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A Class of Cross-Layer Optimization Algorithms
for Performance and Complexity Trade-Offs
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Abstract—In this paper, we solve the problem of a joint optimal design of congestion control and wireless MAC-layer scheduling using a
column generation approach with imperfect scheduling. We point out that the general subgradient algorithm has difficulty in recovering
the time-share variables and experiences slower convergence. We first propose a two-timescale algorithm that can recover the optimal
time-share values. Most existing algorithms have a component, called global scheduling, which is usually NP-hard. We apply imperfect
scheduling and prove that if the imperfect scheduling achieves an approximation ratio p, then our algorithm produces a suboptimum of
the overall problem with the same approximation ratio. By combining the idea of column generation and the two-timescale algorithm, we
derive a family of algorithms that allows us to reduce the number of times the global scheduling is needed.

Index Terms—Cross-layer design, optimization, column generation, MAC-layer scheduling, congestion control.

1 INTRODUCTION

HE joint congestion-control and scheduling problem in

multihop wireless networks has become a very active
research area in the last few years [1], [2], [3], [4], [5], [6], [7],
[8],[9], [10], [11], [12], [13]. The problem can be formulated as
the maximization of the aggregate source utility over the
network capacity constraints. Unlike the similar problem in
the wired network, the essential nature of the problem in the
wireless setting is that the network capacity itself is a decision
variable. Due to wireless interference, not all transmission
configurations are allowed at each time instance. For instance,
in the well-known model of the multiple access scheme for the
802.11 network, an allowed configuration is a subset of the
links whose transmissions do not interfere with each other.
Scheduling at the MAC layer is to decide which of the allowed
configurations should be used and how they should be used
(e.g., time-shared). The result of scheduling implicitly
determines the network capacity.

Considering congestion control (rate control) and link
scheduling together is known as the cross-layer approach
since it involves functions at both the transport layer and the
link layer, and possibly also the network layer if the routes
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need to be determined. Under the traditional layered
approach, the MAC-layer link schedules are predetermined
independently of the higher-layer objective, and hence, the
resulting performance is often far from the optimum. In
contrast, the performance level (objective value) can be
significantly improved by the cross-layer design [2], [14].
For instance, if the higher-level objective is to improve the
network throughput, by formulating a cross-layer optimiza-
tion problem, an algorithm that solves the problem achieves
the highest network throughput that the underlying wireless
network can ever support under any scheduling policy.
Another benefit of the cross-layer approach is that, since the
joint problem is typically cast in the optimization framework,
one can rely on the large body of knowledge in the general
optimization theory and algorithms, and design good
networking algorithms/protocols with performance guaran-
tee. Some of the general optimization algorithms are the
results of many years of knowledge accumulation and are
hard to reinvent. In this paper, we will work under the cross-
layer framework, and formulate the joint rate-control and
scheduling problem as a convex optimization problem.

The standard subgradient algorithm is a good candidate
in solving such a problem. By the subgradient technique,
the rate control and the wireless resource allocation are
decoupled: the sources adapt their source rates according to
the path congestion costs, whereas the MAC-layer schedul-
ing adjusts the time-share of different allowed transmission
configurations, thus varying the link capacities according to
the link costs so as to support the flow rates. However, the
standard subgradient technique has its own limitation,
which will be discussed.

We propose a two-timescale, column-generation approach
with imperfect global scheduling to solve the above problem.
As we mentioned before, by solving the optimization
problem, our approach can make the best use of the
underlying wireless network capacity with respect to the
higher-layer objective. We further compare our approach
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with the subgradient technique and others, which have
been proposed to solve the same optimization problem. The
following is a summary of the features and benefits our
approach offers:

e  Our approach solves the difficult issue of recovering
the time-share using a two-timescale method. The
issue arises when the Lagrangian function of the
maximization problem is not strictly concave in all its
primal variables (i.e., the Lagrangian function is linear
in some of its primal variables). Specifically, in the
subgradient algorithm, the dual problem converges to
a set of optimal dual solutions. However, the primal
variables corresponding to the time-share proportions
oscillate. Our two-timescale algorithm ensures the
convergence of both the primal and dual solutions.

o The column generation method introduces one ex-
treme point at a time and gradually expands the
feasible set, where an extreme point corresponds to
one allowed transmission configuration (also known
as a schedule). Typically, introducing such an extreme
point involves solving an NP-hard combinatorial
optimization problem [1], [2]. In our approach, we
allow the introduction of a suboptimal extreme point,
which is often far easier to obtain. This opens the door
for the application of many heuristic algorithms in
solving the hard combinatorial problem. Importantly,
we show that, if the suboptimal extreme point is a p-
approximation solution to the combinatorial optimi-
zation problem, then the overall utility-maximization
problem also achieves p approximation.

e By combining column generation and the aforemen-
tioned two-timescale algorithm, we in fact have a
whole family of algorithms. On one side of the
spectrum, we have a pure column generation algo-
rithm; on the other side, we have a pure two-timescale
algorithm. In between, we have a mixed algorithm
that introduces new extreme points at varying degree
of frequency, thus balancing various aspects of the
algorithm, e.g., performance and complexity.

We subsequently call the subproblem of finding a new
extreme point in the column generation algorithm, global
scheduling, since it involves finding an allowed transmission
schedule from all possible ones. This subproblem is a
combinatorial optimization problem on an exponential
number of possibilities. A perfect schedule refers to an
optimal solution to the subproblem; an imperfect schedule
refers to a suboptimal solution to the subproblem. Other
algorithms usually also contain this subproblem. How to
avoid global scheduling as much as possible and how to
solve it fast when needed are two key issues. This paper
makes contributions in both.

We now give a brief summary of prior work on the joint
design of congestion control, routing and scheduling in
wireless networks. A survey of resource allocation and cross-
layer control in wireless networks can be found in [13].
Bjorklund et al. [5] propose the column generation method to
solve the resource allocation problem in wireless ad hoc
networks. Johansson and Xiao [9] extend the use of the column
generation method to solve the same problem under more
comprehensive wireless interference models. But, both [5]
and [9] give centralized solutions, where the restricted master
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problems (RMPs) are solved by some linear/nonlinear
solvers (we are interested in distributed algorithms); and
they only consider the case where perfect scheduling is used.
Kompella et al. [11] also give a centralized column generation
solution. In[15], Soldati et al. solve the RMPs by a similar two-
timescale distributed algorithm as ours. But they assume that
the scheduling component can be solved perfectly.

Bohacek and Wang [3] implicitly apply the column
generation method and their approach is centralized. In [1]
and [2], the authors propose a way to solve this problem
by a distributed subgradient algorithm with imperfect
scheduling. Their approach and conclusion are different
from ours, and we will detail the differences in Section 4. In [7]
and [8], the authors formulate similar problems as ours and
develop subgradient algorithms with perfect scheduling;
however, they do not consider the situation when perfect
scheduling is not possible due to the computation complex-
ity. Yuan et al. [12] discuss the framework of cross-layer
optimization in wireless networks. Another related paper,
[4], studies the wireless scheduling under the framework of
stability analysis instead of optimization (i.e., how to
schedule the MAC layer when the arrivals are strictly
feasible). The two-timescale adaptive method is proposed
in [16], and used in [17] and [18] for the problem of multipath
routing. To our best knowledge, no prior work has combined
the three elements together, two timescales, column genera-
tion, and imperfect scheduling.

This paper is organized as follows: The network model
and problem formulation are given in Section 2. The two-
timescale algorithm and its convergence proof are given in
Section 3. In Section 4, we present the column generation
approach, combine it with the two-timescale method, and
study the impact of imperfect scheduling. We show the
performance with imperfect scheduling is bounded. In
Section 5, we give the experimental examples. The conclu-
sion is drawn in Section 6.

2 PROBLEM DESCRIPTION

Let the network be represented by a directed graph
G = (V, E), where V is the set of nodes and F is the set of
links. The presence of link e € £ means that the network is
able to send data from the start node of e to the end node of
e. Unlike in a wired system where the capacity of a link is a
fixed constant, in a wireless system, due to the shared
nature of the wireless medium, the rate ¢, of a link e
depends not only on its own modulation/coding scheme,
power assignment ., and the ambient noise but also on the
interference from other transmitting links, which in turn
depends on their power assignments. Let P = (F,) denote
a vector of a global power assignment, and let ¢ = (c.)
denote the vector of the corresponding link rates, where
0 < P, < P, nax for all e € E. We assume the data rates c are
completely determined by the global power assignment P,
which means there exists a rate-power function u such that
¢ = u(P) [2]. The rate-power function is determined by the
interference model.

We describe the following model as an example. Let G¢
denote the attenuation factor at the receiver of link €’ of the
signal power transmitted by the transmitter of link e [13],
also known as the path gain. Let 0. denote the thermal noise
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power at e’s receiver. The signal to interference and noise
ratio (SINR) of link e is

Gsepe

(P) = .
“ ( ) Oc + ZEIEEA,E,#E G"‘Pf”

(1)

According to Shannon’s capacity theorem, the maximum
data rate of link e is ¢, = Wlog(1 + w.(P)), where W is the
system bandwidth. In practice, the link rate is usually lower
than the Shannon capacity. Typical wireless systems allow
a finite set of link rates, e.g., c e cf,, Wthh are assoc1ated
with a set of thresholds for the SINR, ﬁc AR ﬁc *)_ This is
usually due to the finite number of modulation/ coding
schemes built into the wireless transceiver. A link e can use
the transmission rate cg, if w, > ﬁé‘i)

To summarize, a data rate vector ¢ is completely
determined by the power assignment P (ie., c¢=u(P)),
which characterizes the relationship between the physical
layer and the MAC layer of a given network. A wide class of
data networks fits into the scope of the aforementioned
model, including static wireline networks, rate adaptive
wireless networks (e.g., the 802.11 family, CDMA-based
systems), and most ad hoc mobile networks [13]. For
instance, 802.11 is a special case of this model. For each
link e, c. is a staircase-like function (taking several discrete
rates) of the power level of the link e itself. The example
associated with (1) can model a CDMA-like system. The
abstract way of viewing the networks will help to apply the
optimization techniques to the networks. The model is
deliberately general, as is customary in this stream of
literature (see [13] and [9], which have already explained
how the general model applies to different special cases of
wireless network systems). As mentioned before, due to the
finite number of modulation/coding schemes, at any time
instance, the number of possible rate vectors is finite. Each
of these allowed rate vectors will be called a schedule. Let Q
denote the total number of schedules. Let ¢} = (c{)) denote
the ith schedule (rate vector) in the set of feasible schedules,
for i=1,---,Q, where the order is arbitrary. Though @ is
finite, it might be exponential in the number of links. By
time-sharing of these feasible schedules, the achievable
time-average link-rate region is the convex hull of c¥,
t=1,---,Q. Denote this convex hull by C. Thus, C is a
convex polytope. With slight abuse of terminology, we call
¢, i=1,---,Q, the extreme points of C. In fact, some of
them may not be extreme points of the polytope. For any
c€C, it could be represented by the following convex
combination of the extreme points of C:

Q

- (@)
;ac

Q
:72041':17 O‘izoai:]-v"w@v (2)
i=1

where «; denotes the time-share fraction of the schedule
that uses the schedule ¢(?. One can find more discussion on
wireless interference models in [9].

2.1 Network Model

Suppose there is a set of source-destination pairs. Let S be
the set of sources and z, be the source rate of source s € S.
Assume the flow between each source-destination pair is
routed along the fixed single path, and denote this path by
ps for each source s. Define U,(z;), z, >0, the utility
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function for each source s € S. Assumptions on the utility
functions are, for every s € S, as follows:

e Al: U, is increasing, strictly concave, and twice
continuously differentiable for all z, > 0.
o A2 Us(xs) >0 for all z; > 0.
o A3:Ul(z,) is well defined and bounded at z, = 0.
The optimal resource allocation and scheduling problem is
formulated as

max Z Us(xs) (3)

seS

s.t. Z s <c, VeeFl

S:eE€Epy
ceC (4)

s >0, VseSs.

By replacing (4) with the equivalent expression in (2), we
rewrite the above problem as follows:

MP: max ZUS(:ES) (5)

Note that c() is a constant instead of a decision variable, and
the only decision variables are x and «. We call the above
problem the master problem (MP).

2.2 Dual of Master Problem

We will apply the Lagrangian duality techniques to solve
the MP (5). In MP, (6) is a complex constraint, which makes
the MP very hard to deal with. By the Lagrangian duality
techniques, the complex constraint can be eliminated and
the overall problem becomes decomposable and enjoys
distributed algorithms. The application of the Lagrangian
duality techniques to communication networks has been
most convincingly established by the successful line of
research in optimal flow control started by Kelly et al. [19]
and Low and Lapsley [20]. In Appendix A, we briefly
review the Lagrangian duality theory.

Let A, be the Lagrangian multiplier (). is also called as
dual variable) associated with the constraint (6). The
Lagrangian function of MP is

L(z,a, ) ZU Ts —I—Z)\ (Zac Z%)
seS eck P S:e€p;
_Z<Ua(mb)_beAe>+Zal<Z)‘c )
seS eEp; eck
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Here, the complex constraint (6) is removed and the
corresponding expression becomes part of the Lagrangian
function L(z,a, ). The Lagrangian function L(-) is strictly
concave in the primal variables z, but linear in the primal
variables a. Note that L(-) is a function of the vectors z,
a, and A

The dual function is

O(A) =max L(z,a, ) (8)
Q
s.t. Zaizl
=1
s >0, VseS
a;>0, Yi=1,...,Q.

Note that the only variables of the dual function 8(\) are A;
z and « are not the variables of §(\). According to the weak
duality theorem, for any A > 0, and any feasible > 0, o >
0 (ie, = and « satisfy (7) and (6)), O(\) > >, g Us(xs).
Furthermore, the strong duality theorem holds for the MP.
Let ¥, a*, A\* be one optimal primal-dual solution. By the
strong duality theorem, O(\*) =" ¢ Us(z}), which says
the minima of #(\) have the same function value as that of
the maxima of ) ¢ Us(z). Hence, instead of maximizing
> ses Us(xs) on the primal problem, we will work on the
dual problem to minimize 6(\).
Now, the dual problem of MP is

Dual-MP :
st. A>0.

min

(M) (9)

3 A Two-TIMESCALE ALGORITHM

In this section, we will illustrate how the MP can be solved
by a two-timescale algorithm. In Section 4, we will combine
this two-timescale algorithm with a column generation
algorithm and derive a family of algorithms.

We first consider the rate control problem with fixed time
fraction vector a:

MP-A: &(«):= max, ZUS(IS) (10)
ses
Q .
s.t. Z x5 < Za,;cg), Vee E (11)
ERES N i=1
xs >0, Vs e S.

The above problem MP-A has a strictly concave objective
function and has a unique solution with respect to the only
variable, vector z. ®(a) denotes the optimal objective
function value of MP-A under each «. The original problem
MP can be rewritten as

MP-B: max, ®(a) (12)
Q
S.t. Zai =
=1
o 2 Oa Vi = ) 7Q
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3.1 Solve Problem MP-A with the Subgradient

Method
The problem MP-A could be solved by the subgradient
algorithm." Let )\, be the Lagrange multiplier associated
with the constraint (11). The Lagrangian function of

MP-A is
ala, 2, \) ZU Zs +Z)\ (Zac(l Zx5>
seS ecll i 5:e€p,
Z( (x5 —be)\)—i—Za (ZAL”)
seS eEp, eckE

The dual function is

Zmax{U () =25 > Ae }

€EPs

+ Z Q; <Z Ae c<7 )
ecl
Since MP-A is maximizing a strictly concave function with
linear constraints, the strong duality holds for MP-A [21].
Since there is no duality gap at the optimum of MP-A under
a fixed o, we can rewrite ®(a) as the optimal objective
function value of the dual problem of MP-A:

Dual-MP-A:  ®(a) = I,{%l Oala, N). (13)
The dual problem (13) can be solved by the subgradient
method as in Algorithm 1 ([21], [22]), where 6(¢) is a positive
scalar step size, and [], denote the projection onto the

nonnegative domain.

L

Algorithm 1. Fast timescale: Subgradient algorithm for
solving MP-A

)\e(t + 1) = )‘e(t) - 6(t) (% O‘icg) - Z xs(t)):| )
- Ve €+E, (14)
z(t+1) = [(U)! <Z Ao (t + 1)) , VseS. (15)

Define the set of optimal dual solutions under a fixed « as

A(a) = argminy 04 (a, A). (16)

Let z*(a) denote the optimal primal solution to MP-A under

a fixed a. Under assumption Al, U,(z;) is strictly concave,

and the optimal primal solution is unique. Let

d(A\ A()) = infyepga) |A = A*[]. d(X, A(e)) is the distance of

A to the set A(a).

Theorem 1: Convergence of the subgradient algorithm for
MP-A. With the diminishing step size rule, i.e.,
limy oo 6(t) =0 and Y ;2 6(t) = oo, let {A(t)} and {z(t)}
be the sequences generated by (14) and (15) in Algorithm 1.
For any e > 0, there exists a sufficiently large Ty such that,
with any initial X\(0) >0, for all t > T, d(A(t),A(a)) <€
and ||z(t) — z*(a)|| < e

1. Since the time-share variable a is a constant vector, there is no
difficulty with the subgradient algorithm here.
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Proof. The proof is standard and is omitted (see [2]). O

Though there is only a unique z*(a) to the primal
problem MP-A, there might be multiple optimal dual
solutions. Theorem 1 guarantees the convergence of {z(t)}
to the unique z*(«), and the convergence of {A(t)} to the set
of the optimal dual solutions.

3.2 Update Time Fraction on a Slower Timescale
The above rate control algorithm (14) and (15) works under
the assumption that the time fraction vector a remains
constant. Now, we discuss how to adjust o;, i = 1,---,Q, to
solve the problem MP-B. We assume the update of « is
much slower so that the minimization of 64(a, A) over A can
be regarded as being instantaneous. Here, we follow the
approaches in [16], [17], and [18].

Let £ index the time slots (called stages) of the slow
timescale. At stage k, given the time fraction vector «(k),
suppose A(k) € argminy>g84(a(k), ) is an optimal dual
solution, and z(k) is an optimal primal solution to MP-A. Let
us call )\ (k) the price or cost of link e. Therefore, \.(k)c(") is
the cost of link e under the ith schedule (i.e., the ith extreme
point of C); and Y,z Ac(k)cl) is the cost of the network
under the ith schedule, which will be called the cost of the
schedule. Let i(k) be the index of a schedule achieving the
maximum schedule cost under the link costs A(k), i.e.,

i(k) = arg max? | {Z Ao (K)cl? }

ecE
If there is a tie, an arbitrary maximizing index is chosen.
Equation (17) may be called a scheduling problem [2], since
it aims at finding a schedule. Because (17) is an optimization
problem over all allowed schedules, 1, --,Q, we call (17) a
global scheduling problem, and the achieved maximum cost
the global maximum cost of the schedule. We denote this global
maximum cost under a fixed A by

Y(A) = Aecl?
52%{2 g }

The time fraction update is shown in Algorithm 2, which
is similar to the one in [16], [17], and [18].

(17)

(18)

Algorithm 2. Slow timescale: Time fraction update for
solving MP-B

ai(k+1) = o (k) + Aq(k) (19)
—min{&(k) (3> .cp Ae (k)cgl(k))
Ai(k) = = X.epA(R)el)), cilk)}, i # (k)
=D izi() Di(k), ifi=i(k). (20)

Here, {(k) is a positive step size. Note that A;(k) < 0 for
i #i(k) and A;(k) >0 for i =1i(k). Hence, the algorithm
increases the time fraction of the most costly schedule while
decreases the time fractions of other active schedules, i.e.,
those schedules with positive time fractions «;(k). Further-
more, if Z?:l a;(k) =1, then Z “,ai(k+1) = 1. Hence, a(k)
will always be valid time fraction vectors for all k if

Z? 1i(0) = 1.
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It can be verified that

Q
ST Ak) = (21)

i=1

Q
D AR D A(R)c (22)
ecE

=1

Equality in (22) occurs if and only if A;(k) =0 for all 4,
which is equivalent to

(g

ecE

P2 AR

ecE

) =0, V. (23

Conditions in (21)-(23), and those described in the
previous paragraph guarantee the convergence of the time
fraction variables. As in [18], we consider a continuous-
time, differentiable version of the algorithm (19) and (20).
Recall that

A(a) = argminyq 04(a, A).

The differentiable version of the algorithm (19) and (20)
satisfies the following conditions, for any A(«) € A(«)

Q
> @ =0, (24)
=1
Zalz/\(a () >0, (25)
i=1 eck
Q .
> @ A(a)cl) = 0if and only if &; =0, Vi.  (26)
i=1 eckE
The condition in (26) is equivalent to
( )= > Acla)c! > =0, Vi. (27)
eckE

Let A* denote the set of the optimal dual solutions to the
problem MP, and z* denote the optimal primal solution. A*
might contain multiple optimal dual solutions, whereas z*
is the unique optimal primal solution (for the x variable)
under assumption Al.

Theorem 2: Convergence of the slow-timescale algorithm.
Let {a(k)} be a sequence generated by the time fraction update
algorithm (19) and (20). There exists a set Q0" such that for
every o € QF, the pair (z*, o) is an optimal solution to the
problem MP and that the following holds: For any € > 0, there
exists a sufficiently large K, such that, for any k> Ky,
d(a(k), Q") <€, where d(a, 2*) =

Proof. See Appendix B. 0

Corollary 3. Let {z(k)}, {a(k)}, {A(k)} be the sequences
generated by the two-timescale algorithm (14) and (15) and
(19) and (20). For any € >0, there exists a sufficiently
large Ky such that, for all k> Ky, |z(k)—z*| <e
d(a(k), ") <€ and d(A(k),A") <€

infaeq |Jo — a|l.
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There might be multiple optimal time fraction o*.
Corollary 3 guarantees the convergence of {z(k)} to the
unique z*, and the convergence of {a(k)} and {A(k)} to the
sets of optimal solutions.

3.3 Summary of the Two-Timescale Algorithm
To summarize, the two-timescale algorithm consists of

e a fast timescale distributed algorithm for rate
control, which adapts the source rates and link
prices according to (14) and (15), and

e a slow-timescale algorithm for updating the time
fraction according to (19) and (20).

However, in most wireless interference models, problem
(17) does not even have a centralized polynomial-time
solution. This has been the main obstacle in developing
practical rate control/scheduling algorithms. In the next
section, we will try to cope with this difficulty.

4 CoLUMN GENERATION METHOD WITH IMPERFECT
GLOBAL SCHEDULING

The global scheduling problem (17) is usually an NP-hard
combinatorial problem [1], [2], [9]. One fundamental reason is
that the convex polytope, C, usually has an exponential
number of extreme points in terms of the number of links. The
column generation method with imperfect global scheduling
can be introduced to cope with this difficulty. The column
generation part reduces the number of times when the global
scheduling problem is invoked. Imperfect scheduling uses
fast approximation or heuristic algorithms for speedup.

4.1 Column Generation Method

The main idea of column generation is to start with a subset
of the extreme points of C and bring in new extreme points
only when needed. Consider a subset of C formed by
convex combination of ¢ extreme points, i.e., c9) = {c:c=

S 3y =1,0,>0,¥i=1,---,q}. We can for-
mulate the following RMP for ¢ € C9:
gth-RMP :  max » Ul(x.) (28)
seS
q .
s.t Z x, < Zaicm, Vee E (29)
S:€EP; i=1
q
S
=1
T > 0, Vse S
o; >0, Vi=1,...,q

The value of g is usually small and the extreme points of C%)
in the gth-RMP are enumerable.

Let A, be the Lagrange multiplier associated with the
constraint (29). The Lagrangian function of the ¢gth-RMP is

=) Ul + > A (Zac sz>

seS eckE i S:eEPs

Z( (2, —mbz/\>+2al<2)\c )

seS €Ep, eckE

wa>\
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The dual function is

09(\) =max L9z, a,\) (30)
q
s.t. Z Q; = 1
i=1
r, >0, VseS
a,;ZO, Vi:1,...,q

The dual problem of the ¢th-RMP can be formulated
similarly as in (9).

The ¢th-RMP is more restricted than the MP. Thus, any
optimal solution to the ¢gth-RMP is feasible to the MP and
serves as a lower bound of the optimal value of the MP. By
gradually introducing more extreme points (columns) into
C and expanding the subset ', we will improve the
lower bound of the MP [5], [9], [11].

4.2 Apply the Two-Timescale Algorithm to the RMP

The two-timescale algorithm can be used to solve the
qth-RMP. Here, we define the following problem under
the link cost vector A(k):

i (k) = arg max;_ {Z Ae( }

eck

B1)

The optimization is taken over the ¢ currently known
schedules (extreme-point link-rate vectors). The problem in
(31) is called the local scheduling problem, and the achieved
maximum cost is called the local maximum cost of the schedule.
We denote this local maximum cost under A > 0 by

A )\ 1II<11&<}§I{Z>\C }

If there is more than one link-rate vector achieving the local
maximum cost, the tie is broken arbitrarily.

(32)

4.3 Bounding the Gap between the MP and the
gth-RMP

Now, the question is how to check whether the optimum of

the ¢th-RMP is optimal for the MP, and if not, how to

introduce a new column (schedule or extreme point). It

turns out there is an easy way to do both.

Let (z*,a",A\*) denote one of the optimal primal-dual
solutions of the MP, and (z?, a9, \(?) denote one of the
optimal primal-dual solutions of the ¢th-RMP. Since the
strong duality holds for both problems, we have

ZUs(x = Q(A*),ZUS(_@@) — 9 (X(lﬂ)_
s€S s€s
Since the ¢gth-RMP is more restricted than the MP, we have

> Uslay) 2 ZUS(ffj)).

seS ses

(33)

(34)

Combining (33) and (34), we get the following lower bound
for the optimal objective value of the MP:
( ):(q)) .

S () > U (al) =60

seS seS

(35)
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By the weak duality [21], for any A feasible to the dual
problem of the MP, () is an upper bound for the optimal
objective value of the MP. In particular, consider A9 which is
optimal to the dual of the qth-RMP and feasible to the dual of
the MP. §(\?) is an upper bound of 3_,_4 Us(z?), i.e.,

o(ND) = 3" U,(a2).

ses

(36)

By inspecting the dual functions (30) and (8) of the
qth-RMP and the MP, respectively, we note that 7@ is the
unique Lagrangian maximizer at X9 for both (30) and (8).
By the definitions of the dual functions

9()\’(11)) _ 9@ ()’\(q))
S (@) (D)
_ . 9\
= m%x ZO[Z )‘e C8
a>0, ZZ:] a;=1 | i=1 eckE

- 7( A_<q’>) _ @) ( ;(q)),

In the last equality, we have used (17) and (31). Hence, the
gap between the upper and lower bounds for the optimal
objective value of the MP is y(A\(?) — 4(@(A\@), which is
exactly the difference between the global maximum cost
and the local maximum cost of the schedule under A,
Therefore, we conclude the following fact:

Lemma 4. Let (£@, a9, X)) denote one of the optimal primal-
dual solutions of the qth-RMP. (E(Q)L&@), M9 is optimal to
the MP if and only if y(A\9)) = (@ (@),

4.4 Introduce One More Extreme Point

(Column or Schedule)

If the gap between the upper and lower bound,
7(A@) — 4@ (X)), is not narrow enough, then C is not
sufficiently well characterized by C and a new extreme
point should be added to the RMP. We state the rule of

introducing a new column in the following:

Fact 5. Any schedule achieving a cost greater than the local
maximum cost of the schedule could enter the subset C\%) in the
RMP. The schedule achieving the global maximum cost of the
schedule is one possible candidate and is often preferred.
Lemma 4 says, at the current link cost A9 if none of the

schedules that achieve the global maximum cost of the

schedule are in the subset C'?, then the current optimal
solution of the ¢gth-RMP is not optimal for the MP. In this
case, there are reasons to prefer the introduction of the
globally optimal schedule specified by (17) as the new
extreme point to the RMP. This strategy is a local greedy
approach to improve the lower bound of the optimal value
of the MP. In fact, it can be viewed as a conditional gradient
method for optimizing the lower bound, when the lower
bound is viewed as a function of ¢ [9].

4.5 Column Generation by Imperfect Global
Scheduling

The global scheduling problem (17) is usually NP-hard,
which makes the step of column generation very difficult.

1399

However, according to Fact 5, we do not have to solve it
precisely. Instead, we may solve it approximately, and this
is referred to as imperfect global scheduling [2].2

Suppose we are able to solve (17) with an approximation
ratio p > 1, i.e.

where 7,()) is the cost of the schedule given by the
approximate solution. Note that both y(\) and 7,(\) are
nonnegative for all vectors A > 0.

(37)

4.5.1 A p-Approximation Approach
We develop a column generation method with imperfect
global scheduling as follows:

Algorithm 3. Column generation with imperfect global
scheduling
e Initialize: Start with a collection of ¢ schedules
e Step 1: Run the slow-timescale update (19) and (20)
(which will call the fast timescale algorithm) for
several (a finite number) times on the ¢gth-RMP.
e Step 2: Solve the global scheduling problem (17) with
approximation ratio p under the current dual cost A.
- If the schedule corresponding to the approximate
solution of (17) is already in the current collection
of schedules, go to Step 1;
- otherwise, introduce this schedule into the
current collection of schedules, increase ¢ by 1,
and go to Step 1.

We make several comments regarding Algorithm 3:

e If the approximate schedule derived in step 2 has a
lower schedule cost than that of an existing schedule
already selected, we define the existing schedule
with the highest cost as the solution to the
approximation algorithm. Hence, the cost of the
imperfect (approximate) schedule cannot be lower
than any of the existing schedules.

e In the worst case, the column generation method
may bring in all the extreme points. However, it
often happens that, within a relatively small number
of column-generation steps, the optimal solution to
the MP is already in C'?. Thus, the original problem
may be solved without generating all the extreme
points [9].

e Our focus here is on approximation algorithms
because we will be able to show guaranteed
performance bound on the MP problem later. Other
types of imperfect scheduling can also be used,
including many heuristics algorithms and random
search algorithms. Examples of the latter include
genetic algorithms and simulated annealing [23].

e  Note that since the number of extreme points of C'?) is
usually small and enumerable, it is possible for the
nodes in the network to store the current collection of
schedules. In order to compute the cost of each known
schedule in each slow-timescale update, each link e

2. Note that the local scheduling problem (31) can be easily solved
precisely since the number of extreme points of C¥ is usually small, and
hence, enumerable.
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can independently compute its corresponding term
for each known schedule based on the local link dual
cost. Then, those components of the schedule cost can
be collected by some controller elected by the nodes in
the network. The controller can compute the cost of
eachknownschedule, thelocally most costly schedule,
update the time fractions by (20), and broadcast the
results. Other than that, the two-timescale algorithm
(14) and (15) and (19) and (20) on the ¢th-RMP is
completely decentralized. Furthermore, if the global
scheduling problem (17) can be solved approximately
in a decentralized fashion, then Algorithm 3 is
completely decentralized except the part of the
controller. In Section 5, we will introduce one inter-
ference model, under which (17) can be solved
approximately [1], [2].

e Algorithm 3 in fact describes a whole class of
algorithms. To see this, consider the special case
where p = 1,i.e., the case of perfect global scheduling.
In one end of the spectrum, if the slow-timescale
algorithm in step 1 runs only once on the RMP, the
algorithm becomes a pure two-timescale algorithm as
in Section 3. In the other end of the spectrum, if the
slow-timescale algorithm runs on the RMP until
convergence, the algorithm becomes a pure column
generation method with the two-timescale algorithm
as a building block for solving the restricted problems
between consecutive column generation steps. By
choosing different numbers of times to run the slow-
timescale algorithm in step 1, we have many algo-
rithms, representing different performance, conver-
gence speed, and complex tradeoffs.

4.5.2 Convergence with Imperfect Global Scheduling

Theorem 6. Assume that the fast timescale optimization in the
two-timescale algorithm can be regarded as being instanta-
neous. Let {x(k)}, {a(k)}, {A(k)} be the sequences
generated by Algorithm 3. For any e >0, there exist a g,
1<q<Q, and a sufficiently large K, such that, for all
k> Ko, ||lz(k) — 29| <e d(a(k),Q9) < e and d(\(k),
AD) < ¢, where 79 is the optimal primal solution, Q9 is a
set containing optimal time fractions, and A9 is a set of
optimal dual solutions to this particular qth-RMP. Further-

more, for any (i(‘l), al, X(")), where a9 € QW gnd
X(Q) c A(’I)/ we have fyp():(’I)) — 7(7)(}:(7))
Proof. See Appendix B. ]

4.5.3 Performance Bound under Imperfect Scheduling
Theorem 6 says that the column generation method with
imperfect global scheduling produces a suboptimal solution
for the MP. Next, we will prove that the performance of this
suboptimum is bounded.

Theorem 7: Bound of imperfect global scheduling. Assume
A2. Let 9 be the optimal solution, Q@ and A\ be the sets of
optimal solutions that the column generation method with
imperfect global scheduling converges to, as in Theorem 6. For
any (29, & XY, where &9 € QW and X9 € AW, we have

9@ (w) <> U2 < g(w) < @ (;(q)).
ses

(38)
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Proof. See Appendix B. O

Since the strong duality holds on the ¢th-RMP,
Yo Us(2W) = 019(X@), we have the following.

Corollary 8: p-Approximation solution to the MP. Under
the assumption A2, we have

PLACDED WA SACT]

ses seS seS

(39)

Corollary 8 says that the column generation method with
imperfect global scheduling produces a solution to the MP
that achieves the same approximation ratio as the approx-
imate solution to the global scheduling problem. Finally, if
p = 1.0, (39) holds with equality.

Corollary 9: Convergence under perfect scheduling.
Assume A2. Let p =1 in Algorithm 3, which corresponds
to perfect global scheduling. Then, Algorithm 3 is the
column generation method with perfect global scheduling.
For any € > 0, there exists a sufficiently large K, such that,
for all k>Ky, |z(k)—z| <e d(a(k),Q)<e and
d(A(k),A") <e.

Remark 1. In [1] and [2], the authors propose a way to solve
this problem by a distributed subgradient algorithm with
imperfect scheduling. With perfect scheduling, their
approach guarantees the convergence of the link dual
costs and the primal source rates; but it does not recover
the time-share fraction of the schedules, which oscillates
due to the limitation of subgradient algorithm. However,
with imperfect scheduling, their approach does not
guarantee the convergence. Their performance bounds
are not of the constant approximation ratio type, and they
are dependent of the utility function. In contrast, our
Algorithm 3 guarantees the convergence of the link dual
costs, the source rates and the time-share proportions; and
it produces a suboptimal solution whose function value is
no less than a constant fraction of the true optimum value.
The constant is independent of the utility function.

Remark 2. Corollary 8 proves the convergence of the column
generation method with imperfect global scheduling. This
kind of convergence result is popular in the area of
optimization. The traditional complexity analysis ap-
proach usually provides the worst-case estimates of the
complexity. These estimates may often involve parameters
difficult or meaningless to quantify. Furthermore, the
worst-case complexity analysis is often too pessimistic in
practice: Some “bad” algorithms by the worst-case
complexity analysis are very unlikely to perform very
poorly in practice; in the meanwhile, some “good”
algorithms may perform very poorly on most practical
instances [21]. Itis well known that the column-generation
approach may sometimes end up enumerating all the
vertices of the constraint polytope. However, in practice,
this either does not happen or the algorithm achieves near
the optimal value in a small number of column-generation
steps. Practical computational experiences often give
better indication of the algorithm performance. We will
show some numerical examples in Section 5.
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5 NuUMERICAL EXAMPLES

In this section, we will show the performance of our algorithm
by simulation. We will use the following node exclusive
interference model. The model requires that, first, the data
rate of each link is fixed at ¢.; and second, at any time instance,
each node can only send to or receive from one other node.
Under this model, the scheduling problem (17) becomes the
maximum weighted matching (MWM) problem [1], [2], [24].
There is a centralized algorlthm to solve MWM precisely with
the time complexity of O(|V|*) [25], and a greedy algorithm to
solve it approximately with an approximation ratio p = 2and
the time Complex1ty of O(|E|log|E|) [1], [2]. The greedy
algorithm is more useful to our problem because it is
decentralized [2]. Under this model, our column generation
algorithm with imperfect scheduling will produce an
approximate solution to the MP with an approximation ratio
p = 2, and it is completely decentralized.

We remark that the node exclusive interference model is
a simple instance of the conflict-graph-based models that
capture the contention relations among the links [3], [8]. Ina
conflict graph, each vertex represents one wireless link in
the network, and an edge represents contention between the
two corresponding links, which are not allowed to transmit
at the same time. A set of links in the wireless network that
can transmit data simultaneously, i.e., a schedule, is an
independent set in the corresponding conflict graph. The
scheduling problem (17) becomes the maximum weighted
independent set (MWIS) problem, where the node weight is
Acce. The conflict-graph-based model is more general and
able to characterize many existing wireless networks. It also
allows multiple transmission rates for each link. But finding
approximation algorithms for the global scheduling
problem with a good performance bound in the worst case
(i.e., for an arbitrary network) is also a difficult issue.
However, in practice, we usually do not encounter those
networks falling into the worst cases. Many approximation,
heuristic or randomized algorithms may have good
performance for the given networks in practice. Finally,
we remark that our approach in this paper applies to even
more general models than the conflict-graph-based ones. It
applies to all models that fit the description at the beginning
of Section 2. The allowed models are broad enough to
include virtually all known wireless networks.

The possible choices of utility function Us(z;) could be

Us(zs) = ws In(zs + €) (40)
or
, 1-5
Us(:us)zws%, 0<B<1, (41)

where w, are the weights for s € S, e is the base of the
natural logarithm, and a, > 0 is a small constant, which
make the utility functions (40) and (41) satisfy the
assumptions A2 and A3. These utility functions have been
discussed in [26]. When the utility function (40) is adopted,
the optimal solution z* satisfies

Ty — X,
Zws x*+e§ =0
S

ses

(42)

for any feasible x. Equation (42) is almost the same as the
proportional fairness defined in [27]. The only difference is
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Class 4

Class 5
Fig. 1. Small network topology.

that the denominator of (42) is z} instead of z} + e in [27].
Hence, an end-to-end rate allocation satisfying (42) is
essentially proportional fair. When the utility function (41)
is adopted, the optimal solution z* satisfies

s (43)
s€S (I: + as)‘

for any feasible x. Equation (43) is called (wj, §)-proportion-
ally fairin [26] when « is very small and negligible. It is some
notion of proportional fairness as well. However, the column
generation method with imperfect global scheduling is not
guaranteed to produce the global optimal z* as the solution.
As proved in Corollary 8, the achieved approximate solution
has some bounded performance. Thus, the column genera-
tion method with imperfect global scheduling will also
provide some weaker proportional fairness for the end-to-
end rate allocation. In this paper, we will use the utility
function in (40) with ws = 1.0 forall s € S.

As discussed in Section 4, we can introduce new extreme
points at varying degree of frequency. In the experiments,
we will use three frequencies: fast, medium and slow. With
the fast frequency, we try to introduce extreme points by
solving the global scheduling problem (17) at each slow-
timescale update of (19) and (20), in which case, Algorithm 3
degenerates into the pure two-timescale algorithm. With the
slow frequency, we try to introduce a new extreme point
after every 20 slow-timescale updates of (19) and (20). Our
experiences have shown that the RMP with our experiment
sizes is often optimized within 20 slow-timescale updates. If
so, Algorithm 3 becomes the pure column generation
method. With the medium frequency, we introduce a new
extreme point every 5 slow-timescale updates.

The network in Fig. 1 has been studied in [1] and [2].
There are five classes of connections as shown in Fig. 1. The
capacity of each link is fixed at 100 units. We initialize the
experiments with a set of schedules, where each contains
exactly one single transmitting link. This corresponds to the
traditional TDMA scheduling [11]. Fig. 2 shows the
convergence of the connection rates with perfect scheduling
and imperfect scheduling, respectively, where both are
introducing new columns at the fast frequency. Compared
with the subgradient algorithms proposed in [1] and [2], a
fast-timescale iteration involves a much lower computation
cost and system overhead than an iteration of the algo-
rithms in [1] and [2]. This is because, at each fast-timescale
iteration, our algorithms do not need to solve the global
scheduling problem and, hence, do not need to collect the
cost of each link and send the information to the
coordinator, which requires O(|E|) messages; however,
each iteration of the algorithms in [1] and [2] needs to
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Fig. 2. Small network. (a) Fast frequency, with perfect global scheduling.
(b) Fast frequency, with imperfect global scheduling.

solve the global scheduling problem and requires O(|E|)
message transmissions. Hence, although the overall number
of fast-timescale iterations needed for convergence by our
algorithms is comparable to the number of iterations
needed by the algorithms in [1] and [2], this number is
not a good indicator of the computation cost or message
overhead. Only a slow-timescale iteration in our algorithms
costs about the same as an iteration in [1] and [2]. In our
algorithms, both the perfect and imperfect scheduling
schemes take only about 200 slow-timescale iterations to
converge; but the algorithms in [1] and [2] need thousands
of iterations. Hence, our algorithms are much more efficient
in the computation cost and system overhead.

In Fig. 2a, we have two groups of connections. Class 4
and Class 5 achieve higher rates because they involve less
wireless interference compared with others. Fig. 2b gives
the same order of the connections in terms of their rates. But
the connections are not separated into obvious rate groups.
Though the two scheduling schemes do not give the exactly
same connection rates, their final objective function values
are very close: 16.0989 for the imperfect scheduling and
16.1351 for the perfect one. The imperfect scheduling
scheme does solve the problem within the approximation
ratio p =2, and it in fact solves this particular problem
nearly optimally. We note that with our specific objective
function in (40), a minor change in the connection rates will
not change the objective too much. Fig. 3 shows the two
schemes get the correct time fraction and the long time
average link capacities are able to support the source flow
rates. It means our two-timescale algorithm solves both the
primal and dual problems at the same time.

We next experiment with a larger network with 15 nodes.
The network is randomly generated and 20 end-to-end
connections are placed on this network randomly. For each
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Fig. 3. Small network. (a) Fast frequency, with perfect global scheduling.
(b) Fast frequency, with imperfect global scheduling.

connection, the routing is the fixed shortest path routing. In
the experiment, it turns out these 20 connections use
28 directed links. The capacity of each link is fixed at 100 units.
Fig.4 shows the five connections with the highestrates. Again,
the perfect scheduling is more likely to group connections.
Next, we evaluate the algorithm with different frequencies
of introducing columns on the large network. In Fig. 5, we
show the convergence of the objective function values with
both perfect and imperfect scheduling at different frequen-
cies. We see that the final objective function values are very
close and the imperfect scheduling solves the problem nearly
optimally. In Fig. 5, with both perfect and imperfect
scheduling, the fast scheme always improves the objective
function value more quickly at the beginning, while the slow
scheme improves it much more slowly than the other two
schemes. The reason is that, with the fast scheme, plenty of
schedules are introduced quickly. The slow scheme always
tries to take full advantage of the current collection of
schedules. But later, the slow scheme catches up the fast
scheme, judging from the trend of the curves. This motivates
the use of the medium scheme. In Fig. 5, we see that the
medium scheme increases the objective function value nearly
as quickly as the fast scheme at the beginning and it surpasses
the fast scheme soon after. The curves show some oscillations
at the initial phase for the medium and slow schemes. This is
because those two schemes spend more effort to obtain better
performance from the current collection of schedules. At the
initial phase, with fewer schedules but more optimized time-
sharing, introducing one more schedule abruptly will
decrease the function value by a little bit. From Fig. 5, we
conclude that the numbers of slow-timescale iterations
needed for convergence to the optimal value by the fast,
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Fig. 4. Large network. (a) Fast frequency, with perfect global scheduling.
(b) Fast frequency, with imperfect global scheduling.

medium and slow schemes are comparable; but the fast
scheme has a much faster ramp-up than the other two
schemes to a near optimal value. Meanwhile, for the same
number of slow-timescale iterations, the slow or medium
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20 Slow Frequency 4
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Fig. 5. Large network. (a) Perfect global scheduling. (b) Imperfect global
scheduling.
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TABLE 1
Performance Comparison of the Family of Algorithms
Fast Per. Medium Per. Slow Per.

#Schedules Computed 300 60 15

#Active Schedules 49 49 15
#Schedules Introduced 56 52 15

Fast Imper. || Medium Imper. Slow Imper.

#Schedules Computed 300 60 15

#Active Schedules 19 19 15
#Schedules Introduced 22 30 15

schemes invoke the global scheduling algorithm much fewer
times than the fast scheme, which means that the former two
are more efficient in computation and message overhead.

In Table 1, we compare the three schemes for their
computation costs. The number of schedules computed is
the number of times that the global scheduling problem (17) is
invoked. The number of active schedules is the number of
schedules actually used in the optimal/suboptimal solution
after the algorithm converges. The number of schedules
introduced is the number of schedules that have ever been
introduced into the local collection of schedules. Since solving
the global scheduling problem (17) is usually the most
expensive computation, the total computation time is mainly
characterized by the number of times the global scheduling
problem is solved. As Fig. 5 shows, after 300 slow-timescale
iterations, the three schemes with both the perfect scheduling
and the imperfect scheduling converge. But the fast scheme
solves the global scheduling problem 300 times either
precisely or approximately in the 300 slow-timescale itera-
tions. Meanwhile, the medium scheme and slow scheme only
solve the global scheduling problem 60 and 15 times,
respectively. One expects that lowering the frequency of
introducing new schedules is correlated with fewer compu-
tations for the global scheduling problem. But we know no
theoretical reasons why this must be true.

We also find, with a lower frequency, the algorithm
usually produces a solution with fewer active schedules.’
Fewer active schedules may be desirable since it is easier to
manage and control them, which may reduce the system
complexity and control overhead. With the perfect schedul-
ing, the slow scheme (i.e., the pure column generation
approach) only uses (i.e., time-share) 15 active schedules in
the end, which are all those that were ever computed
and entered. In other words, there are no redundant
schedules; nor are there redundant computations for the
schedules. The fast and medium schemes use 49 active
schedules. In the fast scheme, seven schedules have been
introduced into the collection but are not used in the final
optimal solution. In the medium scheme, the number of
redundant schedules is 3.

For the imperfect scheduling, we find that both the fast
and the medium schemes generate much fewer schedules
than in the perfect scheduling, although the number of
computations for the schedules remain the same.* The fast
scheme even has fewer redundant schedules than the
medium scheme, which a little counterintuitive. The reason

3. In these six experiments, the initial TDMA-style schedules are all
inactive in the optimal solutions, and we did not count them in the table.

4. However, each computation is less expensive than in the perfect
scheduling case, since it is approximate.
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Fig. 6. Bounds for the optimal objective value of the MP. Pure column
generation method with imperfect global scheduling.

might be that the approximation algorithm is not as
sensitive to the change of link prices as the precise
algorithm. Significant changes in link prices are needed to
trigger the discovery of a new schedule.

Based on the study in Fig. 4 and Table 1, we conclude
that the pure two-timescale (fast) or the pure column
generation (slow) algorithms have both pros and cons. An
intermediate algorithm (medium) may achieve a more
desirable balance among factors such as optimization
performance, the computation cost, and system complexity
and overhead.

Next, we show that, in the pure column generation
method, the gap between the lower and upper bounds for
the optimal object value decreases as the RMP expands.
With the imperfect scheduling, we can compute the
upper bound by 0@ (X@) — 4(D(X@)) 4 4(A@) < 9D (XD —
FDND) 4+ py,(X?), where p=2 in our case. The lower
bound is obtained from the current best solution. Fig. 6
shows that the gap is quickly narrowed after 10 columns
have entered. It also shows that the objective values of both
the perfect scheduling and imperfect scheduling are inside
the two bounds. Also, our imperfect scheduling almost
achieves the global optimum of the original problem.

Next, we wish to examine how well the algorithm copes
with the connection arrival and departure dynamics. We
applied the algorithm with imperfect scheduling and fast
frequency on the large network with connections arrive and
depart randomly. At the beginning, there are 20 connections
in the network. At about the 2,000th fast timescale iteration,
five connections finish transmission and leave. Later, at about
the 4,000th fast timescale iteration, five new connections start
to transmit data. In Fig. 7, we show the data rates of three
classes of connections: class A is a connection that always
exists in the network throughout the simulation period,
class B is a connection that finishes and leaves early, and
class Cis a connection that joins the network later. We can see
that the connection rates adapt to the dynamics quickly.

Finally, we have also applied the subgradient algorithms
for these experiments, and found that it is very difficult to
tune the algorithm parameters to reach convergence.

6 CONCLUSIONS

This paper studies the problem of how to allocate wireless
resources to maximize the aggregate source utility. This
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optimization problem has two difficulties: First, the
Lagrangian function is not strictly concave with respect to
the time-share variables, which makes the subgradient
algorithm unable to recover the optimal values for those
variables; second, its constraint set is a convex polytope
usually containing an exponential number of extreme
points. In order to recover the correct time-share variables,
we develop a two-timescale algorithm. To cope with the
difficulty of the global scheduling problem, we adopt a
column generation approach with imperfect global schedul-
ing. If the imperfect scheduling has bounded performance,
then our overall utility optimization algorithm solves the
problem with bounded performance. The combination of
the two-timescale algorithm and column generation leads to
a family of algorithms with interesting tradeoffs.

APPENDIX A
PRELIMINARY OF THE DUALITY THEORY

This section gives a brief overview of the duality theory in
convex optimization. Consider the following convex opti-
mization problem, which will be called the primal problem:’

Primal: max f(x) (44)
st. gi(z) >0, j=1,2,...,m (45)
xeX. (46)

Here, f is a concave function on IR", each g; is a concave
function on IR", and X is a convex set. The variables x are
called the primal variables. Let g be the vector-valued
function, g = (g;)j.,-

Let A be the Lagrangian multipliers (also called the dual
variables) associated with the inequality constraints (45). The
Lagrangian function is defined as

L(z,)) = f(z) + X g(x),

where A represents the transpose of the vector A.
Define a function 6()) as follows, which is called the dual
function:
O(N\) = max L(zx, ).

reX

5. Strictly speaking, we should write sup for max, and inf for min in this
section.
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Then, the following problem is called the dual problem:
Dual: min 6(\) (47)

st. A>0. (48)

The strong duality theorem says that, under some more
technical conditions, the optimal values of the primal and
dual problems are identical. One such technical condition is
the Slater’s condition, which is as follows: The primal
problem is feasible and its optimal value is finite; there

exists £ € X such that g;(z) > 0 for all j.
The weak duality theorem says that, for any primal

feasible x (i.e., = satisfies (45) and (46)) and dual feasible A
(i.e.,, A>0), f(z) <O(N). This is true even without the
concavity/convexity requirement on f, g, and X. As a
result, the optimal primal value f* and the optimal dual
value ¢* satisfy f* < 6*. More details about the Lagrangian
duality theory can be found in [21].

APPENDIX B
ADDITIONAL PROOFS FOR THEOREMS

Proof of Theorem 2.

() = min (e, A)

= I§1>1(I)1 { Z <Us(xs()‘)) - xs()‘) Z /\e>
- S

s€ eEps

" ia (Z A@c@) }

ecE

Note that 04(a,\) is a continuous function. For each
a>0, 04(e,-) is bounded from below (e.g., by
> sesUs(0)). Hence, ®(«) is well defined on o > 0.
Furthermore, 64(-,\) is concave (actually linear), for
each fixed A\. Hence, ®(«) is a concave function in «,
which means it has directional derivatives. We will
apply Danskin’s theorem ([21, p. 717]). The theorem
requires A to be in a compact set. In other words, it
requires that there exists a compact set A independent of
a such that ®(«) = miny>g 04 (@, A\) = minyep 04(a, A). We
will next construct one such compact set. Since Uy(-) is
concave, we have U/(0) > Ul(z,) for all z; > 0. Under
assumption A3, take some K > max,esU.(0) > 0. Let
A={X:0< )\ < K,Vec E}. For any X ¢ A, there exists
a nonempty subset £y C E, where \. > K forany e € E,
and A\, < K for any e ¢ E;. Let denote a subset of sources
by Si C S, where for any source s € 5, its routing path
ps contains some links in the set F;. We construct a
vector N € A, where A, = K for any e € Ej, and A, = A,
for any link e € E'\ E;. For any s € S, if its accumulated
path cost is no less than K, then the maximum of
Us(xs) — x5 deps Ae in the definition of 6f4(a,\) is
achieved at z; = 0, which means for any s € 5

Us(0) = %g%({UG(Is) — Ty Z)\e}

€€ps

_ _ /
= rg}g?)({Ub(mb) T Z )\(,}.

eEP;

i=1 eckl
+ Z Inaf)({Us(xs) — @ Z )\L}
ses, U7 €eEp;
+ Z maX{Ue(xs) 1‘92/\?}
s€S\ S =0 €e€ps
>y o (Z A;c@) o
i=1 eck
—Q—Zmax{Us(xs) xSZ)\;}
se5, w20 =

> ?%%{Usm)

seS\s T

:9A(a, X).

Thus, for any «, the minimum of 4(o, X) over A >0
occurs in A.

The conditions required by Danskin’s theorem are
met. Let ®'(a;d) denote the directional derivative of
®(a) in the direction of &. Let #,(a,\;d) be the
directional derivative of 64(-,\) at « in the direction of
d. Then, by Danskin’s theorem

¥'(0; ) = min 0 (a, A d
(Ot,a) )\rer/l\l(rcly) A(aa ,Oé)

Q
i D) a
)\rer/l\l(rclv) £ (Z eCe >OZL (50)

eck

Q
> (Z Xe(Oé)Cé”) di,

i=1 \ecF

where A € A(a) achieves the minimum.
Then, by (25)

@ (o &) > 0. (51)

By the Lasalle invariance principle [28], {a(k) } approaches
the largest invariant set inside {« : ®'(«a; &) = 0}, as k goes
to infinity. Let us denote this positively invariant set by {2*.
For any € > 0, there exists a sufficiently large K such that
for all k> Ky, d(a(k),Q") < e. Take a trajectory in this
invariant set Q*, which satisfies ®'(«;&) = 0. By (50),
S (X ep Ay = 0. Then, by (26), ¢&; = 0 for all i.
Hence, at any point o* € Q, & = 0.

Next, we will show that for any point o € %, «
solves problem MP (also to MP-B). Let 2*(a*) and A*(a*)
be the optimal solution of MP-A under o*. MP-A

*
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maximizes a strictly concave function with linear
constraints, and hence, the KKT conditions are both
necessary and sufficient optimality conditions for MP-A
[21]. Thus, at the optimum (z*(a*), A*(a*)), we have that
x*(a*) is primal feasible and A\*(a*) is dual feasible for

MP-A, and
“) } ) (52)

D IEAC )> =0, Ve€ E. (53)

EHES/N

) — :L’SZA:(Q

e€p;

(") = arg rrlaXIEO{Ug X

* 7
(E o,

At o, we have & = 0. Hence, according to (27), we have
a; > 0 only if A*(a”)el!) = max? 1{A*( )l } (54)

Also, by (24), if we initialize the update of o at some «(0)
satisfying S°%, o;(0) = 1, we will have

i=1

(55)

e

Obviously, z*(a*), A*(a*), and a* are all nonnegative.
These nonnegativity conditions, the fact that z*(a*) is
primal feasible for MP-A, and the conditions in (52) and
(53) and (55) and (56) are the optimality conditions of the
MP. Hence, (z*(a*), a*, \*(a*)) is an optimal primal-dual
solution to the MP (also to MP-B). O

which implies that

o = argmax, 0203 GI{Z o <Z A (a

eckE

Proof of Theorem 6. Since the fast timescale algorithm is

assumed to converge instantaneously, we only need to
consider the slow-timescale algorithm and the column
generation steps. Since the number of extreme points of C
is finite, eventually Algorithm 3 will stop introducing new
extreme points. Hence, there exists a ¢, 1 < ¢ < @, such
that, after Algorithm 3 stops introducing new extreme
points, the number of extreme points that have been
introduced is ¢. Let the convex hull formed by these
¢ points be denoted by C?. After Algorithm 3 no longer
introduces new extreme points, it behaves just like the
two-timescale algorithm but on the restricted set C?
According to the theorems in Section 3, for any € > 0,
there exists a sufficiently large K such that, forall k > K,
(k) — 29| < ¢, d(a(k),2?) < eand d(\ ( ),AW) <e.
We next show that, for any (z(@, @@, X(9)), where a(? €

9 and \@ € AW, we have w,,()\(‘”) = (q>()\(’1>). First, note
that 7,(A@) > ~@(A\@)) by the comment after Algorithm 3.
Next, it must be true that 7,(A\?) < 4@ (A\@). Otherwise,
the schedule whose cost is ,(A?) must not have already
been in ' and will be selected to enter. This violates the
assumption that the algorithm never selects more than
g schedules. O
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Proof of Theorem 7. Since the ¢th-RMP is more restricted

(1) = napd 35 (6

than the MP, we have 0@(\9) <> _ U(z}). By the

weak duality, we have >, ¢ Us(z}) < 0(\@).
By the definition of the dual function for the MP in (8),

we have
>>}+7<A@)
z,) — LEQZ)‘ q)> } —l—p’y,,()(“”)

€EPs

)—ngA@)}HV (M >)

ecps

— 1, Z )’\((;1

eEPs

S%;%{Z(
el

= pf? ()\(q )
The first inequality holds because, under assumption
A2’ maXl‘EU{ZSES(US’(zs) - Ls Zeép,,. ng))} 2 0 fOf any A
(which can be checked by plugging in z, =0 for all s),
p>1, and (37) is assumed. The second equality holds

because 7,(A\@) = v (\@) by Theorem 6. O
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