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Abstract—In this paper, we propose a new model for the
portable movement in personal communications services (PCSs)
networks. Based on this model with general interservice time and
registration area residence time distributions, analytic expression
for the probability that a portable moves across registration
areas (RAs) is obtained. Busy-line effect on this quantity is also
studied and analytic expression is presented. The result given in
this paper is very useful for the cost analysis for location updating
and paging.

Index Terms—Call holding time, cell residence times, location
modeling, mobility, personal communications services (PCS).

I. INTRODUCTION

PERSONAL Communications Services (PCS) networks are
poised to provide integrated services such as voice, data

and multimedia to mobile users anywhere, anytime [1], [11],
in an uninterrupted and seamless way, using advanced micro-
cellular and handoff concepts [8]. In such a network, the ser-
vice area is populated with base stations which provide the radio
links for communications. The radio coverage of each base sta-
tion is called acell. The base station is responsible for locating
a mobile user or a portable through paging or some other loca-
tion tracking strategies [17], [21], and delivers calls from and to
the portable. The service of a PCS network is also divided into
registration areas (RAs), each of which consists of an aggrega-
tion of cells, forming a contiguous geographical region. For a
call from or to a roaming user, the location of the roaming user
has to be determined for the call delivery. Two-level hierarchies
which maintain a system of a home database (called home loca-
tion register or HLR) and a visited database (called visitor loca-
tion register or VLR) are commonly used for mobility manage-
ment. When a user subscribes to a service from a PCS network,
the user will first register at HLR where the user’s information
profile is stored. When the user requests a service in a visited
RA, it will contact the VLR associated with the RA, the VLR
will contact the HLR of the user for authentication, the user’s
record will be temporarily stored in the VLR. The VLR acts as
an agent for the roaming user in the RA it is visiting.
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One of the most important issues in PCS networks is the lo-
cation tracking. The location of a called portable must be de-
termined before the connection can be established. Paging and
location updating are schemes to locate a mobile user in a PCS
network. Fewer location updates will lead to more paging traffic,
while more location updates will result in less paging traffic,
hence there is a tradeoff between the signaling traffic from mo-
bile users and from the base stations. Thus, cost analysis will
be needed to find the best location update and paging scheme.
In order to carry out this task, an appropriate movement model
for a portable needs to be constructed. From [13], we observe
that one critical quantity in the cost analysis is the probability
of the number of RA crossings, that is, the probability that a
portable moves RA between the two consecutive served calls
(i.e., during the interservice time). For example, in IS-41, each
RA crossing will incur at least one signaling message (for reg-
istration), the average number of signaling messages for a call
life, which can be found from the probability distribution of
RA crossings, will be used in the tradeoff analysis [13]. How-
ever, the cost analysis carried out in [13] is valid only for the
cases when the interservice time is exponentially distributed,
moreover, the busy-line effect is not considered. In general, this
assumption is not valid, which was also observed in the same
paper. The difficulty in carrying out the same cost analysis for
general situation lies in the lack of analytical result for the prob-
ability of the number of RA crossings under general interser-
vice time. As long as we find the computational procedure for
the probability of the number of RA crossings, the same cost
analysis in [13] can be carried out in a similar fashion. We also
observe that the probability distribution of RA crossings is also
signifying the portable movements in PCS networks.

In this paper, under the assumptions that the interservice
times and the RA residence times are generally distributed,
we derive some analytical results for the probability of the
number of RA crossings. The results presented in this paper are
very useful for cost analysis in finding a best tradeoff between
location updating and paging for tracking mobile users in PCS
networks.

II. PROBABILITY OF THE NUMBER OF RA CROSSINGS

In this section, we study the patterns of the incoming calls
and the portable movement. Assume that the incoming calls to
a portable form a Poisson process, the time the portable stays
in an RA (called the RA residence time) has a general distribu-
tion. We will derive the probability that a portable moves
across RAs between two phone calls. The time between the
start of a call served and the start of the following call served
by the portable is called the interservice time. The interservice
time is of interest because it can be used to characterize the mo-
bility of the portable. It is possible that a new call arrives while
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Fig. 1. The time diagram forK RA crossings.

the previous call served is still in progress [13]. In this case, the
portable cannot initiate/accept the new call. In this analysis, we
ignore call waiting service, and this new call is rejected. Thus,
the interarrival (inter-call) times are different from the interser-
vice times. This phenomenon is called thebusy lineeffect. Al-
though the incoming calls form a Poisson process (i.e., the in-
terarrival times are exponentially distributed), the interservice
times may not be exponentially distributed. By ignoring the busy
line effect, Lin [13] is able to give analysis for the model. In this
section, we assume that the interservice times are generally dis-
tributed and derive an analytic expression for

Before we give the analytical result for we first demon-
strate the use of in cost analysis. We take the IS-41 system
for illustration purpose. In IS-41, each RA crossing incurs at
least one signaling message, i.e., the registration message. The
signaling cost for atypical call will be directly proportional to
the average number of signaling message, which can be found
from the following formula:

-

Thus, we have to find the probability distribution In [13],
simple formula can be found for - [and other quantities
which are functions of ] under the exponential assumption
on the interservice time. However, when the interservice time is
not exponentially distributed, which is the case in practice, we
must found viable computational procedure to calculate
This is the motivation of the current paper. Next, we present an
analytical result for

Let denote the RA residence times andde-
note the residual life of the previous call served in the initiating
RA (i.e., the time interval between when the call is served and
when the portable exits the RA). Let denote the interservice
time between two consecutive served calls to a portable(i.e.,
the time interval between the instant the previous call is served
and the instant the next call is served). Notice that the consecu-
tive served calls may not be necessarily the consecutive arriving
calls because some calls may be blocked when the portable is
busy. This implies that the interservice time is different from
the interarrival time. Fig. 1 shows the time diagram forRA

crossings. Suppose that the portable is in an RAwhen the
previous call arrives and is served, it then movesRA’s during
the interservice time, and resides in theth RA for a period

Let be independent and identically
distributed (iid) with a general density function let be
generally distributed with density function and let
be the density function of Let and be the
Laplace transforms of and respectively. Let

and From the random observer
property [10], we have

(1)

where is the distribution function of It is obvious that
the probability is given by

Pr (2)

Pr

(3)

We first calculate Since the Laplace transform of
is from (2), the inverse Laplace

transform and the independence ofand we have

Pr

(4)
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where is a sufficiently small positive number which is appro-
priately chosen for inverse Laplace transform. We want to re-
mark that the choice of such is possible for the validity of
the inverse Laplace transformation. Recall that for any density
function, the Laplace transform is always analytic on the right
half complex plane. Thus, if has finite number of isolated
poles (which is the case when it is a rational function), then

will have finite number of isolated poles in the open
right half complex plane, then we can chooseto be less than
the smallest of real parts of the poles of In this case,
when we apply the Residue Theorem, we can use the semi-circle
in the right half complex plane as the integration contour.

For is computed as follows. First, we need
to compute Pr for any Let

Let and be the density function
and the Laplace transform of From the independence of

we have

Thus, the density function is given by

Also, the Laplace transform of Pr (the distribution func-
tion) is We have

Pr

Pr

Taking this into (3), we obtain

Pr

Pr

(5)

It is obvious that the integrand without term in (4) and
(5) is analytic on the right half open complex plane. If
has no branch point and has only finite possible isolated poles
in the right half plane (which is equivalent to saying that
has only finite number of isolated poles in the left half plane),
then the Residue Theorem can be applied to (4) and (5) using a
semi-circular contour in the right half plane. Indeed, if we use

to denote the set of poles of in the right half complex
plane, then from (4) and (5), and the Residue Theorem [12], we
obtain the following.

Theorem 1: If the density function of interservice time has
only finite possible isolated poles (which is the case when it has
a rational Laplace transform), then the probability that a
portable moves across RA’s is given by

Res

Res

(6)

where Res denotes the residue at poles
Proof: Choosing such that all poles of in the

right half plane are on the right of vertical line and
choosing the contour enclosed by the semi-circle at center

and with radius sufficiently large, then we can apply the
Residue Theorem to complete the proof.

If the interservice times are exponentially distributed with pa-
rameter then which has a unique
pole, and From Theorem 1, we can easily obtain

where is thecall-to-mobility ratio. These equations
have been obtained in [13] using a different approach.

One general distribution which is used often in many applica-
tions is the Gamma distribution [2] whose density function and
its Laplace transform are given as follows:

(7)

where is the shape parameter, is the scale parameter,
and is the Gamma function. When is a positive
integer, the Gamma becomes the Erlang distribution

(8)

where The gamma distribution applies to many appli-
cations. When it becomes the exponential distribution;
When is sufficiently large, the distribution is asymptotically
normal around [2].

Let us assume that the interservice times are iid with Erlang
distribution as in (8), since its mean is hence we have

hence

Let

(9)

(10)
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From Theorem 1, we can easily obtain

(11)

(12)

where denotes theth derivative of function
In order to compute those quantities in (11) and (12), we need

to find the th derivative of certain functions, which may
be complicated in general. Fortunately, we can have some recur-
sive algorithms to compute them. We need the following iden-
tity:

(13)

For fixed let To compute we can use
the following (applying (13) with and

To compute we use (applying (13) with
and

(see equation at the bottom of the page) where

It is known [9] that the weighted summation of Erlang dis-
tributions (the hyper-Erlang distributions) can approximate any
distribution. For the cases when the interservice timeis dis-
tributed according to the weighted summation of Erlang distri-
bution, using Theorem 1, we can also find simple analytical
results. It has been shown [20] that the SOHYP (the sum of
hyper-exponential distributions) is also a very general distribu-
tion to model the LA residence time (i.e., the dwell time), we ob-
serve that Theorem 1 is also applicable when the LA residence
time is SOHYP distributed. In fact, as along as the Laplace
transform of the density function of the interservice timeis
rational function, our results can be applied to find the proba-
bility

III. B USY-LINE EFFECT

As we mentioned earlier, the busy-line effect is the phenom-
enon when a new call to the portable arrives it finds the portable
is busy, and hence it is rejected. In Lin [13], this effect is ne-
glected for the purpose of analysis. Next, we show that our re-
sults can conveniently be used to study this effect.

As before, assume that the call arrivals to the portable form
a Poisson process, i.e., the inter-call times are independent and
exponentially distributed. Let be the probability that a call to
the portable finds the portable busy (i.e., busy-line). This prob-
ability will depend on the call arrival traffic and call holding
times. In this analysis, we will use this probability to represent
the total effect of call arrival traffic and call holding times. Let

denote the density function of Erlang distribution
with shape parameter and scale parameter [see (8)]. It
is well known [10] that this Erlang distribution is the distribu-
tion of the summation of independent exponential distribu-
tion with parameter A call to the portable finds the portable
busy with probability and finds the portable free and is served
immediately with probability hence the conditional prob-
ability density function of the interservice time when calls
find the portable busy while theth call finds the portable free
is given by

Hence the probability density function of the interservice time
is given by

(14)

Applying Theorem 1 with (11) and (12), we obtain the
following result.

Theorem 2: If is the probability of busy-line, then

(15)

Notice that when the busy line effect is neglected, i.e.,
Theorem 2 reduces to the case when the interservice time is ex-
ponentially distributed. We can not find simpler forms for the
above formulae, however, the above formulae provide starting
point for approximation. Considering that is usually quite
small, we can use finite number of terms in (15) for approxi-
mation.
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Fig. 2. Probability�(K): (a) and (b) for the cases when the interservice time is exponentially distributed and RA residence time is Gamma distributed; (c) and
(d) for the case when the interservice time is Erlang distributed and RA residence time is Gamma distributed; = 0.1, 0.5, 1, 2, 6, 10,m = 2.

Fig. 3. Comparison of probability�(K) when the interservice time is exponentially distributed (solid line) and Erlang distributed (dashed line): call-to-mobility
ratio is small (<1),m = 2.

IV. DISCUSSIONS ANDCOMMENTS

In this section, we present a few examples to discuss our
results. We assume that the interservice timeis Erlang dis-
tributed and the RA residence timesare Gamma distributed.
Let have the following Erlang density

whose mean is and variance is When
it becomes the exponential distribution. Lethave the

Gamma density function

whose mean is and variance is By
varying value of we vary the variance of the interservice
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Fig. 4. Comparison of probability�(K) when the interservice time is exponentially distributed (solid line) and Erlang distributed (dashed line): call-to-mobility
ratio is large (>1),m = 2.

Fig. 5. Busy-line effect on the probability�(K) of K RA crossing, = 1.5.

time, in the same token, varyingis equivalent to varying the
variance of RA residence time. We study the effects on
when the variances of the interservice time and the RA residence
time vary.

Fig. 2 shows the probability when the RA residence
time is Gamma distributed with various values of variance while

the interservice time is exponentially distributed and Erlang dis-
tributed, respectively. It can be easily observed that when the
variance of the RA residence time has significant effect on the
probability for small when call-to-mobility is small

and that hardly has any effect on the probability
when call-to-mobility is large The Erlang
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distributed interservice time has more significant effect on the
probability than the exponentially distributed interservice
time does. The above observations are clearly shown in Figs. 3
and 4.

Next, we illustrate the busy-line effect. Fig. 5 shows the
busy-line effect on the probability of RA crossings
where the call arrivals are Poissonian and the RA residence
times are Gamma distributed. It is shown that as the probability

of busy-line effect increases, the probability with
fewer RA crossings is decreasing while that with higher
RA crossings is increasing. This is intuitive because for
fixed call arrival process a larger probability of busy-line effect
represents a longer interservice time, hence more RA crossings.

V. CONCLUSION

In this paper, we propose a new model for the portable move-
ment in PCS networks. Previous work [13] investigated this
issue by ignoring the busy-line effect. We relax this restriction
by accommodating interservice times with general distribution.
We apply the Residue Theorem to obtain analytical results for
the probability of number of the RA crossings. Our new model
can be applied to investigate the impact on busy-line effect on
many location tracking strategies [13], [14], [21].
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