
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009 5225

A Fairness-Aware Congestion Control Scheme
in Wireless Sensor Networks

Xiaoyan Yin, Student Member, IEEE, Xingshe Zhou, Member, IEEE,
Rongsheng Huang, Student Member, IEEE, Yuguang Fang, Fellow, IEEE, and Shining Li

Abstract—The event-driven nature of wireless sensor networks
(WSNs) leads to unpredictable network load. As a result, conges-
tion may occur at sensors that receive more data than they can
forward, which causes energy waste, throughput reduction, and
packet loss. In this paper, we propose a rate-based fairness-aware
congestion control (FACC) protocol, which controls congestion
and achieves approximately fair bandwidth allocation for different
flows. In FACC, we categorize intermediate relaying sensor nodes
into near-source nodes and near-sink nodes. Near-source nodes
maintain a per-flow state and allocate an approximately fair rate to
each passing flow. On the other hand, near-sink nodes do not need
to maintain a per-flow state and use a lightweight probabilistic
dropping algorithm based on queue occupancy and hit frequency.
Our simulation results and analysis show that FACC provides bet-
ter performance than previous approaches in terms of throughput,
packet loss, energy efficiency, and fairness.

Index Terms—Congestion control, media access control (MAC),
quality of service (QoS), wireless sensor networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been widely
applied to habitat monitoring [1], healthcare [2], object

tracking [3], battlefield surveillance, etc. They are different
from traditional wireless networks in several aspects [4]. Com-
monly, sensor nodes are restricted in computation, storage,
communication bandwidth, and, most importantly, energy sup-
ply. Extensive studies have been carried out in recent years on
the physical layer [1], [5], the media access control (MAC)
layer [6]–[8], and the network layer [9]–[11].

The event-driven nature of WSNs leads to unpredictable
network load. Typically, WSNs operate under idle or light load
and then suddenly become active in response to a detected
event. When the events have been detected, the information in
transit is of great importance. However, the bursty traffic that
results from the detected events can easily cause congestion in
the networks, particularly in high-rate applications. In WSNs,

Manuscript received April 1, 2009; revised June 5, 2009. First published
July 14, 2009; current version published November 11, 2009. The work of
X. Yin, X. Zhou, and S. Li was supported in part by the National Key
Technology R&D Program of China under Grant 007BAD79B02 and Grant
2007BAD79B03. The work of R. Huang and Y. Fang was supported in part by
the U.S. National Science Foundation under Grant CNS-0721744. The review
of this paper was coordinated by Dr. G. Cao.

X. Yin, X. Zhou, and S. Li are with the School of Computer Sci-
ence, Northwestern Polytechnical University, Xi’an 710129, China (e-mail:
SCxiaoyanyin@gmail.com; zhouxs@nwpu.edu.cn; dtlsn278@yahoo.com.cn).

R. Huang and Y. Fang are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32601-6130 USA (e-mail:
rshuang@ufl.edu; fang@ece.ufl.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2009.2027022

when data converge toward the sink, i.e., the base station,
congestion is more likely to happen at sensors that receive more
data than they can forward. Therefore, congestion control is a
critical issue in WSNs.

In addition, to let the sink successfully receive the data from
different sensors (i.e., acoustic, video, and vibration sensors),
we need to consider the fairness issue among the source nodes.
For example, in the battlefield surveillance application, each
sensor continuously measures its vicinity at a rate of several
hundred samples per second. When a significant event (a tank
enters the monitored field) is detected by acoustic or pressure
sensor nodes, every sensor transmits a time series of recorded
samples to the base station. To acquire a multidimensional view
of the battlefield, all source sensors should transmit data to
the base station in a fair fashion. Energy efficiency is also a
critical issue in WSNs because of the restricted power supply.
Typically, sensor nodes are battery driven and, hence, have
to operate on a limited energy budget. Furthermore, battery
replacement is impossible in many sensor networks due to the
inaccessible or hostile environments.

Congestion control in WSNs remains as a hot topic. Some
papers [12]–[15] provide reliable end-to-end data delivery from
every sensor to a sink. A few papers [16]–[20] discuss con-
gestion control mechanisms. However, how to ensure fairness
among sensors is not well addressed by previous research. In
event-to-sink reliable transport (ESRT) [13], by monitoring the
congestion-notification bit carried in the packet header, the base
station decides a common rate for all sensors so that no packet
will be dropped in the network. This approach achieves fairness
but is too pessimistic because every sensor must adapt to the
worst rate in the most congested area.

In this paper, we propose a new congestion-control scheme
that achieves an approximately fair bandwidth allocation. In-
tuitively, we require that each flow receives a fair share of the
available bandwidth according to its generating rate. However,
in WSNs, both the available bandwidth and the number of
active flows are time varying. Thus, it is very impractical to
allocate a fixed rate to each flow. To achieve an approximately
fair bandwidth share, we develop a novel mechanism, namely,
fairness-aware congestion control (FACC). In FACC, to adjust
the sending rate of each flow as early as possible and save the
precious resource at the nodes close to the sink, we categorize
all intermediate sensor nodes into near-source nodes and near-
sink nodes. Near-source nodes maintain a per-flow state and
allocate an approximately fair rate to each passing flow by
comparing the incoming rate of each flow and the fair band-
width share. On the other hand, near-sink nodes do not need

0018-9545/$26.00 © 2009 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

5226 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

to maintain a per-flow state and use a lightweight probabilistic
dropping algorithm based on queue occupancy and hit frequen-
cy. The reason for this classification is that we can delicately
design a strategy to assign an appropriate rate to the near-source
nodes and explore a simple strategy on the near-sink nodes to
save energy and avoid congestion at the same time.

The rest of this paper is organized as follows. Section II sur-
veys the related works. Section III discusses the network model
and the target problem. Section IV introduces the proposed
FACC scheme. A discussion is presented in Section V. The
performance evaluation of FACC is carried out in Section VI.
Finally, we conclude this paper in Section VII.

II. RELATED WORKS

In the literature, many works have been conducted on con-
gestion mitigation, congestion control, and reliable transmis-
sion in WSNs. Existing works can generally be classified into
three groups.

The first group consists of transport protocols that provide
end-to-end reliability without congestion control. Reliable mul-
tisegment transport (RMST) [12] is an example of these proto-
cols. RMST is a hop-by-hop reliable transport protocol built on
top of directed diffusion in which packet loss is recovered hop
by hop using caches in the intermediate nodes. RMST guaran-
tees reliability but is designed for more capable sensor nodes.
In addition, in RMST, the rate at which data are transmitted by
a node must be manually set by a system administrator.

The second group consists of centralized congestion control
schemes. ESRT in WSNs [13] allocates transmission rates to
sensors such that an application-specific number of sensor read-
ings are received at the base station, which prevent the network
from congestion. ESRT’s rate allocation is centrally computed,
i.e., the base station periodically counts the number of received
sensor readings and retasks the sensors by broadcasting a
new transmission rate. ESRT uses a sophisticated control law
based on empirically derived regions of operation and does
not attempt to find an efficient and optimal rate allocation.
Unlike ESRT, the work of Kim et al. [14] uses a simple sink-
initiated control protocol to coordinate transmissions with end-
to-end selective negative acknowledgments and retransmissions
to provide reliability. Paek and Govindan [15] place all the
congestion-detection and rate-adaptation functionality in the
sinks and use end-to-end explicit loss recovery to achieve
reliable transport control.

The third group of protocols consists of distributed conges-
tion control schemes. Fusion [16] uses the queue length to
measure the level of congestion and integrates three techniques:
hop-by-hop flow control, rate control, and prioritized MAC.
With this combination, Fusion achieves higher goodput and bet-
ter fairness with heavy loads than previous schemes. Conges-
tion detection and avoidance (CODA) in sensor networks [17]
is another congestion-mitigation strategy, which uses slightly
different mechanisms from Fusion. It senses both channel and
buffer occupancies to measure the congestion level. CODA
considers two strategies: open-loop backpressure for transient
congestion and end-to-end acknowledgment based approach for
persistent congestion. Unlike Fusion, CODA does not explic-

Fig. 1. Simple example of rate allocation.

itly focus on per-source fairness. Interference-aware fair rate
control [21] is another distributed rate allocation scheme that
employs schemes to achieve fair and efficient rate limiting. It
uses a tree rooted at each sink to route all data. When conges-
tion occurs, the rates of the flows on the interfering trees are
throttled. However, these schemes do not differentiate between
intermediate nodes. Furthermore, in a large network that is un-
der congestion, our approach can allocate the exact bandwidth
share to each passing flow and make the best of resource.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

A sensor network consists of a large number of sensors and
a base station, i.e., a sink. The sink is connected via an external
network to a data-collection center. We assume that the trans-
ceivers of sensors operate at adjustable transmission rates and
that each source sensor generates data at the same original rate.

The sensors share the same wireless medium, and each
packet is transmitted as a local broadcast in the neighborhood.
Two sensors are neighbors if they are in the transmission range
of each other and can directly communicate with each other.
We assume a MAC protocol, i.e., IEEE 802.11, which ensures
that, among the neighbors in the local broadcast range, only the
intended receiver keeps the packet and other neighbors discard
the packet. Data packets are sent from source nodes, which can
detect the event and generate data packets to the base station.
We assume that all data packets have the same size and that
sensors are static after initial deployment.

Consider a network of N sensor nodes, where each node is
uniquely identified by an integer in the range of [1, N]. Each
sensing node always has traffic to send. The traffic originated by
source node i is denoted by the ith flow, i.e., fi. We seek to as-
sign a fair and efficient rate ri to fi (or, equivalently, to node i).
Specifically, ri is the transmission rate of flow fi and does not
include the rate at which node i forwards traffic.

The key to congestion control is to make sure that the total
rate at which every sensor node transmits data is equal to or
less than its available bandwidth. As shown in Fig. 1, the sensor
nodes with solid dots are source nodes, i.e., nodes a, c, e, and
f , and the rates at which they generate data are ra, rc, re, and
rf , respectively. For sensor node c, we assume that its available
bandwidth is Bc. Obviously, fa, fc, fe, and ff need to get
through node c. The number of active flows, where node c is
engaged, should be different from the number of flows going
through it. For those flows either originated or terminated at
a node, the node counts each as one flow, whereas for those
flows only passing through the node, the node counts each as
two flows, i.e., one in and one out. Therefore, 2ra + rc + 2re +
2rf ≤ Bc. Similarly, 2ra + 2rf ≤ Bb. Consider the scenario
that an object entering a field triggers a large number of sensors

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: FAIRNESS-AWARE CONGESTION CONTROL SCHEME IN WIRELESS SENSOR NETWORKS 5227

to track its movement. How fast should those sensors send data
to the sink? If the generating rate is too low, the system may
lose track of the object. If the generating rate is too high, it may
cause congestion. Suppose that the sensors initially attempt
to generate as much as they can. When congestion occurs at
an intermediate sensor x, by our scheme, the generating rates
of source nodes are forced to slow down, in accordance with
x’s available bandwidth. Eventually, the whole network adapts
toward the maximum congestion-free throughput. Furthermore,
the lower generating rates will alleviate wireless interference
and contention.

B. Target Problem

The network load greatly depends on the total transmission
rate of flows and has a significant impact on packet loss and
energy efficiency. The transmission rate of a flow is determined
by the channel capacity, the activity of the neighbor sensors and
the quality-of-service (QoS) requirements (e.g., lifetime). Thus,
both the sending rates and the network load are time varying
and are hard to measure. Therefore, estimating the sending rate
for each flow and the network load is our first concern.

When the network load exceeds the available bandwidth,
congestion occurs. Congestion has dreadful consequences in
terms of network utilization, energy efficiency, and packet loss
in WSNs. When the offered load goes beyond the critical point
of congestion, fewer bits can be sent with the same amount of
energy, and the throughput is significantly degraded. Moreover,
when a packet is dropped, the energy spent by upstream sensors
on the packet is wasted. The farther the packet has traveled, the
greater the waste is. We should avoid transmitting these packets
bounded to be dropped. Therefore, we adjust the sending rate
for each flow as early as possible to avoid congestion. How to
effectively adjust the sending rate for each flow is our second
concern.

According to the event-driven nature of WSNs, a large
number of flows will be produced when events take place. To
acquire a multidimensional view of the object region, we must
guarantee that each flow transmits its data to the sink in a fair
fashion. However, a collection of sensors generating high-rate
data can easily overwhelm the network such that the network is
unable to operate efficiently. Therefore, how to efficiently and
fairly allocate the rate of each flow is our foremost concern.

IV. FAIRNESS AWARE CONGESTION

CONTROL DESCRIPTION

To avoid transmissions of unnecessary packets that will
otherwise cause a waste of bandwidth and energy, the sending
rate of each flow should be adjusted to an appropriate level as
early as possible. Thus, it is desirable to adjust the sending rate
of each flow at the nodes that are close to source nodes. On the
other hand, in WSNs, the nodes that are close to the sink for-
ward more traffic than other intermediate nodes. Thus, their re-
source and energy are more precious. To adjust the sending rate
of each flow as early as possible and save the scarce resource at
the nodes close to the sink at the same time, we categorize all
intermediate sensor nodes into near-source nodes and near-sink

Fig. 2. Logic framework of our scheme.

nodes. Near-source nodes maintain a per-flow state and allocate
an approximately fair rate to each passing flow by comparing
the incoming rate of each flow and the fair bandwidth share.
On the other hand, near-sink nodes do not need to maintain
a per-flow state and use a lightweight probabilistic dropping
algorithm based on queue occupancy and hit frequency.

Our scheme is shown in Fig. 2. First, the near-sink node
sends a warning message (WM) back to the near-source nodes
once a packet is dropped at this node. Second, the near-source
nodes calculate and allocate the approximately fair rate share
for each passing flow. Finally, the near-source node sends a
control message (CM) to notify the designated source node of
the updated sending rate.

A. Differentiation Between Near-Source Nodes and
Near-Sink Nodes

In this paper, we introduce two concepts, i.e., near-source
nodes and near-sink nodes. Just as their names imply, near-
source nodes are those nodes close to source nodes, and near-
sink nodes are those nodes close to the sink.

We use the optional field as our specific label field for
the purpose of differentiation. Every source node sets its label
field (e.g., label = k) for every packet. This label indicates how
far away this packet is from the sensing field. Every forwarding
node updates the label field by subtracting one (label = label −
1) when it receives a packet until the label field equals zero.
During a fixed interval, every intermediate node calculates the
ratio Rp as

Rp =
� of packets (label > 0)
� of total passing packets

. (1)

Intuitively, the larger Rp is, the closer the node is to the source
nodes. Therefore, the intermediate node is a near-source node
if Rp is no less than a threshold Tp (e.g., 90%). Otherwise, the
intermediate node is a near-sink node.

In WSNs, a flow usually traverses a few hops from its source
to the sink. The number of hops can be determined by routing
protocols and may be dynamic. The intermediate nodes in the
path will cooperate with each other to transmit the packet

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

5228 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

to the sink. According to our scheme, these nodes take on
different roles and implement different processes for different
purposes. The differentiation between near-source nodes and
near-sink nodes depends on applications and QoS requirements.
For example, if the complexity on the near-source node and
energy efficiency are concerned, a smaller k will be used to
provide fewer near-source nodes and more near-sink nodes. On
the other hand, if energy is not limited, we can set a larger k to
control possible congestion.

B. Near-Source Node Process

In WSNs, both the available bandwidth and the traffic load
are time varying. It is very complicated to implement fair
resource allocation when considering medium contention and
wireless interference. To allocate the available channel resource
to each node and to each flow passing through that node, we
adopt channel busyness ratio cb [22] as a metric to characterize
the network utilization and congestion status for the IEEE
802.11 MAC. We estimate the available bandwidth resource,
the arrival rate of each flow, and the number of active flows for
the particular node. As a result, we develop a fairness-aware
transmission control mechanism based on the aforementioned
metrics.

1) Estimation of the Available Bandwidth: Channel busy-
ness ratio cb, which is defined as the ratio of time intervals
when the channel is busy due to a successful transmission
or collision to the total time, provides a good early sign of
network congestion. As shown in our previous work [22], the
channel utilization for the optimal point is almost the same
for different numbers of active nodes and packet sizes, i.e.,
95% (with request to send/clear to send). We accordingly set a
threshold, which is denoted by thb, to 92% and leave 3% space
for saturation. After choosing thb, we can estimate the available
bandwidth of each node, which is denoted by BWa, as shown
in [22], as follows:

BWa =
{

0, cb ≥ thb

BW (thb − cb)data/Ts, cb < thb
(2)

where BW is the transmission rate in bits per second for the
DATA packet, data is the average payload size measured by
the channel occupancy time, and Ts is the average time of a
successful transmission at the MAC layer. Therefore, as long as
the channel busyness ratio does not exceed the threshold, the
node will not operate in the overload status, and the available
bandwidth could be used to accommodate more traffic with-
out causing severe MAC contention. Note that the available
bandwidth can be shared by all the nodes in the neighborhood,
including the observed node.

2) Computation of the Flow Arrival Rate: At each near-
source sensor node, we use exponential averaging, as shown in
(3), to estimate the rate of a flow. Let tki be the arrival time of the
kth packet of flow i and l be the packet length. The estimated
rate of flow i, i.e., ri, as shown in [23], is updated when the kth
packet is received as

rk
i =

(
1 − e−

T k
i

K

)
l

T k
i

+ e−
T k

i
K rk−1

i (3)

where T k
i = tki − tk−1

i is the interpacket arrival time, and K is a
constant. The choice of K is critical. First, a small K can make
the system quickly adapt to rate fluctuations, and a large K
filters the noise and avoids potential system instability. Second,
K should be large enough such that the estimated rate remains
reasonably accurate after a packet traverses multiple links.
This is because the delay jitter changes the packet interarrival
pattern, which may result in an increased difference between
the estimated rate and the real rate. To counteract this effect,
as a rule of thumb, K should be one order of magnitude larger
than the delay jitter experienced by a flow over a time interval of
the same size. Finally, K should be no larger than the average
duration of a flow. In [23], it has been shown that, by using
parameter e−(T k

i /K), under a wide range of conditions, the
estimated rate will asymptotically converge to the real rate.

3) Estimation of the Number of Active Flows: For WSNs,
all sensors generate or relay packets. Flows terminate only at
the sink. Since the channel is shared by both incoming and
outgoing traffic, the number of flows J should be different
from the real number of flows. This is because flows passing
through the node occupy twice the channel resource compared
with flows originating or terminating at the node.

We use one bit in the header of the packet as our special
field. It is set only by the source nodes. When the number
of remaining packets is larger than Tc × r, this bit, which
determines whether there are remaining packets in the current
flow to be transmitted in the next period, is set to 1; otherwise,
it is set to 0, where Tc is the control interval, and r is the rate
of the corresponding flow originated at the source node. During
the fixed period Tc, each intermediate node counts the number
of flows N according to the source address and excludes the
packets with special field 0. Thus, J can be estimated as

J =
{

2N + 1, a flow is originated
2N, otherwise.

(4)

4) Transmission Control on Near-Source Nodes:

1) Inter-node resource allocation: According to (2), each
node could calculate the total available bandwidth for its
neighborhood based on the measured channel busyness
ratio in Tc. To determine the available bandwidth of each
node, we assign the channel resource ΔS for each node
proportionally to its current traffic load S in Tc. Noticing
the linear relationship between BWa and BW in (2),
we have

ΔS =
thb − cb

cb
× S. (5)

Since both the incoming and outgoing traffic of each node
consume the same shared channel resource, S should
include the total traffic load (in bytes), i.e., the sum of
the total incoming and outgoing traffic. In Fig. 1, for
example, there are three flows at node c, and the total
traffic for node c is S = 2ra + rc + 2re + 2rf , where ra,
rc, re, and rf are the rates at which source nodes a, c,
e, and f generate data, respectively. When cb < thb, ΔS
is positive, which means that we can increase the traffic
load. In this case, the collision probability is very small,

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: FAIRNESS-AWARE CONGESTION CONTROL SCHEME IN WIRELESS SENSOR NETWORKS 5229

and all the traffic gets through. Thus, the total throughput
is approximately equal to the total traffic load. Since the
available bandwidth is proportional to thb − cb, we may
increase S by such an amount that, after the increase of
ΔS, S is proportional to thb, which is the optimal channel
utilization.

When cb ≥ thb, ΔS is negative, indicating that we
should decrease the traffic load. In this case, the linear
relationship between the available bandwidth and cb no
longer holds, and the collision probability dramatically
increases as the total traffic load increases. In addition,
when the node enters saturation, both the collision prob-
ability and cb achieve the maximum and do not change
as the traffic increases, although the total throughput
decreases. It thus appears that, ideally, we need to ag-
gressively decrease the total traffic load. However, it is
difficult to derive a simple relationship between the traffic
load and cb when cb ≥ thb. We hence use the same linear
function as in the case of cb < thb.

2) Intra-node fair-resource allocation: After calculating
ΔS, i.e., the change in the total traffic, we need to
assign it to all flows passing through that node to achieve
both efficiency and fairness. Obviously, the total available
resource at the node is ΔS + S, i.e., (thb − cb/cb) × S +
S = (thb/cb) × S. Thus, the fair rate share F (t) can be
computed as follows:

F (t) =
thb

cb
× S/J. (6)

3) Transmission control on near-source nodes: To avoid
congestion, we must ensure that the total transmission
traffic is no greater than the instantaneous channel ca-
pacity. Thus, the rate of flow i should be updated by
min(rk

i , F (t)). When rk
i > F (t), the near-source node

sends a CM to notify the corresponding source node of
the updated rate. The CM contains the flow ID, the node
ID, and F (t). When the source node receives the CM, it
immediately resets the sending rate.

We expect that no congestion exists after the source
node updates its rate. On the other hand, to save energy
for near-sink nodes, we take a simple process on near-sink
nodes. Specifically, we should take the feedback from
near-sink nodes into consideration. When a near-source
node receives a WM message from a certain near-sink
node, it implies that the rate of the flow is higher than the
ideal case. Hence, we update the rate for the particular
flow by α × min(rk

i , F (t)) (α is a system parameter, e.g.,
0.9). When rk

i > F (t), the near-source node sends a CM
to the corresponding source node to notify the updated
rate as α × F (t). When rk

i < F (t), the near-source node
sends a CM to the corresponding source node to notify
the updated rate as α × rk

i .

5) Rate Update Strategy of Source Nodes: Every near-
source node computes the fair bandwidth share for each passing
flow. According to our scheme, the near-source node will send
a CM to the corresponding source node when the rate of a
particular flow exceeds the fair bandwidth share or the near-

source node receives a WM from a particular near-sink node.
Thus, every intermediate node and every source node will
receive many CMs, which increases the overhead and may
degrade the system performance.

We assume that there are m hops from the source node to
the sink for flow fi. The rate calculated by intermediate nodes
for a certain flow is nonincreasing on the path toward the sink.
We denote the rate at every intermediate node in terms of hop
counts by rik, where k is the number of hops, and rik is the
available bandwidth share calculated by the kth node along fi’s
path. Obviously, we have ri1 ≥ ri2 ≥ · · · ≥ rim. As long as the
source node updates its sending rate as rim, the network will be
in good condition. Therefore, other CMs, except the one con-
taining rim, are meaningless. Each relaying node only relays
the CM containing the smallest rate and discards the others.

C. Near-Sink-Node Process

1) Stateless Fair Queue Management Mechanism: Every
near-sink sensor node is a hotspot with a high probability
because of the nature of WSNs. Thus, the resource of near-sink
nodes is more valuable. We explore a simple and efficient mech-
anism to implement transmission control for near-sink nodes.

Like random early detection [24], we preset two thresholds
Ql and Qh for queue occupancy. When a new packet arrives, the
near-sink node computes the hit frequency h(t) by examining
whether the packet is from the same flow as one of the M
packets randomly selected from the buffer. The hit frequency
h(t) is increased by one if one of the packets and the newly
arrived packet belong to the same flow. Intuitively, a higher hit
frequency h(t) implies that a larger number of packets exist in
the buffer for a particular flow. To achieve fairness, we need
to give more chances to those flows with lower occupancy.
Therefore, The arriving packets that belong to higher occu-
pancy flows have higher dropping probabilities. We calculate
the dropping probability pd of the arriving packet based on the
hit frequency h(t) as follows:

pd =

⎧⎨
⎩

0, Q(t) < Ql

h(t)/M, Ql ≤ Q(t) < Qh

1, Q(t) ≥ Qh.
(7)

2) Hop-by-Hop Backpressure: When packets are dropped
and the queue occupancy is between Ql and Qh, it indicates
that the rate of a particular flow is still higher than that of others
and needs to be decreased further. We can simply reduce the
sending rate of the corresponding source node. If the queue
occupancy exceeds Qh, the arriving packets will be dropped,
which indicates that the traffic is overwhelming, and we need
to reduce the rate of all passing flows.

To feed the network status information back to the corre-
sponding source node, the near-sink node will generate a WM
containing a flow ID and a node ID, as long as packet loss
occurs. The WM as a backpressure signal is eventually trans-
mitted to a certain near-source node, as shown in Fig. 2. Finally,
the near-source node will take corresponding aforementioned
actions.

3) Fairness of the Stateless QUEUE-Management Mecha-
nism: Consider a queue with N independent Poisson arrivals,

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

5230 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

each with rate λi and independent exponential service times.
The queueing discipline is first-in-first-out (FIFO), and the
mean service time of each packet is assumed to be 1/μ. To sim-
plify the analysis, let us first consider only two arrival processes
with arrival rates λ1 and λ2. We shall refer to the packets of
these flows as type-1 and type-2 packets, respectively.

An arriving packet is either admitted to the queue or dropped,
depending on the outcome of a certain comparison and buffer
occupancy Q(t), as explained next. When the buffer occupancy
is smaller than Ql, every arriving packet is admitted to the
queue. When the buffer occupancy is larger than Qh, each
arriving packet is dropped. When the buffer occupancy is
between Ql and Qh, each arriving packet is compared with M
randomly selected packets from the buffer, where the dropping
probability depends on the hit frequency h(t).

Let us first suppose that λ1 + λ2 < μ so that the queue is
stable, M = 1, and the selected packet is always the head of
the queue. We will later see that, with the dropping strategy in
place, the queue will be stable for all values of λ1, λ2, and μ.
The assumption of stability guarantees that an equilibrium
distribution exists for the queue-size process. We denote p1,A1

(respectively, p2,A1) as the probability that the head of the
queue is occupied by a type-1 (respectively, type-2) packet
when a packet of type 1 arrives. The well-known PASTA prop-
erty [25] asserts that pi,A1 = pi, for i = 1 and 2, where pi are
the corresponding occupancy probabilities for type i at arbitrary
time instants. Since we have assumed that both the arrival
processes are Poisson and independent, the same reasoning
applies to the probability pi,A2 , and the head of the queue is oc-
cupied by a type-i, i = 1 and 2, packet when a packet of type 2
arrives.

Given that the service time is independent identically distrib-
uted with exponential distribution and the service rate is μ, the
head of the queue, whatever type it is, will be served every 1/μ
time unit on the average, as long as the queue is not empty. We
denote pi,s, i = 1 and 2, as the probability that the head of the
queue is occupied by a type-i packet when the head of the queue
is served. Applying the PASTA property again, we find that pi,s

also equals pi for i = 1 and 2.
We summarize these observations as follows: pi,A1 =

pi,A2 = pi,s = pi, for i = 1 and 2, and p1 + p2 = 1. We now
use a rate conservation argument to evaluate pi. Consider type-
1 packets with arrival rate λ1. A portion (i.e., p1) of these
packets are dropped at arrival. Therefore, the departure rate of
type-1 packets from the queue is λ1(1 − p1). Since the service
rate is μ and a portion (i.e., p1) of the service rate is allocated
for type-1 packets, the departure rate of type-1 packets is μp1.
The requisite rate conservation is therefore λ1(1 − p1) = μp1.
Solving for p1 and p2, we obtain that p1 = (λ1/(μ + λ1)) and
p2 = (λ2/(μ + λ2)), respectively.

We can see that the occupancy probability for each flow is
independent of the arrival rate of other incoming flows. Since
μpi is the departure rate of type-i packets, the goodput of each
flow depends only on its own arrival rate and on the service
rate μ. When the number of flows N is bigger than two, all the
PASTA arguments will also go through. Since these arguments
also hold for only one flow, we obtain pi = (λi/(μ + λi)), for
any i ∈ N.

TABLE I
SIMULATION PARAMETERS

An interesting point is that, when λi � μ and, thus, pi � 1,
nearly all the packets of aggressive flows are dropped. At the
other extreme when λi � μ, we have pi � λi/μ and pi/pj �
λi/λj . We conclude that the ratio of the dropping probabilities
is really an indicator for the fairness of the dropping strategy.
That is, flows with higher arrival rates incur higher dropping
probabilities.

V. DISCUSSION

So far, we have equally treated all source nodes. In reality,
different sensors may be assembled with different onboard
apparatuses, and their data may have different priorities. The
weighted rate allocation captures such differences. Each source
sensor x is assigned a weight wx by operators. Intuitively, when
two sensors compete for available bandwidth, wxrx = wyry is
considered to be fair. Given a rate allocation rX = {rx|x ∈ X},
the corresponding weighted rate allocation unit is defined as
runit = {(rx/wx)|x ∈ X}, where X is the set of total source
nodes. The following modifications should be made to our
scheme with priority consideration.

The fair share rate F (t) should be computed at the near-
source nodes as follows:

F (t) =
thb/cb × S∑

wx
. (8)

The rate allocated to the specific source node should be calcu-
lated as follows:

Fnew(t) = F (t) × wx. (9)

Thus, the rate for flow i should be updated by min(rk
i ,

Fnew(t)). When rk
i > Fnew(t), the near-source node sends a

CM to the corresponding source node to notify the updated rate.
The dropping probability pd of the arriving packet based on

the hit frequency h(t) should be calculated at the near-sink
nodes as follows:

pd =

⎧⎨
⎩

0, Q(t) < Ql

h(t)wx/M
∑

wx, Ql ≤ Q(t) < Qh

1, Q(t) ≥ Qh.
(10)

VI. PERFORMANCE EVALUATION

We evaluate the proposed congestion-control scheme in this
section. We use network simulator ns2 version 2.29 to con-
duct the simulations. The default simulation parameters are
described in Table I.

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: FAIRNESS-AWARE CONGESTION CONTROL SCHEME IN WIRELESS SENSOR NETWORKS 5231

Fig. 3. Accumulated packet loss over time.

We implement the backpressure algorithm for comparison
purposes in our simulations. As we all know, backpressure is
CODA’s hop-by-hop congestion-control mechanism [17]. If a
sensor x is congested (based on channel utilization and buffer
occupancy), it periodically sends backpressure messages to its
neighbors, which will reduce their forwarding rates by a certain
percentage (25% or 50% in the simulations). If an upstream
node is a data source, it reduces the new data generating rate by
the same percentage.

In what follows, we first compare no-congestion-control,
FACC, and backpressure schemes in terms of packet loss,
achievable source rate, and throughput. We then evaluate the
property of energy expenditure. Finally, we study the impact of
FACC on fairness. For each data point in the figures, we run the
simulation on 30 randomly created networks and then take the
average.

A. Packet-Loss Comparison

The first set of simulations reveal that our congestion control
scheme yields a lower packet dropping rate than other schemes.
Fig. 3 shows the number of dropped packets in the networks
with respect to time under the offered traffic load of 1000 kb/s
for each flow. In Fig. 3, backpressure (50%) and backpressure
(25%) refer to the backpressure algorithms with 50% and 25%
reduction percentages, respectively, in a sensor’s data rate in
response to a backpressure message. Both backpressure (50%)
and backpressure (25%) drop a significant number of packets
during the process of congestion control, whereas fewer packet
drops by our congestion control scheme are observed during
simulations. Backpressure (50%) drops a smaller number of
packets than backpressure (25%) because the former more
aggressively reduces data rate and, thus, more quickly mitigates
congestion. On the contrary, our congestion-control scheme
tries to allocate exact bandwidth share to each flow and, there-
fore, remarkably lowers the packet drops. Fig. 4 compares the
number of dropped packets with respect to the initial rate at
which the source nodes generate new data. Intuitively, when the
initial source rate is higher, it takes more reduction cycles (more
time) to reduce the rate to an appropriate level, resulting in a

Fig. 4. Final packet loss with respect to offered traffic load.

Fig. 5. Total source rate change over time.

larger number of packet drops. As we can see, our congestion-
control scheme more precisely reacts to congestion and is less
sensitive to the initial source rate.

B. Source-Rate Comparison

This simulation demonstrates that our congestion control
scheme is capable of automatically adapting the sensor’s data
rate according to the network conditions and achieving better
congestion-free rate than other schemes. The total source rate
is defined as the total number of data packets generated by all
data sources per second. Fig. 5 compares the total source rates
of the schemes with respect to time under the offered traffic
load of 1000 kb/s for each flow. During the course of congestion
control, the total source rate is reduced. At the time instant of
around 100 s, congestion control comes into play (except for
no congestion control), and the total source rate becomes stable
after a short time period. FACC achieves the largest total source
rate due to its capability of allocating the exact bandwidth share
to each passing flow. On the other hand, the total source rates
of backpressure (50%) and backpressure (25%) are smaller than

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

5232 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

Fig. 6. Throughput with respect to offered traffic load.

our scheme, with the latter slightly better. Combining with the
results in Fig. 3, we observe a tradeoff between the number of
dropped packets and the total source rate. By more aggressively
decreasing the rate in response to congestion, backpressure
(50%) has a lower number of dropped packets but a smaller
source rate than Backpressure(25%).

C. Throughput Comparison

The following simulation confirms that our congestion-
control scheme achieves higher throughput than other schemes.
Fig. 6 compares throughput with respect to the offered traffic
load at which the sources generate new data. As aforemen-
tioned, when the offered traffic load is higher, the probabil-
ity of congestion becomes higher, but the throughput will
not proportionally increase. Fig. 6 shows that our congestion
control scheme has higher throughput than the backpressure
algorithms. This is because backpressure is hard to adapt to an
appropriate level, while our scheme assigns the exact available
bandwidth share to each flow and, thus, efficiently utilizes the
available bandwidth.

D. Energy Expenditure

The average energy expenditure is defined as the total num-
ber of transmissions in the network divided by the number of
packets successfully delivered to the sinks. One transmission
moves a packet one hop closer to the sink. Fig. 7 illustrates
how the average energy expenditure changes with respect to
different initial source rates. Fig. 8 depicts how the average
energy expenditure changes over time, with the initial rate of
1000 kb/s for each flow. We again find that our congestion-
control scheme is more energy efficient than the backpressure
scheme because of more efficient bandwidth utilization.

E. Fairness Comparison

For a random topology in Fig. 9, which consists of 50 sensor
nodes, one sink, and 10 flows (the solid circles are the source

Fig. 7. Energy expenditure per packet with respect to offered traffic load.

Fig. 8. Energy expenditure per packet over time.

nodes that generate data and form a flow), we explore the
fairness property in term of per-flow throughput.

From Fig. 10, we observe that our scheme can acquire
approximately fair bandwidth share, with each flow generating
data at 1000 kb/s. By contrast, no congestion control com-
pletely fails to guarantee fairness for the flows. In particular,
flow 2 takes the smallest share (zero), and flow 6 takes the
largest share in terms of throughput for two reasons. The first is
that different nodes suffer from different interference because
of hidden terminals and exposed terminals. The second is that
no congestion control favors shorter flows, particularly one- or
two-hop flows, and penalizes longer ones. Flow 6 may be such
a two-hop flow and achieves the maximum throughput as if
there were no other flows in the neighborhood. As a victim,
flow 2 encounters severe contention from surrounding nodes
and gains no throughput at all. With our scheme, we observe
that the starving problem for long flows is resolved. Our scheme
controls exactly every flow’s incoming traffic, hence reducing
interference and improving the channel utilization. Moreover,

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

YIN et al.: FAIRNESS-AWARE CONGESTION CONTROL SCHEME IN WIRELESS SENSOR NETWORKS 5233

Fig. 9. Fifty-node random topology.

Fig. 10. Throughput with respect to different flows.

by monitoring the channel busyness ratio and each flow’s traf-
fic, our scheme can accurately calculate the available bandwidth
of the channel and fairly assign it to each flow. Therefore, our
scheme can achieve better fairness.

VII. CONCLUSION

In this paper, we have proposed a scheme for congestion
control in WSNs. This paper has provided a new mechanism
to control congestion and achieved reasonably fair bandwidth
allocation in resource-constrained WSNs. We have shown by
simulations that FACC has better performance than the back-
pressure schemes in terms of packet loss, energy efficiency,
channel utilization, and fairness. Particularly for throughput,
FACC can achieve up to 20% improvement compared with no

congestion control. For packet loss, FACC becomes stable after
a certain time in spite of the increase in offered traffic load,
while no congestion control results in linearly increasing packet
loss as the offered traffic load increases or as time elapses.

REFERENCES

[1] A. Cerpa, J. Elson, M. Hamilton, and J. Zhao, “Habitat monitoring: Ap-
plication drive for wireless communications technology,” in Proc. ACM
SIGCOMM Workshop Data Commun. Latin Amer., Caribbean. San Jose,
Costa Rica, Apr. 2001.

[2] L. Schwiebert, S. Gupta, and J. Weinmann, “Research challenges in wire-
less networks of biomedical sensors,” in Proc. ACM MobiCom, Rome,
Italy, Jul. 2001, pp. 151–165.

[3] B. Brooks, P. Ramanathan, and A. Sayeed, “Distributed target classi-
fication and tracking in sensor networks,” Proc. IEEE, vol. 91, no. 8,
pp. 1163–1171, Aug. 2003.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–104,
Aug. 2002.

[5] R. Cramer, M. Win, and R. Scholtz, “Impulse radio multipath character-
istic and diversity reception,” in Proc. IEEE ICC, Atlanta, GA, Jun. 1998,
pp. 1650–1654.

[6] E. Shih, S. Cho, and N. Ickes, “Physical layer driven protocol and algo-
rithm design for energy-efficient wireless sensor networks,” in Proc. ACM
MobiCom, Rome, Italy, Jul. 2001, pp. 272–287.

[7] A. Woo and D. Culler, “A transmission control scheme for media access
in sensor networks,” in Proc. ACM MobiCom, Rome, Italy, Jul. 2001,
pp. 221–235.

[8] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocol for self-
organization of a wireless sensor network,” IEEE Pers. Commun., vol. 7,
no. 5, pp. 16–27, Oct. 2000.

[9] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “Speed: A stateless protocol
for real-time communication in sensor networks,” in Proc. IEEE Int. Conf.
Distrib. Comput. Syst., Providence, RI, May 2003, pp. 46–55.

[10] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,
“Directed diffusion for wireless sensor networking,” IEEE/ACM Trans.
Netw., vol. 11, no. 1, pp. 2–16, Feb. 2002.

[11] J. Kulik, W. Rabiner, and H. Balakrishnan, “Adaptive protocols for in-
formation dissemination in wireless sensor networks,” in Proc. ACM
MobiCom, Seattle, WA, Aug. 1999, pp. 174–185.

[12] F. Stann and J. Herdemann, “RMST: Reliable data transport in sensor
networks,” in Pro. 1st IEEE Workshop SNPA, Anchorage, AK, Nov. 2003,
pp. 102–112.

[13] Y. Sankarasubramaniam, O. Akan, and I. F. Akyildiz, “ESRT: Event-to-
sink reliable transport in wireless sensor networks,” in Proc. 4th ACM
Int. Symp. Mobile ad hoc Netw. Comput. MobiHoc, Annapolis, MD,
Jun. 2003, pp. 177–188.

[14] S. Kim, R. Fonseca, P. Dutta, and A. Tavakoli, “Flush: A reliable
bulk transport protocol for multihop wireless networks,” in Proc. 5th
ACM Conf. Embedded Netw. Sensys, Sydney, Australia, Nov. 2007,
pp. 351–365.

[15] J. Paek and R. Govindan, “RCRT: Rate-controlled reliable transport for
wireless sensor networks,” in Proc. 5th ACM Conf. Embedded Netw.
Sensys, Sydney, Australia, Nov. 2007, pp. 305–319.

[16] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating congestion in
wireless sensor networks,” in Proc. 2nd ACM Conf. Embedded Netw.
Sensys, Baltimore, MD, Nov. 2004, pp. 134–147.

[17] C. Wan, S. Eisenman, and A. Campbell, “CODA: Congestion detection
and avoidance in sensor networks,” in Proc. 1st ACM Conf. Embedded
Netw. Sensys, Los Angeles, CA, Nov. 2003, pp. 266–279.

[18] S. Chen, Y. Fang, and Y. Xia, “Lexicographic maxmin fairness for data
collection in wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 6, no. 7, pp. 762–776, Jul. 2007.

[19] S. Chen and N. Yang, “Congestion avoidance based on lightweight buffer
management in sensor networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17, no. 9, pp. 934–946, Sep. 2006.

[20] R. Kumar, R. Crepaldi, H. Rowaihy, A. Harris, and G. Cao, “Mitigating
performance degradation in congested sensor networks,” IEEE Trans.
Mobile Comput., vol. 7, no. 6, pp. 682–697, Jun. 2008.

[21] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis, “Interference-
aware fair rate control in wireless sensor networks,” in Proc. SIGCOMM,
Pisa, Italy, Sep. 2006, pp. 63–74.

[22] H. Zhai, X. Chen, and Y. Fang, “Improving transport layer performance in
multihop ad hoc networks by exploiting MAC layer information,” IEEE
Trans. Wireless Commun., vol. 6, no. 5, pp. 1692–1701, May 2007.

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

5234 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 9, NOVEMBER 2009

[23] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
Achieving approximately fair bandwidth allocation in high speed net-
works,” Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-CS-98-
136, Jun. 1998.

[24] S. Floyd and V. Jacobson, “Random early detection for congestion avoid-
ance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413, Aug. 1993.

[25] G. Bolch, S. Greiner, H. Meer, and K. Trivedi, Queueing Networks and
Markov Chains. Hoboken, NJ: Wiley, 2006.

Xiaoyan Yin (S’09) received the B.S. and M.S. de-
grees in computer science from Harbin University of
Science and Technology, Harbin, China, in 2001 and
2004, respectively. She is currently working toward
the Ph.D. degree with the School of Computer Sci-
ence, Northwestern Polytechnical University, Xi’an,
China.

She was an Assistant with the Department of
Computer Science, Xi’an Technological University
from April 2004 to September 2005. She was a
Visiting Student with the Department of Electrical

and Computer Engineering, University of Florida, Gainesville, from December
2007 to May 2009. Her research interests are in the area of congestion control,
optimization, and quality-of-service support for wireless sensor networks.

Xingshe Zhou (M’04) received the B.S. and M.S.
degrees in computer science from Northwestern
Polytechnical University, Xi’an, China.

He is currently a Professor with the School
of Computer Science, Northwestern Polytechnical
University. His research interests include distrib-
uted computing, embedded computing, and sensor
networks.

Rongsheng Huang (S’07) received the B.S. and
M.S. degrees in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1996 and 1999,
respectively. He is currently working toward the
Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Florida,
Gainesville.

From 1999 to 2001, he was with Huawei Tech-
nologies Company Ltd., Shenzhen, China, as an
R&D Engineer on General Packet Radio Service and
third-generation (3G) projects. From 2002 to 2005,

he was with UTStarcom Research Center, Shenzhen, as a Senior Engineer and
the Team Leader of a 3G project. His research interests are in the area of media
access control, protocol, and architecture for wireless networks.

Yuguang Fang (S’92–M’97–SM’99–F’08) received
the Ph.D. degree in systems engineering from
Case Western Reserve University, Cleveland, OH,
in January 1994 and the Ph.D. degree in electrical
engineering from Boston University, Boston, MA, in
May 1997.

He was an Assistant Professor with the De-
partment of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, from
July 1998 to May 2000. In May 2000, he joined the
Department of Electrical and Computer Engineering,

University of Florida, Gainesville, as an Assistant Professor. He got an early
promotion to Associate Professor with tenure in August 2003 and to Professor
in August 2005. He will hold the University of Florida Research Foundation
Professorship from 2006 to 2009. He is the author of more than 250 papers in
refereed professional journals and conference proceedings. He has served on
many editorial boards of technical journals, including ACM Wireless Networks.

Dr. Fang received the National Science Foundation Faculty Early Career
Award in 2001 and the Office of Naval Research Young Investigator Award
in 2002. He has served on the editorial boards of the IEEE TRANSACTIONS ON

COMMUNICATIONS, the IEEE TRANSACTIONS ON WIRELESS COMMUNICA-
TIONS, and the IEEE TRANSACTIONS ON MOBILE COMPUTING. He is cur-
rently serving as the Editor-in-Chief for IEEE WIRELESS COMMUNICATIONS.

Shining Li received the B.S. and M.S. degrees in
computer science from Northwestern Polytechnical
University, Xi’an, China, in 1989 and 1992, respec-
tively, and the Ph.D. degree in computer science from
Xi’an Jiaotong University, Xi’an, in 2005.

He is currently a Professor of the School of
Computer Science, Northwestern Polytechnical Uni-
versity. His research interests include mobile com-
puting, wireless sensor networks, and embedded
computing.

Authorized licensed use limited to: University of Florida. Downloaded on May 03,2010 at 20:02:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

