov
process with the state space

Ω =

C−1⋃
i=0

{(i, 0), (i − 1, 1), (i − 2, 2), ..., (1, i − 1), (0, i)}

K⋃
j=0

{(C, j), (C − 1, j + 1), ..., (1, j + C − 1), (0, j + C)},

where, without loss of generality, we order the states lexico-
graphically.

The transition rate diagram of this Markov process, for
the special case when C = 3, is given by Figure 3. The
transition rate diagram for general C can be similarly obtained.
Consequently, the infinitesimal generator of above constructed
general two-dimensional Markov Process {(X(t), Y (t))} can



2156 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 6, JUNE 2008

be derived as follows:

Q =

⎡
⎢⎢⎢⎢⎢⎣

E0 A0 0 · · · 0 0 0
B1 E1 A1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · BN−1 EN−1 AN−1

0 0 0 · · · 0 BN EN

⎤
⎥⎥⎥⎥⎥⎦ ,

where N = C + K and the matrices Ai, Bi and Ei are given
as follows.

• Matrix Ai (i = 1, 2, ..., C + K − 1) refers to an arrival
of a call to the cell in which there are currently i calls,
and

– If i = 0, 1, ..., C−1, Ai is an (i+1)×(i+2) matrix
given by

Ai =

⎡
⎢⎢⎢⎢⎢⎣

λ1αi λ2βi · · · 0 0
0 λ1αi · · · 0 0
...

...
...

...
...

0 0 · · · λ2βi 0
0 0 · · · λ1αi λ2βi

⎤
⎥⎥⎥⎥⎥⎦ . (1)

– If i = C, C+1, ..., C+K−1, Ai is a (C+1)×(C+1)
square matrix given by

Ai = λ2βiI(C+1)×(C+1). (2)

• Matrix Bi (i = 1, 2, ..., C + K) refers to a departure of
a call from the cell in which there are currently i calls,
and

– If i = 1, 2, ..., C, Bi is an (i + 1) × i matrix given
by

Bi =

⎡
⎢⎢⎢⎢⎣

iµ1 0 · · · 0 0
µ2 (i − 1)µ1 · · · 0 0
...

...
...

...
...

0 0 · · · 2µ1 0
0 0 · · · (i − 1)µ2 µ1

0 0 · · · 0 iµ2

⎤
⎥⎥⎥⎥⎦ , (3)

where μ2 = h2 + r2 and μ1 = h1 + r1.
– If i = C + 1, ..., , N , Bi is a (C + 1) × (C + 1)

matrix given by

Bi =

⎡
⎢⎢⎢⎣

di,0 Cµ1 · · · 0 0
0 di,1 · · · 0 0
...

...
...

...
...

0 0 · · · di,C−1 µ1

0 0 · · · 0 di,C

⎤
⎥⎥⎥⎦ , (4)

where di,j = jµ2 + (i − C)r2, for j = 0, 1, ...,C.

• Matrix Ei (i = 0, 1, 2, ..., C + K) refers to no change in
the total number of calls in the cell in which there are
currently i calls, and

– E0 = −(λ1α0 + λ2β0);
– If i = 1, 2, ..., C − 1, Ei is an (i + 1) × (i + 1)

diagonal matrix given by

Ei = diag
{
a(i,j)

}
,

where a(i,j) = −[λ1αi +λ2βi +(i− j)μ1 + jμ2] for
j = 0, 1, ..., i, μ1 = h1 + r1 and μ2 = h2 + r2.

– If i = C, C +1, ..., N −1, Ei is a (C +1)× (C +1)
diagonal matrix given by

Ei = diag
{
a(i,j)

}
,

where a(i,j) = −[λ2βi+(C−j)μ1+jμ2+(i−C)r2]
for j = 0, 1, ..., C.

– If i = N , Ei is a (C +1)× (C +1) diagonal matrix
given by

Ei = diag
{
a(i,j)

}
,

where a(i,j) = −[(C − j)μ1 + jμ2 + (i − C)r2] for
j = 0, 1, ..., C.

Let πi,j denote the steady-state probability when there are
i type-1 calls and j type-2 calls (including those in the buffer)
in the cell,

πn = (πn,0, πn−1,1, · · · , π1,n−1, π0,n),

for 0 ≤ n ≤ C − 1, and

πn = (πC,n−C , πC−1,n−C+1, · · · , π1,n−1, π0,n),

for C ≤ n ≤ N.

By using Lemma 3 in [6], if we denote
n∏

i=1

bi = b1b2 · · · bn

for any matrices b1, · · · , bn, then the steady-state probability
can be determined by

πn = π0

n∏
i=1

[
Ai−1(−Di)−1

]
, (5)

where Di (i = 0, 1, · · · , N ) are recursively calculated by
DN = EN and

Dn = En + An(−D−1
n+1)Bn+1, (6)

for n = 0, 1, · · · , N − 1, and

π0 =

[
1 +

N∑
n=1

n∏
i=1

[
Ai−1(−Di)−1

]
e

]−1

, (7)

where, and also in the rest of this paper, e is defined as a
column vector with all its components equal to one.

Remarks 1: In the analytical models of the existing litera-
ture such as [5][8][10], the handoff call holding time is always
assumed to be the same as that of the new call holding time
and that the handoff call cell residence time is assumed to be
the same as that of the new call cell residence time. Under
those assumptions, it is easily to have h1 = h2 = h and
r1 = r2 = r, and therefore h1+r1 = h2+r2. In the following
analysis, however, we do not need to have the conditions:
h1 = h2 and r1 = r2 but only need to assume μ = μ1 = μ2.
The information behind this condition is that the expected call
holding time for new call and handoff call may not be the
same, and the expected cell residence time for new call and
handoff call may not be the same either.

When the expected channel holding time is the same for new
calls and handoff calls, by noting DN = EN , we can easily
get D−1

N e = − 1
Cμ+(N−C)r2

e. Recursively from equation (6),
we have that

D−1
n e = − 1

nμ
e, for n = 1, 2, ..., C − 1,

and

D−1
n e = − 1

Cμ + (n − C)r2
e, for n = C, C+1, ..., C+K.

Therefore, from equation (5) and the expression of A
matrix, we finally have
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• for n = 0, 1, ..., C,

πne = π0

n∏
i=1

[
Ai−1(−Di)−1

]
e = ...

= π0

n∏
i=1

[
λ1αi−1 + λ2βi−1

iμ

]
; (8)

• for n = C + 1, ..., N ,

πne = π0

n∏
i=1

[
Ai−1(−Di)

−1
]
e = ...

= π0

C∏
i=1

[
λ1αi−1 + λ2βi−1

iμ

]
n∏

j=C+1

[
λ2βj−1

Cμ + (j − C)r2

]
, (9)

where π0 is calculated by equation (7) as follows

π−1
0 = 1 +

C∑
n=1

n∏
i=1

[
λ1αi−1 + λ2βi−1

iμ

]

+

C+K∑
n=C+1

C∏
i=1

[
λ1αi−1 + λ2βi−1

iμ

]
n∏

j=C+1

[
λ2βj−1

Cμ + (j − C)r2

]
. (10)

The stationary probability of this special case is consistent
with the result in [5] without buffer when K = 0 and with a
similar result in [10] when all αi and βj are all ones.

Remark 2: In equation (5), (6) and (7), we obtained the
matrix product-form solution for the stationary probability of
the system in general. As the problem is very interesting and
fundamentally important from both the theory and application,
many researchers attempt to find a simple product-form ap-
proximation even for some special cases of our model. For
example, for a special case of our above model when the
expected channel holding times for both type-1 calls and type-
2 calls are different and there are no buffering mechanism,
Fang and Zhang [5] proposed an approximate result

pa
j =

∏j−1
i=0 (βiρ + ρh)

j!
p0.

Recently, the authors in paper [13] also proposed an approxi-
mation result for the stationary probability. Summarizing their
results and denoting by pj the stationary probability when
j channels are being connected, we know that they in fact
proposed a scalar product form formula pj = pj−1Kj for
all j in their model when the buffer size is zero (K = 0).
Unfortunately, how good this approximation is to the real
value when the holding times for new calls and handoff calls
are different is not investigated. By using our matrix product
solution for the stationary probability in equation (5), (6) and
(7), we can obtain the following result.

Theorem 1: Denote by pn (n = 0, 1, 2, · · · , C + K) the
stationary probability when there are totally n calls (including
both new calls and handoff calls) in the system, the sufficient
and necessary condition to have pn = pn−1Kn for a constant
Kn is

h1 + r1 = h2 + r2

and

Kn =

{
λ1αn−1+λ2βn−1

nμ , if n = 1, 2, · · · , C,
λ2βn

Cμ+(n−C)r2
, if n = C + 1, · · · , C + K.

In fact, sufficient condition is already obtained as in the
Remark 1 (see Equations 8 and 9). We now only focus on
the necessary condition. If equation pn = pn−1Kn holds for
all n, by noting equation (5), we have both πne = πn−1eKn

and

πne = π0

n−1∏
i=1

[
Ai−1(−Di)−1

] [
An−1(−Dn)−1

]
e.

This means that we should have
[
An−1(−Dn)−1

]
e = Kne.

By noting the special structure of matrix An−1, we should
then have

(−Dn)−1e =

{
Kn

λ1αn−1+λ2βn−1
e, if n = 1, 2, · · · , C,

Kn

λ2βn−1
e, if n = C + 1, · · · , C + K.

That is equivalent to

e = − Kn

λ1αn−1 + λ2βn−1
Dne =

Kn

λ1αn−1 + λ2βn−1
Bne, (11)

for n = 1, 2, ..., C, and

e = − Kn

λ2βn−1
Dne =

Kn

λ2βn−1
Bne, (12)

for n = C + 1, ..., C + K.
From the equations (3) and (4), we have

Bne =

⎡
⎢⎢⎢⎢⎢⎣

n
n − 1

...
1
0

⎤
⎥⎥⎥⎥⎥⎦μ1 +

⎡
⎢⎢⎢⎢⎢⎣

0
1
...

n − 1
n

⎤
⎥⎥⎥⎥⎥⎦μ2 (13)

for n = 1, 2, ..., C, and

Bne =

⎡
⎢⎢⎢⎣

(n − C)r2 + Cμ1

(n − C)r2 + (C − 1)μ1 + μ2

...
(n − C)r2 + μ1 + (C − 1)μ2

(n − C)r2 + Cμ2

⎤
⎥⎥⎥⎦

= (n − C)r2e +

⎡
⎢⎢⎢⎣

C
C − 1

...
1
0

⎤
⎥⎥⎥⎦ μ1 +

⎡
⎢⎢⎢⎣

0
1
...

C − 1
C

⎤
⎥⎥⎥⎦μ2,(14)

for n = C + 1, ..., C + K . Therefore, from equation (11) to
(14), we conclude if equation pn = pn−1Kn holds for all n,
we should have h1 + r1 = h2 + r2. Furthermore, in this case,
by taking the results in equations (13) and (14) into equations
(11) and (12), we can easily obtain

Kn =

{
λ1αn−1+λ2βn−1

nμ , if n = 1, 2, · · · , C,
λ2βn−1

Cμ+(n−C)r2
, if n = C + 1, · · · , C + N.

It is worth noting that the key condition of Theorem 1 is
h1 + r1 = h2 + r2, which is equivalent to that the expected
channel holding time of new call is the same as the expected
channel holding time of handoff calls. Therefore, we may still
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Fig. 4. Blocking probability vs. new call traffic load.

have the scalar product form probability even if the expected
call holding time of new call is different from that of the
handoff calls, or the expected cell residence time of new call
is different from that of the handoff calls.

Once we obtain the stationary probability distribution of the
system as in equation (5), we can derive many performance
metrics of interest. Here, for illustration purpose, we only
show the results of the blocking probability for each type of
calls as follows.

Theorem 2: Define pi (i = 1, 2) the blocking probability for
a type-i call, i.e., the probability that a type-i call is blocked
when it arrives, we have

p1 = 1 −
C−1∑
n=0

αnπ0

n∏
i=1

[
Ai−1(−Di)−1

]
e, (15)

and

p2 = 1 −
C+K−1∑

n=0

βnπ0

n∏
i=1

[
Ai−1(−Di)−1

]
e. (16)

The verification of these results are straightforward, if we

notice the description of the πn in equation (5), and

p1 =
∑

i+j<C

(1 − αi+j)πi,j +
∑

i+j≥C

πi,j

= 1 −
C−1∑
n=0

αnπne,

as well as

p2 =
∑

i+j<C+K−1

(1 − βi+j)πi,j +
∑

i+j=C+K

πi,j

= 1 −
C+K−1∑

n=0

βnπne.

III. COMPARISON STUDY

Now, we present our analytical results and the simulation
results for the new call blocking probability and the handoff
termination probability. We also compare with two well-
known approximate results: the traditional approximation [7]
and the new approximation [5]. Here, for our comparison
study, we assume C = 30 and K = 0, αi = 1 for
i = 0, 1, ..., 24, αi = 0 for i = 25, ..., 29, and βi = 1 for
i = 1, ..., 29.

Figure 4 shows how the blocking probabilities depend on
the new call traffic load when λ1 = 1/20, λ2 = 1/30 and
μ2 = 1/300 with μ1 changing. From this figure, we observe
that when the new calls and handoff calls have significant
different average values of the channel holding time, our
analytical results and the simulation results still match well
(insignificant deviation is because the simulation time is not
long enough), and the traditional approximation shows signif-
icant inaccuracy while the new approximation shows a better
fit although significant error can be still observed, particularly
when new call traffic load is high for the blocking probability
of handoff calls.

Figure 5 shows how the blocking probability depends on the
handoff call traffic load when λ1 = 1/20, μ1 = 1/300 and
λ2 = 1/40 with μ2 changing. From this figure, we observe
the same: our analytical results and the simulation results
still match well, and the traditional approximation shows
significant inaccuracy while the new approximation shows a
better fit.

From this simple comparison study, we observe that our
analytical results for both new call blocking probability and
handoff call blocking probability are verified by our simulation
results. We also observe that both the traditional approxima-
tion and the new approximation provide good approximation
only in certain parameter range, say, when traffic load is low.
We confirm the conclusion in [5] that the new approximation
indeed performs better than the traditional approximation.
More importantly, this paper has completely addressed the
problem, an open remark, in [5] in which it stated that “This
paper calls again for the necessity of reexamining the classical
analytical results in traffic theory, which are used for the
analysis and design of wireless mobile networks.”

IV. CONCLUSION

In this paper, we presented a new general analytical model
for a thinning scheme in wireless cellular networks where
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Fig. 5. Blocking probability vs. handoff call traffic load.

channel holding times for new calls and handoff calls are
distinctly distributed with different average values. For the
proposed model, the closed matrix product-form solution for
the stationary probability were derived. Moreover, we verified
that a sufficient and necessary condition for the stationary
probability of the number of calls in the system to be
a product-form is that the expected channel holding times
for both new calls and handoff calls are equal. We also
obtained the expressions for blocking probabilities of new
calls and handoff calls. Finally, we verified our analytical
results by our simulation study and understood better about
the accuracy of the two existing approximate results. We
can show that the complexity of the current algorithms in
finding the solution of the stationary probability distribution is
O

(
(N + 1)5 ln(N + 1)

)
. Efficient computational algorithms

are still under investigation.
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