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Scalable and Deterministic Key Agreement for
Large Scale Networks
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Abstract— Key agreement is a central problem to build up
secure infrastructures for networks. Public key technology may
not be suitable in many networks of low-end devices, such as ad
hoc networks and sensor networks, because of its computation
inefficiency and the lack of central authorities in those distributed
scenarios. Conventional distributed symmetric key agreement
schemes lack scalability due to their large memory cost (O(N),
where N is the total number of nodes), and their probabilistic
nature cannot ensure key agreement between every pair of nodes.
In this paper, we propose a novel symmetric key agreement
scheme, which is scalable for large scale networks with very
small memory cost per node. A t-degree (k+1)-variate symmetric
polynomial is used to achieve key agreement between nodes. The
memory cost per node for a network of N nodes is reduced

to around k+1
�

k(k+1)!
2

k
√

N , where k ≥ 1. Our scheme is also
deterministic in that every pair of nodes can establish a shared
key.

Index Terms— Public key, security, symmetric key.

I. INTRODUCTION

TO secure end-to-end communications in a network, a
shared key is required between two end nodes to support

basic secure primitives, such as encryption and authentication.
Hence, the two-party key agreement is critical to build up
secure infrastructures for network communications. In large
scale networks, such as ad hoc and sensor networks, the key
agreement is very difficult. Considering the node resource
constraints and the lack of fixed on-line authorities, it is not
suitable to directly apply public key techniques without any
progress in simple and fast algorithms. Hence, symmetric key
techniques [1]–[28] are investigated in the literature because
of their efficiency.

Generally, each node keeps a set of secrets and uses
those secrets to establish shared keys with other nodes. This
approach has a scalability problem. The more nodes with
which a node wants to share keys, the more secrets the node
needs to keep. In ad hoc networks or sensor networks, which
can consist of hundreds or thousands nodes, the memory cost
of each node for key establishment can be rather large, which
is unaffordable for low end devices.

To achieve key agreement in large networks, most schemes
[4]–[22] follow a probabilistic approach. Particularly, each
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node keeps a small subset of secrets such that a pair of
neighboring nodes establishes a shared key with a certain
probability. These schemes, however, can not guarantee that
every pair of nodes will establish a shared key due to their
probabilistic nature. In addition, their memory cost increases
linearly with the network size [23].

In this paper, we propose a novel key agreement scheme,
which is scalable for large networks with small memory cost
per node. A t-degree (k +1)-variate symmetric polynomial is
used here to achieve key agreement between nodes. We will
show that for a network of N nodes our scheme has around
k+1
√

k(k+1)!
2

k
√

N memory cost per node, where k ≥ 1. Our
scheme is also deterministic in that any pair of nodes can
calculate a shared key independently or negotiate one through
k − 1 (k ≥ 1) intermediate nodes, called agents.

The rest of the paper is organized as follows. Section II
describes the mathematical tool used in our scheme. Details
of our scheme are given in Section III. Analysis is carried
out in Section IV, and some comparisons with conventional
schemes are discussed in Section V. A method to enhance
security is described in Section VI. The paper is finally ended
in Section VII.

II. MATHEMATICAL TOOL

Our scheme is based on a t-degree multivariate symmetric
polynomial. A t-degree (k + 1)-variate polynomial is defined
as

f(x1, x2, . . . , xk, xk+1) =
t∑

i1=0

t∑
i2=0

· · ·

t∑
ik=0

t∑
ik+1=0

ai1,i2,...,ik,ik+1 xi1
1 xi2

2 · · ·xik

k x
ik+1
k+1 . (1)

All coefficients of the polynomial are chosen from a finite field
Fq , where q is a prime that is large enough to accommodate a
cryptographic key. Without specific statement, all calculations
in this paper are performed over the finite field Fq.

A (k+1)-tuple permutation is defined as a bijective mapping

σ : [1, k + 1] −→ [1, k + 1] . (2)

By choosing all the coefficients according to

ai1,i2,...,ik,ik+1 = aiσ(1),iσ(2),...,iσ(k),iσ(k+1) (3)

for any permutation σ, we can obtain a symmetric polynomial
in that

f(x1, x2, . . . , xk, xk+1) = f(xσ(1), xσ(2), . . . , xσ(k), xσ(k+1)) .
(4)
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At first, every node should have k credentials, which
are positive and pairwise different integers. Suppose node u
has credentials (u1, u2, . . . , uk) and node v has credentials
(v1, v2, . . . , vk). Before node deployment, we can assign a
polynomial share f(u1, u2, . . . , uk, xk+1) to u and another
share f(v1, v2, . . . , vk, xk+1) to v. By assigning polynomial
shares, we mean that the coefficients of t-degree univariate
polynomials f(u1, u2, . . . , uk, xk+1) and f(v1, v2, . . . , xk+1)
are loaded into nodes u’s and v’s memory, respectively.

If the credentials of node u and node v have only one
element different, i.e.,

1) for some i ∈ [1, k], ui �= vi, and
2) for j = 1, 2, . . . , k, j �= i, uj = vj = cj ,

then node u and node v can have a shared key. Node u can
take vi as the input to its own share f(u1, u2, . . . , uk, xk+1),
and node v can also take ui as the input to its share
f(v1, v2, . . . , vk, xk+1). Due to the polynomial symmetry, the
desired shared key between nodes u and v has been established
as

Kuv = f(c1, c2, . . . , ci−1, ui, ci+1, . . . , ck, vi)
= f(c1, c2, . . . , ci−1, vi, ci+1, . . . , ck, ui) . (5)

In fact, node u and node v achieve the key agreement by a
marginal t-degree bivariate polynomial, i.e.,

fi(xi, xk+1) = f(c1, c2, . . . , ci−1, xi, ci+1, . . . , ck, xk+1) .
(6)

where i ∈ {1, 2, . . . , k}.

III. KEY AGREEMENT

Our key agreement scheme has three components, i.e. share
distribution, direct key calculation, indirect key negotiation. In
the share distribution part, partial information of a global t-
degree (k+1)-variate polynomial is distributed among nodes.
All the partial information cannot reveal the global polynomial
but can help key agreement between nodes. Some nodes may
calculate a shared key directly if they have some partial
information in common. The indirect key negotiation part tells
how to negotiate a shared key between two nodes with help
of other nodes if they cannot calculate a direct key.

A. Network Model

We assume each node is identified by an index-tuple
(n1, n2, . . . , nk), where ni = 0, 1, . . . , Ni − 1, i ∈
{1, 2, . . . , k}, and we may use the index-tuple as the node
ID. Hence each node is mapped into a point in a k-dimension
space S1×S2×· · ·×Sk, where ni ∈ Si ⊂ Z and the cardinality
|Si| = Ni, for i = 1, 2, . . . , k. The maximum number of nodes
that the network can consist of is N =

∏k
i=1 Ni.

Our scheme targets at the key agreement between two end
nodes. Hence we assume the underlying routing protocol can
provide connectivity between any pair of nodes in the network.

B. Adversary Model

Due to the broadcast characteristics of radio communica-
tions, adversaries can easily eavesdrop any messages, either
non-encrypted or encrypted, transmitted over the air between

nodes. Moreover, due to cost constraints, it is also unrealistic
and uneconomical to employ tamper-resistant hardware to
secure the cryptographic materials in each individual node.
Hence adversaries may capture any node and compromise
the secrets stored in the node. Furthermore, adversaries can
use the compromised secrets to derive more secrets shared
between other non-compromised nodes. It means that the
node compromise attack is unavoidable. What we can do
is to reduce the impact on other normal nodes as much as
possible. In our scheme, we try to reduce the probability
that the keys shared between non-compromised nodes are
exposed when some nodes have already been compromised. To
further evaluate the impact of node compromise, we assume
the probability of the compromise of a node is p.

C. Share Distribution

Before network deployment, a global t-degree (k + 1)-
variate symmetric polynomial is constructed as stated in
Section II. This polynomial is used to derive shares for sensor
nodes.

To achieve key agreement, every node n should have k
credentials (c1, c2, . . . , ck), which are positive and pairwise
different as required in Section II. These credentials can be
created and preloaded into nodes before deployment. However,
it requires additional memory space per node. Fortunately, the
k credentials can be derived from the k indices in node ID
(n1, n2, . . . , nk) by a bijection, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1 = n1 + 1
c2 = n2 + 1 + N1

c3 = n3 + 1 + N1 + N2

...
ck−1 = nk−1 + 1 + N1 + · · · + Nk−2

ck = nk + 1 + N1 + · · · + Nk−1

, (7)

where ni = 0, 1, . . . , Ni − 1 for i = 1, 2, . . . , k. Thus, the k
credentials are drawn from different zones in that c1 ∈ [1, N1]
and ci ∈ [N1 + · · · + Ni−1 + 1, N1 + · · · + Ni] for
i = 2, . . . k, which guarantee they are positive and pairwise
different (Fig. 1).

For a node (n1, n2, . . . , nk), a polynomial share

fk+1(xk+1) = f(c1, c2, . . . , ck, xk+1) =
t∑

ik+1=0

bik+1 x
ik+1
k+1 (8)

is calculated, where

bik+1 =
t∑

i1=0

t∑
i2=0

· · ·
t∑

ik=0

ai1,i2,...,ik,ik+1 ci1
1 ci2

2 · · · cik

k (9)

and (c1, c2, . . . , ck) is mapped from (n1, n2, . . . , nk) accord-
ing to the equations (7). Obviously, the share is a t-degree
univariate marginal polynomial of the global polynomial and
has t + 1 coefficients. Then the polynomial share is assigned
to the node. Here, the node only knows the t + 1 coefficients
of the univariate polynomial share, but not the coefficients
of the original (k + 1)-variate polynomial. Therefore, even
if the marginal bivariate polynomial is exposed, the global
polynomial is still safe if the degree t is chosen properly.
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Fig. 1. Construction of positive and pairwise different credentials according to Equation (7).

D. Direct Key Calculation

According to Section II, two nodes can calculate a shared
key if their credentials have k − 1 elements in common. Due
to the one-to-one mapping in the equations (7), two nodes u
with ID (u1, u2, . . . , uk) and v with ID (v1, v2, . . . , vk) can
directly calculate a shared key without any interaction if their
IDs have k − 1 indices in common.

Suppose that the i-th indices of their IDs are different. Then
node u can take vi + 1 + N1 + · · · + Ni−1 as the input
to its own share f(c1, c2, . . . , ck, xk+1), and node v can as
well take ui + 1 + N1 + · · · + Ni−1 as the input to its share
f(c1, c2, . . . , ck, xk+1). Due to the polynomial symmetry, the
desired shared key between nodes u and v has been established
as

Kuv = f(c1, . . . , ui + 1 + N1 + · · · + Ni−1,

. . . , ck, vi + 1 + N1 + · · · + Ni−1)
= f(c1, . . . , vi + 1 + N1 + · · · + Ni−1,

. . . , ck, ui + 1 + N1 + · · · + Ni−1) . (10)

Because all node credentials of u and v are drawn from
different subspaces where any two subspaces have no inter-
section and ui �= vi, the k + 1 credentials used to calculate
the shared key are pairwise different. Therefore the shared key
calculated by the nodes u and v is unique, i.e., other nodes do
not know the shared key. Any two nodes can directly calculate
a unique shared key without any negotiation if there is only
one mismatch between their k-tuple IDs.

E. Indirect Key Negotiation

If two nodes have more than one mismatch between their
IDs, they cannot calculate a shared key directly. However, they
can rely on some intermediate nodes as agents to negotiate a
shared key.

Suppose two nodes u and v have j (j ≥ 2) mismatches in
their IDs. For simplicity, let us omit all the same indices and
mark the two nodes with those mismatching indices, say node
u

(ui1 , ui2 , . . . , uij )

and node v

(vi1 , vi2 , . . . , vij ) ,

where i1, i2, . . . , ij ∈ [1, k] and are pairwise different. Then
they can negotiate a shared key along a secure path consisting
of agents as

(vi1 , ui2 , ui3 , . . . , uij−1 , uij ) ,
(vi1 , vi2 , ui3 , . . . , uij−1 , uij ) ,
(vi1 , vi2 , vi3 , . . . , uij−1 , uij ) ,

...
(vi1 , vi2 , vi3 , . . . , vij−1 , uij ) ,

because all neighboring nodes along the path have direct keys.
It is worth noting that there are many secure paths between
node u and node v. Another example is

(ui1 , ui2 , ui3 , . . . , uij−1 , vij ) ,
(ui1 , ui2 , ui3 , . . . , vij−1 , vij ) ,

...
(ui1 , ui2 , vi3 , . . . , vij−1 , vij ) ,
(ui1 , vi2 , vi3 , . . . , vij−1 , vij ) .

The existence of multiple paths indicates the strong resilience
of our scheme in the face of node compromise.

IV. ANALYSIS

In this section, we will carry out the analysis of our scheme
when two nodes have j (j ≥ 2) mismatches in their IDs.

A. Number of Secure Paths

The number of secure paths can be calculated as fol-
lows. Each secure path is constructed in j steps. Be-
gin from (ui1 , ui2 , ui3 , . . . , uij−1 , uij ). At each step one of
the indices is replaced with the corresponding one from
(vi1 , vi2 , vi3 , . . . , vij−1 , vij ), and thus we can get an agent at
the step. At the first step, any of the j indices of node u may
be replaced, so there are j choices. The second step has j −1
choices. At the j-th step, there is only one choice left. Hence,
the total number of secure paths can calculated as

P = j · (j − 1) · · · · 2 · 1 = j! . (11)

B. Number of Disjoint Secure Paths

Out of the P secure paths some are disjoint, i.e., any two
disjoint paths have no common agent nodes except the two end
nodes u and v. For nodes u and v which have j mismatches
in their IDs, the number of agent nodes that are the neighbors
of the end nodes u or v is j. Hence the number of disjoint
secure paths is

Pd = j . (12)

C. Number of Agent Nodes

For nodes u and v who have j mismatches in their IDs,
each agent node along a secure path between the two nodes
has an ID constructed in the following way. Randomly select
l positions from j mismatches between u’s and v’s IDs, draw
indices from u’s ID at those positions, and draw indices from
v’s ID at the positions that are not selected. The ID of the
agent node consists of the two sets of selected indices and the
common indices between u’s and v’s ID. Hence the number
of agent nodes can be calculated as

A =
(

j

1

)
+
(

j

2

)
+ · · · +

(
j

j − 1

)
= 2j − 2 . (13)
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n1

n2

n3 (u1,u2,u3)

(v1,v2,v3)

(v1,u2,u3)

(v1,u2,v3)

(u1,v2,u3)

(u1,v2,v3)(u1,u2,v3)

(v1,v2,u3)

Fig. 2. An example of a key graph, where nodes (u1, u2, u3) and
(v1, v2, v3) and all 6 agent nodes form a cube in the 3-dimension ID space.

D. An Example

An example of 3-dimension ID space is given in Fig. 2.
Suppose node (u1, u2, u3) needs to establish a shared key
with node (v1, v2, v3), where all 3 indices in their IDs are
mismatching. They can determine 6 agent nodes. All these 8
nodes form a cube in the 3-dimension ID space. There are
6 paths from node u to node v, in which 3 are disjoint. For
example, 3 disjoint paths are

(u1, u2, u3) → (v1, u2, u3) → (v1, v2, u3) → (v1, v2, v3) ,

(u1, u2, u3) → (u1, u2, v3) → (v1, u2, v3) → (v1, v2, v3) ,

and

(u1, u2, u3) → (u1, v2, u3) → (u1, v2, v3) → (v1, v2, v3) .

Obviously, the above set of disjoint paths is not unique.

E. Security of Direct Keys

All nodes in the network hold partial information of one
t-degree (k+1)-variate polynomial to achieve key agreement.
During the network lifetime, some nodes may be compromised
and then collaborate to expose the polynomial with the partial
information they hold whereby to directly calculate keys
between other nodes. Obviously, the polynomial degree t is an
indication of the difficulty to expose the polynomial, and it is
directly related to the security performance. By choosing the
value of t properly, we can guarantee that no matter how many
nodes are compromised, their collaboration cannot expose
direct keys held between other non-compromised nodes. In
this section, we will investigate how to choose the polynomial
degree.

1) Node Compromise in One Subspace: Let us consider
the malicious collaboration in one subspace. Though in this
case the collaboration can only expose the direct keys between
the non-compromised nodes in the same subspace, this is
the easiest attack because adversaries only need to keep
compromising the nodes in one subspace. If they randomly
choose a node to compromise, they have to compromise more

nodes to find all nodes in one subspace, which can require
more efforts.

Suppose there are Ni nodes in the subspace Si, in which
all nodes have same ID indices in other subspaces, for i =
1, 2, . . . , k. Any pair of nodes in Si can achieve key agreement
with a t-degree bivariate polynomial fi(xi, xk+1), which is
the marginal of the global t-degree (k+1)-variate polynomial
f(x1, . . . , xi, . . . , xk, xk+1) (refer to Section II). It has been
shown in [3] that a t-degree bivariate polynomial is t-secure
in that the coalition between less than (t + 1) nodes holding
shares of the t-degree bivariate polynomial cannot reconstruct
it. To guarantee any pair of nodes in Si have a direct key
that is unsolvable by the other Ni − 2 nodes, an (Ni − 2)-
secure bivariate polynomial should be used. Hence, the degree
of polynomial should satisfy

0 ≤ Ni − 2 ≤ t , i = 1, 2, . . . , k . (14)

2) Node Compromise in all Subspaces: Even when all
nodes in one subspace are corrupted, they cannot expose the
global t-degree (k + 1)-variate polynomial because they only
know a marginal of the global polynomial. In order to expose
the direct key belonging to any pair of non-compromised
nodes, adversaries must compromise enough nodes in all
subspaces to expose the global polynomial.

Suppose all Ni nodes in subspace Si are compromised, they
can be used to construct Ni(Ni+1)

2 equations, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2(u1, u1) = K11

...
f2(u1, uNi) = K1Ni

f2(u2, u2) = K22

...
f2(uNi , uNi) = KNiNi

, (15)

where uj for j = 1, 2, . . . , Ni are the ID indices in subspace
Si. Kj1,j2 , j1 �= j2 is the direct key between the j1-th and the
j2-th nodes in the subspace, and Kj,j is calculated by inputting
the i-th ID index of the j-th node into its own polynomial
share.

If all the subspaces are compromised, the total number of
equations that adversaries can construct is

Ne =
N

N1
· N1(N1 + 1)

2
+

N

N2
· N2(N2 + 1)

2
+

· · · +
N

Nk
· Nk(Nk + 1)

2

=
1
2
(

k∏
i=1

Ni)(
k∑

i=1

Ni + k) , (16)

where the total number of nodes in the network is N = N1 ·
N2 · · ·Nk.

The number of coefficients of a t-degree (k + 1)-variate
symmetric polynomial is [3]

Nc =
(

t + k + 1
k + 1

)
. (17)
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TABLE I

BOUND AND PRECISE RATIOS BETWEEN t∗ AND N1

k r t∗/N1

1 1 1
2 1.8171 1.7715
3 2.4495 2.3919
4 2.9926 2.9219
5 3.4878 3.4058

Therefore, to guarantee perfect security of the global poly-
nomial, the following condition should be satisfied, i.e.,

Ne ≤ Nc =⇒ 1
2
(

k∏
i=1

Ni)(
k∑

i=1

Ni + k) ≤
(

t + k + 1
k + 1

)
. (18)

3) Choose Degree t: Given the number of nodes in the
network, any polynomial degree t satisfying the aforemen-
tioned conditions (14) and (18) can be chosen. Each node
needs to keep a t-degree univariate polynomial, which has
t + 1 coefficients. Thus, to minimize memory cost per node,
we should use the polynomial which has minimum degree
satisfying the aforementioned conditions.

Here we consider a common case where Ni = N1 for i =
1, 2, . . . , k, i.e., all subspaces have the same number of indices.
Thus, the inequality in (18) can be changed to

k

2
N1

k(N1 + 1) ≤
(

t

k + 1
+ 1
)(

t

k
+ 1
)(

t

k − 1
+ 1
)

· · ·
(

t

2
+ 1
)

(t + 1) . (19)

We can prove that when

t ≥ N1
k+1
√

k(k + 1)!/2 (20)

the inequality (19) can be satisfied.
Proof : (

t

k + 1
+ 1
)(

t

k
+ 1
)
· · ·
(

t

2
+ 1
)

(t + 1)

>
tk+1

(k + 1)!
+

(k + 1)(k + 2)
2(k + 1)!

tk

≥
(
N1

k+1
√

k(k + 1)!/2
)k+1

(k + 1)!
+

(
N1

k+1
√

k(k + 1)!/2
)k (k + 1)(k + 2)

2(k + 1)!

=
k

2
N1

k+1 +
(

k

2

) k
k+1 (k + 1)(k + 2)

2 k+1
√

(k + 1)!
N1

k

>
k

2
N1

k+1 +
(k + 1)(k + 2)

2 k+1
√

(k + 1)k+1
N1

k

=
k

2
N1

k+1 +
k + 2

2
N1

k

>
k

2
N1

k(N1 + 1) , (21)

where k ≥ 2. �
Because

(
t+k+1
k+1

)
is a monotonic increasing function of

t, the solution of (19) should be [t∗,∞), where t∗ is the
minimum degree satisfying (19). Because the solution of (20)
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Fig. 3. The ratio of minimum required polynomial degree to number of
indices in one subspace.

is the subset of the solution of (19), the minimum global
polynomial degree t∗ can be bounded as

t∗ ≤ r · N1 , (22)

where ratio

r = k+1

√
k(k + 1)!

2
. (23)

The second column in Table I gives some bound ratios when
k is small. Fig. 3 illustrates the precise ratio of t∗ to N1

respect to N1. We can see when N1 becomes large, the value
of t∗ becomes stable and the real ratio is bounded by r. Some
average ratios are given in the third column in Table I when k
is small. Obviously when the condition in the inequality (18)
is satisfied, the condition in the inequality (14) is automatically
satisfied.

F. Security of Indirect Keys

For nodes u and v which have j mismatches in their IDs,
the secure path between them consists of j − 1 agent nodes.
Suppose the probability that any node is corrupted is p. The
probability that the exchanged indirect shared key between u
and v is exposed can be calculated as

Pc = 1 − (1 − p)j−1 . (24)

Because the maximum number of mismatches in k-
dimension ID space is k, the maximum probability that the
exchanged key is exposed is

Pc,max = 1 − (1 − p)k−1 . (25)

Obviously, by tuning k, our scheme can achieve a trade-off
between security and memory cost in large scale networks.

G. Memory Cost

The memory cost per node is mainly related to two
parts, i.e., one for node ID and the other for polynomial
share. Remind that each node n is identified by a k-tuple
(n1, n2, . . . , nk). All indices can be obtained by dividing its
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node ID into k fields. In order to do this, each node needs to
know how many bits are allocated for each field. Hence each
node should keep the values of Ni for i = 1, . . . , k. The total
number of bits should be used is

MID =
k∑

i=1

log Ni = log N . (26)

When all subspaces are equal sized, the memory cost for node
ID is

MID = k log N1 . (27)

In addition, each node in the network keeps a t-degree
univariate polynomial share, which has t+1 coefficients drawn
from the finite field Fq. With the bound calculated in the
previous section, we know the memory cost per node for
polynomial share can be bounded as

Mp ≤
(

k
√

N
k+1

√
k(k + 1)!

2
+ 1

)
log q . (28)

Due to the large value of q, usually we have MID � Mp.
Thus, the total memory cost is

M = MID + Mp

≤ log N +

(
k
√

N
k+1

√
k(k + 1)!

2
+ 1

)
log q

∼ k
√

N r log q . (29)

Obviously, compared with conventional probabilistic distrib-
uted models, which have memory cost at the level of O(N),
our scheme has very small memory cost per node, which is
on the order O( k

√
N) when k is fixed.

H. Computation Overhead

Our scheme is based on the symmetric key technology.
Each sensor node can calculate a key by using a t-degree
univariate polynomial, which is a share of a global polyno-
mial. To calculate a key, each node should calculate 2t − 1
modular multiplications over F

∗
q : t−1 for x2, . . . , xt and t for

b1x, b2x
2, . . . , btx

t. Under the symmetric key technology, the
length of q is usually 64 bits or 128 bits. Suppose the total
number of nodes is N and each subspace has the same number
of nodes. We can estimate that the number of 64-bit or 128-bit
modular multiplications each node needs to calculate is

C1 = 2t∗−1 ≤ 2r
k
√

N+1 = 2 k+1

√
k(k + 1)!

2
k
√

N+1 . (30)

Compared with conventional probabilistic schemes [9]–[18],
which need computation on several polynomials, our scheme
is more efficient.

I. Communication Overhead

As the establishment of direct keys between a pair of nodes
does not require handshakes between them, the major com-
munication overhead lies with the establishment of indirect
keys. Just like most existing security schemes that require
handshakes between end nodes to negotiate a shared key, this
overhead is inevitable. However, few analytical results about
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Fig. 4. The communication overhead to number of indices in one subspace.

the overhead are given by current schemes. Most of them rely
on simulation to measure communication overhead. Here, we
give an analytical estimation of the communication overhead
of our scheme.

For a pair of nodes with i, for i = 2, . . . , k, mismatches
in their IDs, a secure path between them involves i− 1 agent
nodes. If the average path length between a pair of nodes that
have only one mismatch in their IDs is L, the average path
length between a pair of nodes with i mismatches in their
IDs is iL. The probability that two nodes have i mismatches
in their IDs is

(
k
i

)
( k
√

N − 1)i/(N − 1). Hence the average
communication overhead can be estimated as

C2 =
k∑

i=2

(
k
i

)
( k
√

N − 1)i

N − 1
iL

=
L( k

√
N − 1)

N − 1

(
k∑

i=2

(
k

i

)
xi

)′

x

, x = k
√

N − 1

=
k( k

√
Nk−1 − 1)( k

√
N − 1)

N − 1
L

=
k(Nk−1

1 − 1)(N1 − 1)
Nk

1 − 1
L , (31)

where N = Nk
1 . Several cases when k is small are depicted

in Fig. 4.

V. COMPARISONS WITH RELATED WORK

Centralized schemes, such as SPINS [1], need a trusted
server to facilitate key agreement between any two nodes.
The trusted server can be a potential failure point. Distributed
methods are more secure. A simple method is the full pairwise
key distribution, in which each pair of nodes in a network of N
nodes is preloaded with a distinct symmetric key. Each node,
however, must keep N−1 symmetric keys. Another two basic
distributed methods are proposed by Blom [2] and Blundo et
al. [3], which feature the same amount of memory cost as the
full pairwise key approach. Those distributed methods lack
scalability and thus only suitable in small networks.

Probabilistic schemes [4]–[22] can provide a certain level
of scalability with the tradeoff that they can not guarantee
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that every pair of nodes establish a shared key. The memory
cost of those schemes increases linearly with respect to the
total number of nodes if they need to achieve a certain
level of security or communication efficiency [23]. Moreover,
those schemes are targeted at the key establishment between
neighboring nodes, while our scheme can achieve the end-to-
end key agreement.

Combinatorial design techniques are proposed in [24], [25].
They can ensure key sharing between any pair of nodes. In
their schemes, however, each key is reused by many sensor
nodes. This leads to poor resilience to node compromise in
that one compromised node can expose keys belongs to other
noncompromised nodes. In addition, the memory cost of their
schemes is roughly O(

√
N) where N is the total number of

nodes, while the memory cost of our scheme can be O( k
√

N),
which is more scalable.

PIKE [23] organizes the network into a 2-dimension grid,
and assigns each pair of nodes along each dimension a
unique key. It is similar to our scheme in terms of security
and communication overhead if we extend PIKE into a k-
dimension space. Another similar work is described in [26],
which also uses a k-dimension grid to model a network and
k multivariate polynomials to achieve key agreement. Their
memory cost, however, is at the level of k( k

√
N − 1) where

N is the total number of nodes. In comparison, our scheme
can achieve more memory efficiency when k increases.

Another merit of our scheme is that the communication
overhead tends to be a constant (∝ L, where L is the
average path length between a pair of nodes that have only
one mismatch in their IDs) when the network size is larger
than a certain threshold (refer to Fig. 4). This means our
scheme can provide a good scalability. On the other hand, the
communication overhead can be reduced if we could reduce
the value of L. We have shown in [27], [28] that in static
networks (such as sensor networks) deployment information
can be used to reduce the value of L and thus reduce the
communication overhead.

We [29] also developed node authentication and key estab-
lishment schemes based on the elliptic curve cryptography,
which can provide higher security level than symmetric ones,
but have more overhead.

VI. SECURITY ENHANCEMENT OF INDIRECT KEYS

In our scheme, direct keys are safe because they are
calculated by end nodes without any interaction. On the other
hand, indirect keys may be exposed during their transmission
between end nodes if any intermediate agent node is com-
promised. However, the existence of multiple secure paths be-
tween two nodes can be utilized to enhance the confidentiality
of indirect keys. The idea is to transform an indirect key into
many pieces and transmit those pieces through multiple secure
paths in stead of one such that the key can be recovered if
and only if all those secure paths are corrupted [30].

Suppose node u needs to negotiate an indirect key with v.
Node u may randomly select a key Kuv and construct a new
polynomial as

g(x) = Kuv + k1x + k2x
2 + · · · + ksx

s . (32)

Then, Shamir’s (s+1, T ) threshold secret sharing scheme [31]
can be applied. Specifically, T shares can be calculated as

g(1), g(2), . . . , g(T ) , (33)

where T ≥ s + 1.
Next, node u transmits the T shares to node v through

multiple secure paths by following the method proposed in
[30]. Suppose u and v have j mismatches in their IDs, which
means there are j disjoint secure paths between them. Then
node u may transmit T/j shares along each secure path to
node v. Once node v gets s + 1 out of T shares, it can
recover the polynomial g(x) and get the key Kuv by Lagrange
interpolation.

The value T should be chosen properly such that the
polynomial g(x) cannot be recovered even if j − 1 out of
j secure paths are corrupted. Thus T should satisfy{

T ≥ s + 1
T − T/j < s + 1 (34)

=⇒ s + 1 ≤ T <
j(s + 1)
j − 1

. (35)

By following the procedure, the key Kuv may be exposed
only if all j secure pathes are corrupted. Hence the probability
of the key exposal is reduced to

P ′
c = Pc

j = (1 − (1 − p)j−1)j . (36)

The tradeoff here is the increase of communication over-
head. However, we can choose the number of secure pathes
here to achieve a certain level of security while maintaining
an acceptable communication overhead.

VII. CONCLUSION

The dimension of the ID space k is a parameter we can
control to achieve the trade-off between overhead per node
and security performance. Conventional schemes can hardly
be scalable due to their large memory cost. Our scheme is
scalable in that the memory cost per node only increases
proportionally to the k-th root of the total number of nodes
while the security only decreases gradually. Our scheme is
also deterministic compared with most probabilistic schemes.
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