
Differentiated Bandwidth Allocation with TCP
Protection in Core Routers

Shushan Wen, Student Member, IEEE, Yuguang Fang, Fellow, IEEE, and

Hairong Sun, Senior Member, IEEE

Abstract—Differentiated Services (DiffServ) networks have received wide attention for several years. They categorize routers into

edge routers and core routers. In core routers, one of the technological challenges is to implement differentiated bandwidth allocation

and TCP protection with low complexity, where conventional per-flow queueing is costly. In this paper, we present an Active Queue

Management (AQM) scheme called CHOKeW, named after previous work CHOKe that is effective to protect TCP flows. A method is

borrowed from CHOKe that draws a packet at random from the buffer, compares it with the arriving packet, and drops both if they are

from the same flow (we call this “matched drops”). CHOKeW enhances the drawing function by adjusting the maximum number of

draws based on the priority of the new arrival and the current status of network congestion. The number of parameters that CHOKeW

needs to maintain is determined by the number of priority levels being supported by the network, which usually has a small limited

value. With respect to the number of flows (say N) going through the router in the core networks, both the memory-requirement

complexity and the per-packet-processing complexity for CHOKeW is O(1), as compared to OðNÞ and usually greater than O(1),

respectively, which has been seen in conventional per-flow schemes. In order to explain the features of CHOKeW, an analytical model

is used, followed by running a series of simulations to evaluate the performance. We show that under a variety of congestion scenarios,

CHOKeW is able to 1) support differentiated bandwidth allocation by affording a larger bandwidth share to higher priority flows,

2) provide the flows in the same priority with better fairness than conventional stateless AQM schemes such as RED and BLUE,

3) maintain high link utilization as well as short queue length, and 4) protect TCP flows by restricting the bandwidth share of high-speed

unresponsive flows.

Index Terms—Router, network operations.

Ç

1 INTRODUCTION

PROBLEMS associated with Quality of Services (QoS) in the
Internet have been investigated for years but have not

been solved completely. One of the technological challenges
is to introduce a reliable and a cost-effective method to
support multiple services at different priority levels within
core networks that can support thousands of flows.1

In recent years, many QoS models, such as Service

Marking [1], Label Switching [2], [3], Integrated Services/

RSVP [4], [5], and Differentiated Services (DiffServ) [6] have

been proposed. Each of these models has their own unique

features and flaws.
In Service Marking, a method called “precedence

marking” is used to record the priority value within a
packet header. However, the service request is only
associated with each individual packet and does not

consider the aggregate forwarding behavior of a flow. The
flow behavior is nevertheless critical to implement QoS. The
second model, Label Switching, including Multiprotocol
Label Switching (MPLS) [7], is designed in a way that
supports packet delivery. In this model, finer granularity
resource allocation is available, but scalability becomes a
problem in large networks. In the worst scenario, it scales in
proportion with the square of the number of edge routers.
In addition, the basic infrastructure of Label Switching is
built by Asynchronous Transfer Mode (ATM) and Frame
Relay technology. In order to upgrade current IP routers to
Label Switching routers, more overhead (such as address
mapping, assembly and disassembly of IP packets, and
adding and removing cell/frame control fields) must be
handled appropriately. Integrated Services/RSVP relies
upon traditional datagram networks, but it also has a
scalability problem due to the necessity to establish packet
classification and to maintain the forwarding state of the
concurrent reservations on each router. DiffServ is a
refinement to Service Marking, and it provides a variety
of services for IP packets based on their per-hop behaviors
(PHBs) [6]. Because of its simplicity and scalability, DiffServ
has caught the most attention nowadays.

In general, routers in the DiffServ architecture, similar to
those proposed in Core-Stateless Fair Queueing (CSFQ) [8],
are divided into two categories: edge (boundary) routers
and core (interior) routers. Sophisticated operations, such as
per-flow classification and marking, are implemented at
edge routers. In other words, core routers do not necessarily
maintain per-flow states; instead, they only need to forward

34 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

. S. Wen and Y. Fang are with the Department of Electrical and Computer
Engineering, University of Florida, 435 Engineering Building, P.O. Box
116130, Gainesville, FL 32611.
E-mail: wen@winet.ece.ufl.edu, shushanwen@gmail.com, fang@ece.ufl.edu.

. H. Sun is with Sun Microsystems, Broomfield, CO 80021.
E-mail: hairong.sun@sun.com.

Manuscript received 7 May 2006; revised 5 May 2007; accepted 22 Apr. 2008;
published online 30 Apr. 2008.
Recommended for acceptance by Y. Oruc.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0117-0506.
Digital Object Identifier no. 10.1109/TPDS.2008.71.

1. The meaning of a flow depends on the definition. An IPv6 header
already includes a flow-ID field; for an IPv4 packet, one practical definition,
for example, is the combination of source and destination addresses.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

the packets according to the indexed PHB values that are
predefined. These values are marked in the Differentiated
Services fields (DS fields) in packet headers [6], [9]. For
example, Assured Forwarding [10] defined a PHB group,
and each packet is assigned a level of drop precedence.
Thus, packets with primary importance based on their PHB
values encounter relatively low-dropping probability. The
implementation of an Active Queue Management (AQM) to
conduct the dropping, however, is not specified in [10].

When we design an AQM scheme, the performance has
to be investigated along with Transmission Control Protocol
(TCP), taking account of the fact that almost all error-
sensitive data in the Internet are transmitted by TCP, and
the dynamics of TCP has unavoidable interactions with the
dropping scheme.

In order to incorporate the priority services2 of DiffServ
into TCP, the following technical problems must be solved:
1) TCP protection and 2) bandwidth differentiation. We
discuss them in the following sections.

1.1 Previous Work

The importance of TCP protection has been discussed by
Floyd and Fall [12]. They predicted that the Internet would
collapse if there was no mechanism to protect TCP flows. In
the worst case, the resources of routers would be consumed
with packet forwarding, even though no packet is useful for
receivers because the long delay and heavy losses suffered
by the flows are beyond the acceptable limits of the
applications. In the meantime, the bandwidth would be
completely occupied by unresponsive senders that do not
reduce the sending rates even after their packets are
dropped by the congested routers [12].

Conventional AQM algorithms such as Random Early
Detection (RED) [13] and BLUE [14] cannot protect TCP
flows. It is strongly suggested that novel AQM schemes be
designed for TCP protection in routers [12], [15]. Cho [16]
proposed a mechanism, which uses a “flow-valve” filter for
RED to punish non-TCP-friendly flows. However, this
approach has to reserve three parameters for each flow,
which significantly increases the memory requirement. In
[17], Mahajan and Floyd described a simpler scheme,
known as RED with Preferential Dropping (RED-PD), in
which the drop history of RED is used to help identify non-
TCP-friendly flows based on the observation where flows at
higher speeds usually have more packet drops in RED.
RED-PD is also a per-flow scheme and at least one
parameter needs to be reserved for each flow to record
the number of drops.

When compared with previous methods including
conventional per-flow schemes, the implementation design
of CHOKe [18], proposed by Pan et al., is simple, and it
does not require per-flow state maintenance. CHOKe serves
as an enhancement filter for RED in which a buffered packet
is drawn at random and compared with an arriving packet.
If both packets come from the same flow, they are dropped
as a pair (hence, we call this “matched drops”); otherwise,
the arriving packet is delivered to RED. Note that a packet

that has passed CHOKe may still be dropped by RED. The
validity of CHOKe has been explained using an analytical
model by Tang et al. [19].

Besides TCP protection, some research has investigated
the relationship between the priority of flows and the
magnitude of bandwidth differentiation. RED with In/Out
bit (RIO) [20], presented by Clark and Fang, is one of the
most popular schemes designed for bandwidth differentia-
tion. It uses two sets of RED parameters to differentiate
high-priority traffic (marked as “in”) from low-priority
traffic (marked as “out”). The parameter set for “in” traffic
usually includes higher queue thresholds, which results in a
smaller dropping probability.

Some scheduling schemes, such as Weighted Fair
Queueing (WFQ) [21] and other packet approximation of
the Generalized Processor Sharing (GPS) model [22] may
also support differentiated bandwidth allocation.

1.2 Our Contributions

Even though the functions of TCP protection and band-
width differentiation are of crucial importance for the
current Internet, we have not seen that any previous work
has a mechanism to support both functions simultaneously
and effectively. Thus, we design a novel scheme and our
main contributions are

1. integrating TCP protection and bandwidth differ-
entiation in one single scheme, with low complexity,

2. investigating TCP protection in network scenarios
that support priority,

3. preventing TCP starvation, and
4. improving fairness using our scheme.

CHOKe is simple and works well for TCP protection, but
it supports only best-effort traffic. In this paper, we use the
concept of matched drops to design another scheme called
CHOKeW. The letter W represents a function that supports
multiple weights for bandwidth differentiation.

In DiffServ networks, TCP protection has to be investi-
gated along with priority of flows. It has three scenarios:
first, protecting TCP flows in higher priority from high-
speed unresponsive flows in lower priority, second,
protecting TCP flows from high-speed unresponsive flows
in the same priority, and third, protecting TCP flows in
lower priority from high-speed unresponsive flows in
higher priority. Since CHOKeW is designed for allocating
a greater bandwidth share to higher priority flows, if TCP
protection is effective in the third scenario, it should also be
effective in the first and second scenarios.

In RIO, an “out” flow may be starved because there is no
mechanism to guarantee the bandwidth share for low-
priority traffic [23], which is a major disadvantage of RIO.
Our scheme uses matched drops to control the bandwidth
share. When a low-priority TCP flow only has a small
bandwidth share, the responsiveness of TCP can lead to a
small backlog for this flow in the buffer. The packets from
this flow will unlikely be dropped, so this flow will not be
starved.

The main disadvantage of scheduling schemes such as
WFQ is that they require constant per-flow state main-
tenance, which is not cost-effective in core networks as
it causes memory-requirement complexity OðNÞ and

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 35

2. As [11] proposed, a set of priority services can be applied to modeling
and analyzing DiffServ by mapping the PHBs that receive better services
into the higher priority levels. In the rest of this paper, we use “priority
levels” to represent PHBs for general purposes.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

per-packet-processing complexity that is usually larger
than O(1), where N denotes the number of flows being
served by the router.3 Our scheme does not maintain per-
flow states, and the packet processing time is independent
of N . Both the memory-requirement complexity and the
per-packet-processing complexity of CHOKeW is O(1).

Moreover, CHOKeW uses First-Come-First-Served
(FCFS) scheduling, which shortens the tail of the delay
distribution [28], and lets packets arriving in a small burst
be transmitted in a burst. Many applications in the Internet,
such as TELNET, benefit from this feature. Schedulers
similar to WFQ or DRR, however, interweave the packets
from different queues in the forwarding process, which
diminishes this feature.

In addition, by using CHOKeW, we expect better
fairness among the flows with the same priority.

The rest of the paper is organized as follows: Section 2
describes the CHOKeW algorithm. Section 3 derives the
equations for the steady state and explains the features and
effectiveness of CHOKeW, such as fairness and bandwidth
differentiation. Section 4 presents and discusses the simula-
tion results, including the effect of supporting two and even
more priority levels, TCP protection, the performance of
TCP Reno in CHOKeW, a comparison with CHOKeW-RED
(CHOKeW with RED module), and a comparison with
CHOKeW-avg (CHOKeW with a module to calculate the
average queue length by EWMA). Section 5.1 discusses the
issues concerning the implementation and proposes an
extended matched drop algorithm for CHOKeW designed
for some special scenarios. We conclude our paper in
Section 6.

2 CHOKEW ALGORITHM

CHOKeW uses the strategy of matched drops presented by
CHOKe [18] to protect TCP flows. Like CHOKe, without the
necessity of maintaining per-flow states, CHOKeW is
capable of working in core networks where a myriad of
flows are served.

More importantly, CHOKeW supports differentiated
bandwidth allocation for traffic with different priority
weights. Each priority weight corresponds to one of the
priority levels; a greater priority weight represents a higher
priority level.

Although CHOKeW borrows the idea of matched drops
from CHOKe for TCP protection, there are significant
differences between these two algorithms. First of all, the
goal of CHOKe is to block high-speed unresponsive flows
with the help of RED to inform TCP flows of network
congestion, whereas CHOKeW is designed for supporting
differentiated bandwidth allocation with the assistance of
matched drops that are also able to protect TCP flows.

While Pan et al. [18] suggested to draw more than one
packet if there are multiple unresponsive flows, they did

not provide further solutions. In CHOKeW, the adjustable
number of draws is not only used for restricting the
bandwidth share of high-speed unresponsive flows but also
used as signals to inform TCP of the congestion status. In
order to avoid functional redundancy, CHOKeW is not
combined with RED since RED is also designed to inform
TCP of congestion. Thus, we say that CHOKeW is an
independent AQM scheme, instead of an enhancement
filter for RED. To demonstrate that RED is not an essential
component for the effectiveness of CHOKeW, the compar-
ison between the performance of CHOKeW and that of
CHOKeW-RED (i.e., CHOKeW with RED) is shown in
Section 4.6.

2.1 Drawing Factor

In order to determine when to draw a packet (or packets)
and how many packets are possibly drawn from the buffer,
we introduce a variable, called the drawing factor.

Roughly speaking, we may interpret pi as the maximum
number of random draws from the buffer upon a packet
arrival from flow i. The precise meaning is discussed below.

Assume that the number of active flows served by a
CHOKeW router is N , and the number of priority levels
supported by the router is M. Let wi ðwi � 1Þ be the priority
weight of flow i ði ¼ 1; 2; � � � ; NÞ, and wðkÞ ðk ¼ 1; 2; � � � ;MÞ
be the weight of priority level k. If flow i is at priority
level k, then wi ¼ wðkÞ. All flows at the same priority level
have the same priority weight. If wðkÞ > wðlÞ, we say that
flows at priority level k have higher priority than flows at
priority level l, or simply, priority level k is higher than
priority level l.

Let p0 denote the basic drawing factor. The drawing
factor used for flow i is calculated as follows:

pi ¼ p0=wi: ð1Þ

As wi � 1, we know that p0 is the upper bound of pi.
From (1), we also know that if flow i has higher priority

than flow j ðwi > wjÞ, flow i will get a smaller drawing
factor ðpi < pjÞ and, hence, will have a lower possibility of
becoming the victim of matched drops. This is the basic
mechanism for supporting bandwidth differentiation in
CHOKeW (further explained in Section 3.4).

The precise meaning of drawing factor pi depends upon
its value. It can be categorized into two cases:

Case 1. When 0 � pi < 1, pi represents the probability of
drawing one packet from the buffer at random for
comparison.

Case 2. When pi � 1, pi consists of two parts, and we may
rewrite pi as

pi ¼ mi þ fi; ð2Þ

where mi 2 IN (the set of nonnegative integers) represents
the integral part with the value of bpic (the largest
integer � pi) and fi the fractional part of pi. In this case,
at the most mi or mi þ 1 packets in the buffer may be
drawn for comparison. Let di denote the maximum
number of random draws. We have

Prob½di ¼ mi þ 1� ¼ fi;
Prob½di ¼ mi� ¼ 1� fi:

�

36 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

3. For example, according to Ramabhadran and Pasquale [24], the per-
packet-processing complexity is OðNÞ for WFQ, OðlogNÞ for WF2Q [25],
and Oðlog logNÞ for Leap Forward Virtual Clock [26]. Deficit Round Robin
(DRR) [27] reduces the per-packet-processing complexity to Oð1Þ, but its
memory-requirement complexity is still OðNÞ when the number of logic
queues is comparable to the number of active flows, in order to obtain
desired performance. By contrast, stateless AQM schemes such as RED and
BLUE usually have complexity O(1).

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

2.2 Algorithm Description

The algorithm of drawing packets is described in Fig. 1. One
may notice that in this figure, we use p, f , andm, instead of pi,
fi, andmi, since those variables can be reused by all flows, as
well as all priority levels. For simplicity of implementation,
we use m to represent mi (before step 4) and di (after step 4),
rather than create one more variable for di.

The congestion status of a router may become either
heavier or lighter after a period of time, since circumstances
(e.g., the number of users, the application types, and the
traffic priority) constantly change. In order to cooperate
with TCP and to improve the system performance, an AQM
scheme such as RED [13], needs to inform TCP senders to
lower their sending rates by dropping more packets when
the network congestion becomes worse. Unlike CHOKe
[18], CHOKeW does not have to work with RED in order to
function properly. Instead, CHOKeW can adaptively
update p0 based on the congestion status. The updating
process is shown in Fig. 2, which details step 2 in Fig. 1. The
combination of Figs. 1 and 2 provides a complete descrip-
tion of the CHOKeW algorithm.

CHOKeW updates p0 upon each packet arrival but
activates matched drops only when the queue length L is
longer than the threshold Lth (step 5 in Fig. 1). Three queue
length thresholds are applied to CHOKeW: Lth is the
threshold of activating matched drops, Lþ is that of
increasing p0, and L� is that of decreasing p0.

As the buffer is used to absorb bursty traffic [15], we
set Lth > 0, so that the short bursty traffic can enter the

buffer without suffering any packet drops when the queue
length L is less than Lth (although p0 may be larger than 0
for historical reasons). A large Lth can absorb more bursty
traffic but may lead to a slow reaction to the congestion,
while a small Lth can activate matched drops in the early
stage of congestion but may cause low link utilization.

When L 2 ½L�; Lþ�, the network congestion status is
considered to be stable, and p0 maintains the same value as
before (i.e., the algorithm shown in Fig. 2 does not adjust the
value of p0). Only when L > Lþ, the congestion is
considered to be heavy, and p0 is increased by pþ each
time. The alleviation of network congestion is represented
by L < L�, and as adaptation, p0 is reduced by p� each
time. We keep Lth < L� so that the matched drops are still
active when p0 starts becoming smaller, which prevents
matched drops from being completely turned off suddenly
and endows the algorithm with higher stability.

The state of CHOKeW can be described by the activation
of matched drops and the process of updating p0, which is
further determined by the range the current queue length L
falls into, shown in Table 1.

2.3 Complexity

One advantage of using CHOKeW is that it is easily able to
prioritize each packet based on the value of the DS field,
without the aid of the flow ID.4 Therefore, when CHOKeW
is applied in core routers, priority becomes a packet feature.
In terms of service qualities in the core network, packets
from different flows shall equally be served if they have the
same priority; on the other hand, packets from the same
flow may be treated differently if their priority is different
(e.g., some packets are remarked by edge routers).

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 37

4. In CHOKeW, the flow ID is only used to check whether two packets
are from the same flow. This operation (XOR) can be executed efficiently by
hardware.

Fig. 1. The CHOKeW algorithm.

Fig. 2. The algorithm of updating p0.

TABLE 1
The State of CHOKeW versus the Range of L

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

CHOKeW needs to remember only wðkÞ for each pre-

defined priority level k ðk ¼ 1; 2; � � � ;MÞ, instead of some

variables for each flow i ði ¼ 1; 2; � � � ; NÞ. The complexity of

CHOKeW is only affected by M. In DiffServ networks, it is

reasonable to expect thatM will never be a large value in the

foreseeable future, i.e.,M � N . Therefore, with respect toN ,

which can be quite large in core networks, the memory-

requirement complexity, as well as the per-packet-processing

complexity, of CHOKeW is O(1), while for conventional per-

flow schemes, the memory-requirement complexity is OðNÞ,
and the per-packet-processing complexity is usually larger

than O(1) [24].

3 MODEL

In previous work, Tang et al. [19] proposed a model to
explain the effectiveness of CHOKe. Using matched drops,
CHOKe produces a “leaky buffer,” where packets may be
dropped when they move forward in the queue, which may
result in a flow that maintains many packets in the queue
but can obtain only a small portion of bandwidth share. In
this way, TCP protection takes effect on high-speed
unresponsive flows [19].

For CHOKeW, we need a model to explain not only how

to protect TCP flows (as shown in [19]) but also how to

differentiate the bandwidth share.
The network topology shown in Fig. 3 is used for our

model. In this figure, two routers,R1 andR2, are connected to

N source nodes (Si, i ¼ 1; 2; � � � ; N) and N destination nodes

ðDiÞ, respectively. The R1�R2 link, with bandwidth B0 and

propagation delay �0, allows all flows to go through.Bi and �i
denotes the bandwidth and the propagation delay of each

link connected to Si or Di, respectively. As we are interested

in the network performance under a heavy load, we always

letB0 < Bi, so that the link between the two routers becomes a

bottleneck.
The symbols that are used for performance analysis are

listed in Table 2.

3.1 Some Useful Probabilities

In the CHOKeW router, for flow i, let ri be the probability

that matched drops occur at one draw (matching prob-

ability in short), which is dependent of the current queue

length L and the number of packets from flow i in the

queue (i.e., the packet backlog from flow i, denoted by Li).

The following equation presented in [19] can also be used

for CHOKeW:

ri ¼ Li=L: ð3Þ

Now, we focus on the features of matched drops.

Assuming that the buffer has an unlimited size and thus

packet dropping is due to matched drops instead of overflow,

we can calculate the probability that a packet from flow i is

allowed to enter the queue upon its arrival, denoted by �i:

�i ¼ ð1� riÞmið1� firiÞ; ð4Þ

where mi ¼ bpic, and fi ¼ pi �mi, as mentioned before.
In (4), ð1� riÞmi is the probability of no matched drops

in the first mi draws. After the completion of the first mi

draws, the value of fi stochastically determines whether

one more packet is drawn. The probability of no further

draw is ð1� fiÞ, and the probability that one more packet

is drawn, but no matched drops occur is fið1� riÞ.
Therefore, the probability that no matched drops occur is

ð1� fiÞ þ fið1� riÞ ¼ 1� firi.
We rewrite ð1� riÞfi as its Maclaurin Series:

ð1� riÞfi ¼ 1� firi þ o r2
i

� �
:

Assuming the core network serves a vast number of

flows, it is reasonable to say ri � 1 for each responsive

flow i.5 We have ð1� riÞfi � 1� firi, and (4) can be

rewritten as �i ¼ ð1� riÞmiþfi , or

�i ¼ ð1� riÞpi : ð5Þ

38 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

Fig. 3. Network topology.

TABLE 2
List of Symbols

5. We call a flow responsive if it avoids sending data at a high rate when
the network is congested. A TCP flow is responsive, while a UDP flow is not.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

For a packet from flow i, let si denote the probability that
it survives the queue and qi the dropping probability (either
before or after the packet enters the queue).6 We have

qi ¼ 1� si: ð6Þ

For each packet arrival from flow i, the probability that
it is dropped before entering the queue is 1� �i.
According to the rule of matched drops, a packet from
the same flow, which is already in the buffer, should also
be dropped if the arriving packet is dropped. Thus, in a
steady state, we obtain qi ¼ 2ð1� �iÞ, 0:5 � �i � 1. When
qi ¼ 1, �i ¼ 0:5. In other words, when flow i is starved, the
router still needs to let half of the arriving packets from
flow i enter the queue, and the packets in the queue will
be used to match the new arrivals in the future. On the
other hand, if �i < 0:5 temporarily, the number of packets
that enter the queue cannot compensate the backlog for the
packet losses from the queue, which causes the reduction
of ri until ri ¼ 1� 2�1=pi and accordingly �i ¼ 0:5.

By using (5) in it, we get

qi ¼ 2� 2ð1� riÞpi ; ð7Þ

and from (6),

si ¼ 2ð1� riÞpi � 1: ð8Þ

After a packet enters the queue, it will either pass the
queue successfully, or be dropped from the queue due to
matched drops. The passing probability �i satisfies si ¼ �i�i.
Using (5) and (8) in it, we get

�i ¼ 2� 1

ð1� riÞpi
:

In order for TCP protection, CHOKeW requires 0�qi<1
if flow i uses TCP. Equation (7) shows that as long as pi
does not exceed a certain range, CHOKeW can guarantee
that flow i will not be starved, even if it may only have
low priority. This feature offers CHOKeW advantages over
RIO [23], which neither protects TCP flows, nor prevents
the starvation of low-priority flows.

The CHOKeW algorithm ensures the satisfaction of
the lower bound of qi ðqi � 0Þ. Now, we discuss the
range of pi to satisfy the upper bound of qi (i.e., qi < 1).
From (7), we have

pi <
�1

log2ð1� riÞ
: ð9Þ

Now, we discuss flow starvation base on the value of pi.
Given ri, the upper bound of pi shown in (9) corresponds to
the threshold to starve flow i.

When all flows are TCP, they are able to reduce their
sending rates and cooperate with each other when the
network is only in mild congestion, which prevents pi from
further increasing. For instance, when ri is equal to 0.01
(imagine 100 TCP flows share the queue length evenly), the
upper bound of pi is 68.9; in other words, the algorithm has
to draw up to 69 packets before a TCP flow is starved, but
due to the congestion avoidance mechanism in TCP,
CHOKeW rarely needs to raise pi to such a high value to
control the congestion.

When some high-speed UDP flows exist with many
TCP flows, which is the realistic scenario of the current
Internet, rj for UDP flow j can be much larger than ri for
TCP flow i, and thus, pj can easily reach the threshold to
block flow j. For example, in a simulation where five high-
speed UDP flows exist with 100 TCP flows, each UDP flow
has rj ¼ 0:017, so the threshold of pj to block a UDP flow
is 40.4. On the other hand, a TCP flow has ri ¼ 0:009 on
the average, which corresponds to 76.7 for the upper
bound of pi. When all high-speed UDP flows are blocked,
TCP flows are still very safe.

Formula (9) also explains why a flow in CHOKe (where
pi 	 1) that is not starved must have a backlog shorter than
half of the queue length. This result is consistent with the
conclusion in [19].

3.2 Steady-State Features of CHOKeW

In this section, assume that there are N independent flows
going through the CHOKeW router, and the packet arrivals
for each flow are Poisson.7

The packets arriving at the router can be categorized into
two groups: 1) those that will be dropped and 2) those that
will pass the queue. Let � denote the average aggregate
arrival rate for all flows, and �0 the average aggregate
arrival rate for the packets that will pass the queue. Then,
the average arrival rate for the packets that will be dropped
is equal to �� �0. Similarly, L denotes the queue length as
mentioned above, and L0 the queue length only counting
the packets that will not be dropped (“survivable packets”
in short). Compared to the time that it takes to transmit
(serve) a packet, the processing time to drop a packet is
negligible. Little’s Theorem [29] shows

D ¼ L0=�0; ð10Þ

where D is the average waiting time for packets in the
queue.

In order to analyze the feature of individual flows, for
flow i ði ¼ 1; 2; � � � ; NÞ, let �i be the average arrival rate, and
�0i be the average arrival rate only counting the packets that
will survive the queue. Then

�0i ¼ �ið1� qiÞ: ð11Þ

As mentioned above, Li denotes the backlog from flow i.
Let L0i be the backlog for the survivable packets from flow i.
Then, these per-flow measurements have the following
relationship with their aggregate counterparts: � ¼

PN
i¼1 �i,

�0 ¼
PN

i¼1 �
0
i, L ¼

PN
i¼1 Li, and L0 ¼

PN
i¼1 L

0
i.

Based on the Poisson Arrivals See Time Average
(PASTA) property of Poisson arrivals, packets from all
flows have the same average waiting time in the queue
(i.e., Di ¼ D, i ¼ 1; 2; � � � ; N). Using Little’s Theorem again,
for flow i, we get

D ¼ L0i=�0i: ð12Þ

Using (10) in (12),

L0i
L0
¼ �

0
i

�0
: ð13Þ

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 39

6. Note that it is possible for a packet to become a matched-drop victim
even after it has entered the queue.

7. Strictly speaking, the Poisson distribution is not a perfect representa-
tion of Internet traffic; nevertheless, it can provide some insights into the
features of our algorithm.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

The average number of packet drops from flow i during
period D is D�iqi. As packets from a flow are dropped in
pairs (one before entering the queue and one after entering
the queue), flow i has D�iqi=2 packets dropped after
entering the queue on the average. Thus, we have

Li ¼ L0i þD�iqi=2;

L ¼ L0 þ D
2

PN
j¼1

�jqj:

8<
:

Using (7), (11), (12), and (13) in it, we obtain

Li ¼ D�ið1� riÞpi ;

L ¼ D
PN
j¼1

�jð1� rjÞpj :

8<
: ð14Þ

For flow i, let �i denote the average arrival rate only
counting the packets entering the queue. Then, �i is
determined by �i and �i, i.e., �i ¼ �i�i. Considering (5),
we rewrite (14) as

Li ¼ D�i;

L ¼ D
PN
j¼1

�j

8<
: ð15Þ

and rewrite (3) as ri ¼ �i
. PN

j¼1 �j

� �
.

Equation (15) can be interpreted as Little’s Theorem used
for a leaky buffer, where packets may be dropped before they
reach the front of the queue, which is not a classical queueing
system. From (15), we get an interesting result: even in a leaky
buffer, the average waiting time is determined by the average
queue length for flow i (or the average aggregate queue
length) and the average arrival rate from flow i (or the average
aggregate arrival rate) that only counts the packets entering
the queue. The average waiting time is meaningful to the
packets surviving the queue exclusively, whereas packets
that are dropped after entering the queue still contribute to
the queue length.

Below are the group of formulas that describe the steady-

state features of CHOKeW:

ri ¼ �iPN
j¼1

�j

; ð16aÞ

qi ¼ 2� 2ð1� riÞpi ; ð16bÞ
�i ¼ �ið1� riÞpi ; ð16cÞ
�0i ¼ �ið1� qiÞ: ð16dÞ

8>>>><
>>>>:

Note that they are based on Maclaurin approximation and
thus are not exact, but we can use them for further analysis
and obtain some insightful results.

3.3 Fairness

To demonstrate the fairness of our scheme, we study two
TCP flows, i and j (i 6¼ j and i; j 2 f1; 2; � � � ; Ng). In this
section, we analyze the fairness under circumstances where
flows have the same priority and, hence, the same drawing
factor, denoted by p. The discussion of multiple priority
levels is left to the next section.

From (16a), ri=rj ¼ �i=�j. Using (16c) in it, we get

ri
rj
¼ �ið1� riÞp

�jð1� rjÞp
: ð17Þ

Previous research (for example, [12] and [30]) has shown

that the approximate sending rate of TCP is affected by the

dropping probability, packet size, Round Trip Time (RTT),

and other parameters such as the TCP version and the

speed of users’ computers. In this paper, we describe TCP

sending rate as

�i ¼ �iRðqiÞ; ð18Þ

where qi is the dropping probability, and �i ð�i > 0Þ
denotes the combination of other factors.8 Because the
sending rate of TCP decreases as network congestion
worsens (indicated by a higher dropping probability),
we have

@R=@qi < 0: ð19Þ

When flow i and flow j have the same priority, our
discussion covers two cases, distinguished by the equiva-
lence of �i and �j.

Case 1. �i ¼ �j.
When �i ¼ �j, an intuitive solution to (17) is �i ¼ �j and

ri ¼ rj. From (16b) and (16d), we have �0i ¼ �0j, i.e., flow i
and flow j get the same amount of bandwidth share. We
will show that this is the only solution.

Let

G ¼ �ið1� riÞp

�jð1� rjÞp
� ri
rj
:

Then, any solution to (17) is also a solution to G ¼ 0.
In the core network, a router usually has to support a great

number of flows and the downstream link bandwidth is
shared among them. It is reasonable to assume that
fluctuations in the backlog of a TCP flow do not significantly
affect the backlog of other flows (i.e., @rj=@ri � 0, i 6¼ j).
Then, we have

@G

@ri
¼ 1

�jð1� rjÞp
@�i
@ri
ð1� riÞp � �ipð1� riÞp�1

� �
� 1

rj
:

Because @�i
@ri
¼ @�i

@qi
� @qi@ri
¼ 2 @�i

@qi
pð1� riÞp�1, and @�i=@qi < 0

(derived from (18) and (19)), for any values of ri ð0 < ri < 1Þ
and p ðp > 0Þ, @G=@ri < 0. In other words, G is a monotone

decreasing function with respect to ri. As a result, if there is

a value of ri satisfying G ¼ 0, it must be the only solution to

G ¼ 0. Thus, the only steady state is maintained by �i ¼ �j
and ri ¼ rj, when TCP flows i and j have the same priority

and the same factor �. This indicates that CHOKeW is

capable of providing good fairness to flow i and flow j.
Case 2. �i 6¼ �j.
Let ð�0i=�0jÞC and ð�0i=�0jÞR denote the ratio of the average

throughput of flow i to that of flow j for CHOKeW and
for conventional stateless AQM schemes, respectively. By
comparing ð�0i=�0jÞC to ð�0i=�0jÞR, we will show that
CHOKeW is able to provide better fairness, when �i 6¼ �j.

Among conventional stateless AQM schemes, RED
determines the dropping probability according to the

40 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

8. The construction of (18) results from previous work. In [12], for

instance, when a TCP session works in the nondelay mode, the sender’s rate

can be estimated by �i ¼ Pi
Ti

ffiffiffiffiffi
3

2qi

q
, where Pi and Ti denote packet size and

RTT of this flow, respectively.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

average queue length, and BLUE calculates the dropping

probability from packet loss and link idle events. In a steady

state, for AQM schemes such as RED and BLUE, every flow

has the similar dropping probability, denoted by q. There-

fore, flow i has an average throughput of

�0i ¼ �ið1� qÞ ¼ ð1� qÞ�iRðqÞ;

and flow j has an average throughput of

�0j ¼ ð1� qÞ�jRðqÞ:

For RED and BLUE,

�0i=�
0
j

� �
R
¼ �i=�j: ð20Þ

If �i > �j, ð�0i=�0jÞR > 1. Given an AQM scheme, the

closer �0i=�
0
j is to 1, the better the fairness will be.

For CHOKeW, if ð�0i=�0jÞC is closer to 1 than ð�0i=�0jÞR,

i.e., ð�0i=�0jÞR > ð�0i=�0jÞC > 1, we say CHOKeW is cap-

able of providing better fairness.
From (16b), RðqiÞ in (18) can be rewritten as

RðqiÞ ¼ R 2� 2ð1� riÞpið Þ:

When flow i and flow j have the same priority, p, we

define

�ðrlÞ ¼� R 2� 2ð1� rlÞpð Þ; for l 2 fi; jg:

Then, (18) can be rewritten as

�l ¼ �l�ðrlÞ; for l 2 fi; jg:

From (16b) and (16d),

�0i
�0j
¼ �i�ðriÞ 2ð1� riÞp � 1½ �
�j�ðrjÞ 2ð1� rjÞp � 1

 � : ð21Þ

Our goal is to show that the right-hand side of (21) is less

than �i=�j, if �i > �j. From (16a) and (16c),

ri ¼
�i�ðriÞð1� riÞp

�i�ðriÞð1� riÞp þ
PN

k¼1;k6¼i
�k

and, hence,

@ri
@�i
¼

��ðriÞð1�riÞp 1���i
@�

@ri
ð1�riÞpþ��i�ðriÞpð1�riÞp�1

� ��1

;

where � ¼
PN

k¼1;k6¼i �k

. PN
k¼1 �k

� �2
.

From

@�

@ri
¼ @R
@qi
� @qi
@ri
¼ @R
@qi

2p 1� rið Þp�1
h i

< 0;

we see @ri=@�i > 0, which means when �i > �j, we have

ri > rj and �ðriÞ < �ðrjÞ. Using these results in (21), for

CHOKeW,

�0i=�
0
j

� �
C
< ð�i=�jÞ: ð22Þ

A comparison between (20) and (22) proves that

CHOKeW provides better fairness than RED and BLUE.

3.4 Bandwidth Differentiation

For any two TCP flows i and j ði 6¼ jÞ, if �i ¼ �j, and wi < wj
(from (1), pi > pj), CHOKeW allocates a smaller bandwidth
share to flow i than to flow j, i.e., �0i < �0j. This seems to be
an intuitive strategy, but we also noticed that the interaction
among pi, ri, and qi may cause some confusion. The
dropping probability of flow i in CHOKeW, qi, is not only
determined by pi but also by ri. Furthermore, the effects of ri
and pi are inverse—a larger value of pi results in a larger qi,
but at the same time it leads to a smaller ri, which may
produce a smaller qi. To clear up the confusion, we only
need to show that a larger value of pi leads to a smaller value
of bandwidth share, �0i, which is equivalent to showing
@�0i=@pi < 0. From (16d), (18), and (19), we get @�0i=@qi < 0.
From the Chain Rule

@�0i
@pi
¼ @�

0
i

@qi
� @qi
@pi

;

we only need to show

@qi
@pi

> 0:

Proof. According to the Chain Rule, we know

@qi
@pi
¼ @qi
@ri
� @ri
@pi
þ @qi
@u
� @u
@pi

; ð23Þ

where u ¼ pi. We introduce the symbol u to distinguish

@qi=@u from @qi=@pi. We consider ri as a constant in

@qi=@u but not in @qi=@pi. From (16b),

@qi=@u ¼ �2ð1� riÞpi lnð1� riÞ; ð24Þ

and

@qi=@ri ¼ 2pið1� riÞpi�1: ð25Þ

According to (16a) and (16c), we have

@ri
@pi
¼ 	1PN

k¼1

�k þ �ipið1� riÞpi�1

; ð26Þ

where

	1 ¼ ð1� riÞpi
@�i
@qi
� @qi
@pi
þ �i lnð1� riÞ

� �
:

Using (24), (25), and (26) in (23), we get

@qi
@pi
¼ �

2ð1� riÞpi lnð1� riÞ
PN
k¼1

�k

	2
> 0;

where

	2 ¼
XN
k¼1

�k þ �ipið1� riÞpi�1 � 2
@�i
@qi
ð1� riÞ2pi�1pi:

ut

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 41

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

4 PERFORMANCE EVALUATION

To evaluate CHOKeW in various scenarios and to compare
it with some other schemes, we implemented CHOKeW
using ns simulator version 2 [31]. The metrics that are used
in this section include TCP goodput, link utilization,
average queue length, fairness index, and Relative Cumu-
lative Frequency (RCF). The meanings of these metrics, if
not self-explanatory, will be given in the sections when we
use them.

The network topology is shown in Fig. 3, where
B0 ¼ 1 Mb=s and Bi ¼ 10 Mb=s ði ¼ 1; 2; � � � ; NÞ. Unless
specified otherwise, the link propagation delay
�0 ¼ �i ¼ 1 ms. The buffer limit is 500 packets, and the
mean packet size is 1,000 bytes. TCP flows are driven by
FTP applications, and UDP flows are driven by CBR
traffic. All TCPs are TCP SACK. Each simulation runs for
500 seconds.

Parameters of CHOKeW are set as follows: Lth ¼ 100
packets, L� ¼ 125 packets, Lþ ¼ 175 packets, pþ ¼ 0:002,
and p� ¼ 0:001.

Parameters of RED are set as follows: the threshold of
indicating light congestion minth ¼ 100 packets, the thresh-
old of indicating heavy congestion maxth ¼ 200 packets, the
EWMA weight is set to 0.002, the dropping probability
threshold pmax ¼ 0:02 (except in Section 4.6, where different
values of pmax are tested), and gentle ¼ true (which lets the
dropping probability changes from pmax to 1 when the
average queue length increases from maxth to 2maxth).

Parameters of RIO include two sets of RED parameters,
one for “out” traffic and the other one for “in” traffic. For
“out” traffic, minth out ¼ 100 packets, maxth out ¼ 200
packets, and pmax out¼0:02. For “in” traffic, minth in¼
110 packets, maxth in ¼ 210 packets, and pmax in ¼ 0:01
(except in Section 4.1, where we use multiple sets of
parameters for comparison). Both gentle out and gentle in
are set to true.

For parameters of BLUE, we set
1 ¼ 0:0025 (the step
length of increasing the dropping probability),
2 ¼ 0:00025
(the step length of decreasing the dropping probability), and
freeze time ¼ 100 ms (the minimum time interval between
two successive updates of the dropping probability).

4.1 Two Priority Levels with the Same Number of
Flows

One of the main tasks of CHOKeW is supporting
bandwidth differentiation for multiple priority levels with-
out the need for per-flow states. We validate the effect of
supporting two priority levels with the same number of
flows in this section, two priority levels with different
number of flows in the next section, and three or more
priority levels in Section 4.3.

For TCP traffic, goodput is a well-known criterion to
measure the performance. Here, we use the same definition
for “goodput” as described in [12], i.e., “the bandwidth
delivered to the receiver, excluding duplicate packets.” On
the other hand, for TCP, the bandwidth that the receiver
gets is highly related to the number of duplicate packets
generated by the flow. There is good evidence that the more
congested the traffic in a TCP flow becomes, the higher
dropping rate packets will have, and the more duplicate

packets will be produced [32], [33]. Since TCP decreases the

sending rate when packet drops are detected, it is reason-

able to believe that a TCP flow with a larger bandwidth

share also has higher goodput.
As mentioned before, flow starvation often happens in

RIO but is avoidable in CHOKeW. In order to quantify and

compare the severity of flow starvation among different

schemes, we record the RCF of goodput for flows at each

priority level. For a scheme, the RCF of goodput g for flows

at a specific priority level represents the number of flows

that have goodput lower than or equal to g divided by the

total number of flows in this priority.
We simulate 200 TCP flows. When CHOKeW is used,

wð1Þ ¼ 1 and wð2Þ ¼ 2 are assigned to equal number of flows.

When RIO is used, the number of “out” flows is also equal

to the number of “in” flows. Fig. 4 illustrates the RCF of

goodput for flows at each priority level of CHOKeW and

RIO. Here, we show three sets of results from RIO, denoted

by RIO_1, RIO_2, and RIO_3, respectively. For RIO_1, we

set minth in ¼ 150 packets and maxth in ¼ 250 packets, for

RIO_2, minth in ¼ 130 packets and maxth in ¼ 230

packets, and for RIO_3, minth in ¼ 110 packets and

maxth in ¼ 210 packets.
In Fig. 4, we see that the RCF of goodput zero for “out”

traffic of RIO_1 is 0.1. In other words, 10 of the 100 “out” flows

are starved. Similarly, for RIO_2 and RIO_3, 15 and 6 flows are

starved, respectively. It is observed that some “in” flows of

RIO also have very low goodput (e.g., the lowest goodput of

“in” flows of RIO_2 is only 0.00015 Mbps) due to a lack of TCP

protection. Flow starvation is very common in RIO, but it

rarely happens in CHOKeW.
Now, we investigate the relationship between the number

of TCP flows and the aggregate TCP goodput for each priority

level. The results are shown in Fig. 5, where the curves of

wð1Þ ¼ 1 and wð2Þ ¼ 2 correspond to the two priority levels.

Half of the flows are assignedwð1Þ and the other half assigned

wð2Þ. As the number of flows changes, the results shows a little

fluctuation owing to the stochastic characteristics of the

network, but high-priority flows can get higher goodput no

matter how many flows exist.

42 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

Fig. 4. The RCF of RIO and CHOKeW under a scenario of two priority

levels.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

4.2 Two Priority Levels with Different Number of
Flows

When the number of flows in each priority level is different,

CHOKeW is still capable of differentiating bandwidth
allocation on flow basis. In the following experiment, among
the total 100 TCP flows, 25 flows are assigned fixed priority
weight wð1Þ ¼ 1:0, and 75 flows are assigned wð2Þ. As wð2Þ
varies from 1.5 to 4.0, the average per-flow goodput is
collected in each priority level and shown in Fig. 6.
The results are compared with those of WFQ working
in an aggregate flow mode, i.e., in order to circumvent the

per-flow complexity, flows at the same priority level are
merged into an aggregate flow before entering WFQ, and
WFQ buffers packets in the same queue if they have the
same priority, instead of using strict per-flow queueing. In

WFQ, the buffer pool of 500 packets is split into two queues:
the queue for wð1Þ has a capacity of 125 packets, and the
queue for wð2Þ has a capacity of 375 packets.

In Fig. 6, it is readily to see that for both CHOKeW and

WFQ, the goodput of high-priority flows rises as the weight
ratio (i.e., wð2Þ=wð1Þ) increases, and accordingly, the goodput
of low-priority flows falls. However, when the weight ratio
is less than 3, the average per-flow goodput of high-priority

flows is even lower than that of low-priority flows for WFQ.
We say that WFQ does not guarantee to offer higher per-
flow goodput to higher priority if the priority is taken by
more flows, when aggregate flows are used. For CHOKeW,

bandwidth differentiation works effectively in the whole
range of wð2Þ, even though all packets are mixed in one
single queue.

This feature is developed based on the fact that
CHOKeW does not require multiple queues to isolate
flows; by contrast, conventional packet approximation of
GPS, such as WFQ, cannot avoid the complexity caused by
per-flow nature and give satisfactory bandwidth differen-
tiation on a flow basis at the same time.

4.3 Three or More Priority Levels

In situations where multiple priority levels are used, the
results are similar to those of two priority levels, i.e., the
flows with higher priority achieve higher goodput. Since
RIO supports only two priority levels, the results are not
compared with those of RIO in this section. Figs. 7 and 8
demonstrate the aggregate TCP goodput for each priority
level versus the number of TCP flows for three priority
levels and for four priority levels, respectively. At each
level, the number of TCP flows ranges from 25 to 100. In
Fig. 7, three priority levels are configured using wð1Þ ¼ 1:0,
wð2Þ ¼ 1:5, and wð3Þ ¼ 2:0. One more weight, wð4Þ ¼ 2:5, is
added to the simulations corresponding to Fig. 8 for the
fourth priority level. Even though the goodput fluctuates
when the number of TCP flows changes, the flows in higher
priority are still able to obtain higher goodput. Further-
more, no flow starvation is observed.

4.4 TCP Protection

TCP protection is another task of CHOKeW. We use UDP
flows at the sending rate of 10 Mbps to simulate misbehav-
ing flows. A total of 100 TCP flows are generated in the
simulations. Priority weights wð1Þ ¼ 1 and wð2Þ ¼ 2 are
assigned to equal number of flows. In order to evaluate

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 43

Fig. 5. The aggregate TCP goodput versus the number of TCP flows

under a scenario of two priority levels.

Fig. 6. The average per-flow TCP goodput versus wð2Þ=wð1Þ when

25 flows are assigned wð1Þ ¼ 1 and 75 flows wð2Þ.

Fig. 7. The aggregate goodput versus the number of TCP flows under a

scenario of three priority levels.

Fig. 8. The aggregate goodput versus the number of TCP flows under a

scenario of four priority levels.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

the performance of TCP protection, the UDP flows are

assigned the high-priority weight wð2Þ ¼ 2. As discussed

before, if TCP protection functions properly in situations

where misbehaving flows have higher priority, it should

also work well when the misbehaving flows have lower

priority. Hence, the effectiveness of TCP protection is

validated as long as the high-priority misbehaving flows

are blocked successfully.
The goodput versus the number of UDP flows is shown

in Fig. 9, where CHOKeW is compared with RIO. Since no

retransmission is provided by UDP flows, goodput is equal

to throughput for UDP. For CHOKeW, even if the number

of UDP flows increases from 1 to 10, the TCP goodput in

each priority level (and hence, the aggregate goodput of all

TCP flows) is quite stable. In other words, the link

bandwidth is shared by these TCP flows, and the high-

speed UDP flows are completely blocked by CHOKeW. By

contrast, the bandwidth share for TCP flows in a RIO router

is nearly zero, as high-speed UDP flows occupy almost all

the bandwidth.
Fig. 10 illustrates the relationship between p0 of

CHOKeW and the number of UDP flows. As more UDP

flows start, p0 increases, but it rarely reaches the high value

of starting to block TCP flows, while those high-speed UDP

flows are blocked. In this experiment, we also find that few

packets of TCP flows are dropped due to buffer overflow. In

fact, when edge routers cooperate with core routers, the

high-speed misbehaving flows will be marked with lower

priority at the edge routers. Therefore, CHOKeW should be

able to block misbehaving flows more easily, and p0 should

also be smaller than shown in Fig. 10.

4.5 Fairness

In Section 3.3, we use the analytical model to explain how
CHOKeW can provide better fairness among the flows in
the same priority than conventional stateless AQM schemes
such as RED and BLUE. We validate this attribute by
simulations in this section. Since RED and BLUE do not
support multiple priority levels and are only used in best-
effort networks, we let CHOKeW work in one priority state
(i.e., wð1Þ ¼ 1 for all flows) in this section.

In the simulation network illustrated in Fig. 3, the end-to-
end propagation delay of a flow is set to one of 6, 60, 100, or
150 ms. Each of the four values is assigned to 25 percent of
the total number of flows.9

When there are only a few (e.g., no more than three)

flows under consideration, the fairness can be evaluated by

directly observing the closeness of the goodput or through-

put of different flows. In situations where many flows are

active, however, it is hard to measure the fairness by direct

observation; in this case, we use the fairness index:10

F ¼

PN
i¼1

gi

�
2

N
PN
i¼1

gi2
; ð27Þ

where gi ði ¼ 1; 2; � � � ; N) represents the goodput of flow i.
From (27), we know F 2 ð0; 1�. The closer the value of F is
to 1, the better the fairness is. In this paper, we use gi as
goodput instead of throughput so that the TCP performance
evaluation can reflect the successful delivery rate more
accurately. Fig. 11 shows the fairness index of CHOKeW,
RED, and BLUE versus the number of TCP flows ranging
from 160 to 280. Even though the fairness decreases as the
number of flows increases for all schemes, CHOKeW still
provides better fairness than RED and BLUE. We also see
that BLUE has better fairness than RED. When a great
number of TCP connections exist, BLUE is capable of
maintaining a more stable queue length and preventing
global synchronization more effectively than RED, given
the same buffer limit [14]. Global synchronization is the
phenomenon that all TCP flows increase and decrease the

44 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

9. For flow i, the end-to-end propagation delay is 4�i þ 2�0. Since �0 is
constant for all flows in Fig. 3, the propagation delay can be assigned a
desired value given an appropriate �i.

10. This fairness index was defined by Jain [34] using throughput. Since
then, it has been widely used for research on TCP/IP congestion control.

Fig. 9. The aggregate goodput versus the number of UDP flows under a

scenario to investigate TCP protection.

Fig. 10. The basic drawing factor p0 versus the number of UDP flows

under a scenario to investigate TCP protection.

Fig. 11. The fairness index versus the number of flows for CHOKeW,

RED and BLUE.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

sending rates simultaneously [13], and it can invalidate
the effect of random dropping and hence harm the fairness
significantly.

4.6 CHOKeW versus CHOKeW-RED

An adaptive drawing algorithm has been incorporated into
the design of CHOKeW, where TCP flows can get network
congestion notifications from matched drops. Simulta-
neously, the bandwidth share of high-speed unresponsive
flows are also brought under control by matched drops. As
a result, the RED module is no longer required in
CHOKeW. We compared the average queue length, link
utilization, and TCP goodput of CHOKeW with those of
CHOKeW-RED (i.e., CHOKeW working with the RED
module) with pmax ranging from 0.02 to 0.1.

The relationship between the number of TCP flows and
the values of link utilization, the average queue length, and
the aggregate TCP goodput is shown in Figs. 12, 13, and 14,
respectively. In each figure, the performance results of
CHOKeW-RED are indicated by three curves, each
corresponding to one of the three values for pmax (0.02,
0.05, and 0.1).

Fig. 12 shows that all schemes maintain an approx-
imate link utilization of 96 percent (shown by the curves
overlapping each other), which is considered sufficient for
the Internet. In Fig. 13, we can see that the average queue
length for CHOKeW-RED increases as the number of TCP
flows increases. In contrast, the average queue length can
be maintained at a steady value within the normal range
between L� (125 packets) and Lþ (175 packets) for
CHOKeW. In situations where the number of TCP flows
is larger than 100, CHOKeW has the shortest queue

length. In CHOKeW-RED, if L � Lþ is maintained by
random drops from RED (for example, this may happen
when all flows use TCP), p0 does not have an opportunity
to increase its value (p0 is initialized to 0 and updated to
p0 þ pþ only when L > Lþ), which causes a longer queue
in CHOKeW-RED.

Besides the link utilization and the average queue
length, the aggregate TCP goodput is always of interest
when we evaluate TCP performance. The comparison of
TCP goodput between CHOKeW and CHOKeW-RED is
shown in Fig. 14. In this figure, all of the schemes have
similar results. In addition, when the number of TCP flows
is larger than 100, CHOKeW rivals the best of CHOKeW-
RED (i.e., pmax ¼ 0:1).

In a special environment, if the network has not experi-
enced heavy congestion and the queue length L < Lþ has
been maintained by random drops of RED since the
beginning, CHOKeW-RED cannot achieve the goal of
bandwidth differentiation as p0 ¼ 0, and thus, pi ¼ pj ¼ 0
even if wi 6¼ wj. In other words, CHOKeW independent of
RED works best.

5 IMPLEMENTATION CONSIDERATIONS

5.1 Buffer for Flow IDs

One of the implementation considerations is the buffer size.
As discussed in [15], the objective of using buffers in the
Internet is to absorb data bursts and transmit them during
subsequent periods of silence. Maintaining normally small
queues does not necessarily generate poor throughput if
appropriate queue management is used; instead, it may
help maintain good throughput, as well as lower end-to-
end delay.

When used in CHOKeW, this strategy, however, may
cause a problem that no two packets in the buffer are from
the same flow, although this is an extreme case and is
unlikely to happen so often due to the bursty nature of
flows. In this case, no matter how large pi is, packets drawn
from the buffer will never match an arriving packet from
flow i. In order to improve the effectiveness of matched
drops, we consider a method that uses a FIFO buffer for
storing the flow IDs of forwarded packets in the history.
When the packets are forwarded to the downstream link,
their flow IDs are also copied into the ID buffer. If the ID
buffer is full, the oldest ID is deleted, and its space is
reallocated to a new ID. Since the size of flow IDs is

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 45

Fig. 12. Link utilization of CHOKeW and CHOKeW-RED.

Fig. 13. Average queue length of CHOKeW and CHOKeW-RED.

Fig. 14. Aggregate TCP goodput of CHOKeW and CHOKeW-RED.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

constant and much smaller than packet size, the imple-
mentation does not require additional processing time or
large memory space. We generalize matched drops by
drawing flow IDs from a “unified buffer,” which includes
the ID buffer and the packet buffer. This modification is
illustrated in Fig. 15, interpreted as a step inserted between
steps (4) and (5) in Fig. 1.

Let LID denote the number of IDs in the buffer when a
new packet arrives. Draws can happen either in the regular
packet buffer or in the ID buffer. The probabilities that the
draws happen in the ID buffer and the packet buffer are
LID

LIDþL and L
LIDþL , respectively. If the draws are from the ID

buffer, only one packet (i.e., the new arrival) is dropped
each time, and hence, the maximum number of draws is set
to 2
 pi, implemented by m 2
m in Fig. 15.

5.2 Parallelizing the Drawing Process

Another implementation consideration is how to shorten
the time of the drawing process. When p0 > 1, CHOKeW
may draw more than one packets for comparison upon each
arrival. In Section 2, we use a serial drawing process for the
description (i.e., packets are drawn one at a time) to let the
algorithm be easily understood. If this process does not
meet the time requirement of the packet forwarding in the
router, a parallel method can be introduced.

Let �a be the flow ID of the arriving packet, �ib ði ¼
1; 2; � � � ;mÞ be the flow IDs of the packets drawn from the

buffer. The logical operation of matched drops can be

represented by bitwise XOR ð�Þ and Boolean AND ð^Þ as

follows:11 If

m̂

i¼1

�a � �ib
� �

¼ 0ðfalseÞ;

then conduct matched drops. Note that the above equation

is satisfied if and only if some term of �a � �ib is false. On

one hand, any �ib drawn from the buffer can provoke

matched drops if it is equal to �a. On the other hand,

matched drops are triggered only when some �ib is equal

to �a. Besides the arriving packet, we can simply drop any

one of the buffered packets with flow ID �ib that makes

�a � �ib ¼ 0.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a cost-effective AQM scheme

called CHOKeW that provides bandwidth differentiation

among flows at multiple priority levels. Both the analytical

model and the simulations showed that CHOKeW is

capable of providing higher bandwidth share to flows in

higher priority, maintaining good fairness among flows in

the same priority, and protecting TCP against high-speed

unresponsive flows when network congestion occurs. The

simulations also demonstrate that CHOKeW is able to

achieve efficient link utilization with a shorter queue length

than conventional AQM schemes.
Our analytical model was designed to provide insights

into the behavior of CHOKeW and gave a qualitative
explanation of its effectiveness. Further understanding of
network dynamics affected by CHOKeW needs more
comprehensive models in the future.

The parameter tuning is another area of exploration for
future work on CHOKeW. As indicated in Fig. 6, when the
priority-weight ratio wð2Þ=wð1Þ is higher, the bandwidth
share being allocated to the higher-priority flows will be
greater. In the meantime, considering that the total available
bandwidth does not change, the bandwidth share allocated
to the lower priority flows will be smaller. The value of
wð2Þ=wð1Þ should be tailored to the needs of the applications,
the network environments, and the users’ demands. This
research can also be incorporated with price-based DiffServ
networks to provide differentiated bandwidth allocation, as
well as TCP protection.

ACKNOWLEDGMENTS

The authors are grateful to Masha S.H. Lam and Frank
Goergen for the editorial assistance. This work was partially
supported by the US National Science Foundation (NSF)
under Grants ANI-0093241 (CAREER Award) and CNS-
0721744. The work was also partially supported by the
National Science Council (NSC), R.O.C., under the NSC
Visiting Professorship with Contract NSC-96-2811-E-002-010
and Chunghwa Telecom under Contract NBY970147.

REFERENCES

[1] P. Almquist, Type of Service in the Internet Protocol Suite, IETF RFC
1349, July 1992.

[2] DSSI Core Aspects of Frame Rely, ANSI T1S1, Mar. 1990.
[3] “ATM Traffic Management Specification Version 4.0” ATM Forum,

Apr. 1996.
[4] R. Braden, D. Clark, and S. Shenker, “Integrated Services in

the Internet Architecture: An Overview,” IETF RFC 1633,
July 1994.

[5] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
Reservation Protocol (RSVP): Version 1 Functional Specification,”
IETF RFC 2205, Sept. 1997.

46 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 1, JANUARY 2009

Fig. 15. The extended matched drop algorithm with ID buffer.

11. Here, bitwise operations treat bit 1 as true and bit 0 as false, while
Boolean operations treat all nonzero values as true and value 0 as false.

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An Architecture for Differentiated Service,” IETF RFC 2475,
Dec. 1998.

[7] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” IETF RFC 3031, Jan. 2001.

[8] I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocation in High
Speed Networks,” Proc. ACM SIGCOMM, 1998.

[9] N. Nichols, S. Blake, F. Baker, and D. Black, Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
IETF RFC 2474, Dec. 1998.

[10] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured
Forwarding PHB Group,” IETF RFC 2597, June 1999.

[11] P. Marbach, “Pricing Differentiated Services Networks: Bursty
Traffic,” Proc. IEEE INFOCOM, 2001.

[12] S. Floyd and K. Fall, “Promoting the Use of End-to-End
Congestion Control in the Internet,” IEEE/ACM Trans. Networking,
vol. 7, no. 4, pp. 458-472, Aug. 1999.

[13] S. Floyd and V. Jacobson, “Random Early Detection Gateways
for Congestion Avoidance,” IEEE/ACM Trans. Networking, vol. 1,
no. 4, pp. 397-413, Aug. 1993.

[14] W. Feng, K. Shin, D. Kandlur, and D. Saha, “The BLUE Active
Queue Management Algorithm,” IEEE/ACM Trans. Networking,
vol. 10, no. 4, pp. 513-528, Aug. 2002.

[15] R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, and
D. Estrin, Recommendations on Queue Management and Conges-
tion Avoidance in the Internet, IETF RFC 2309, Apr. 1998.

[16] K. Cho, “Flow-Valve: Embedding a Safety-Valve in RED,” Proc.
IEEE Global Telecomm. Conf. (GLOBECOM ’99), Dec. 1999.

[17] R. Mahajan and S. Floyd, “Controlling High-Bandwidth Flows at
the Congested Router,” ICSI Technical Report TR-01-001, http://
www.icir.org/red-pd/, Apr. 2001.

[18] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe: A Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth
Allocation,” Proc. IEEE INFOCOM, 2001.

[19] A. Tang, J. Wang, and S. Low, “Understanding CHOKe,” Proc.
IEEE INFOCOM, 2003.

[20] D. Clark and W. Fang, “Explicit Allocation of Best Effort Packet
Delivery Service,” IEEE/ACM Trans. Networking, vol. 6, no. 4,
pp. 362-373, Aug. 1998.

[21] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulations
of a Fair Queueing Algorithm,” Proc. ACM SIGCOMM, 1989.

[22] A. Parekh and R. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Trans. Networking, vol. 1, no. 3,
pp. 344-357, June 1993.

[23] U. Bodin, O. Schelen, and S. Pink, “Load-Tolerant Differentiation
with Active Queue Management,” ACM Computer Comm. Rev.,
http://www.acm.org/sigcomm/ccr/archive/ccr-toc/, 2000.

[24] S. Ramabhadran and J. Pasquale, “Stratified Round Robin: A
Low Complexity Packet Scheduler with Bandwidth Fairness
and Bounded Delay,” Proc. ACM SIGCOMM ’03, Aug. 2003.

[25] J. Bennet and H. Zhang, “WF2Q: Worst Case Fair Weighted Fair
Queuing,” Proc. IEEE INFOCOM ’96, Mar. 1996.

[26] S. Suri, G. Varghese, and G. Chandramenon, “Leap Forward
Virtual Clock: A New Fair Queueing Scheme with Guaranteed
Delay and Throughput Fairness,” Proc. IEEE INFOCOM ’97,
Apr. 1997.

[27] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using
Deficit Round Robin,” IEEE/ACM Trans. Networking, vol. 4, no. 3,
pp. 375-385, June 1996.

[28] D. Clark, S. Shenker, and L. Zhang, “Supporting Real-Time
Applications in an Integrated Services Packet Network:
Architecture and Mechanism,” Proc. ACM SIGCOMM, 1992.

[29] R. Cooper, Introduction to Queueing Theory, second ed. Elsevier
North, 1981.

[30] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and Its Empirical Validation,” Proc.
ACM SIGCOMM, 1998.

[31] ns-2 (Network Simulator Version 2), http://www.isi.edu/
nsnam/ns/, 2008.

[32] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion
Control,” IETF RFC 2581, Apr. 1999.

[33] W. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, 1994.

[34] R. Jain, The Art of Computer Systems Performance Analysis.
John Wiley & Sons, 1991.

[35] X. Chen, H. Zhai, J. Wang, and Y. Fang, “TCP Performance over
Mobile Ad Hoc Networks,” Canadian J. Electrical and Computer
Eng., vol. 29, no. 1/2, pp. 129-134, Jan.-Apr. 2004.

[36] S. Wen, Y. Fang, and H. Sun, “Differentiated Bandwidth
Allocation and TCP Protection within Core Routers,” Proc. IEEE
Military Comm. Conf. (Milcom), 2005.

[37] H. Zhai and Y. Fang, “Distributed Flow Control and Medium
Access in Multihop Ad Hoc Networks,” IEEE Trans. Mobile
Computing, vol. 5, no. 11, pp. 1503-1514, Nov. 2006.

[38] H. Zhai, X. Chen, and Y. Fang, “Improving Transport Layer
Performance in Multihop Ad Hoc Networks by Exploiting
MAC Layer Information,” IEEE Trans. Wireless Comm., vol. 6,
no. 5, pp. 1692-1701, May 2007.

Shushan Wen received the BS degree and the
PhD degree in electronic engineering from the
University of Electronic Science and Technology
of China (UESTC) in 1996 and September 2002,
respectively, and the PhD degree in electrical
and computer engineering from the University of
Florida in December 2006. He is with the
Department of Electrical and Computer Engi-
neering, University of Florida, Gainesville. His
research interests include traffic engineering,

congestion control, TCP protection, fairness and QoS in wireless, and
wired communication networks. He is a student member of the IEEE.

Yuguang (Michael) Fang received the PhD
degree in systems engineering from Case
Western Reserve University in January 1994
and the PhD degree in electrical engineering
from Boston University in May 1997. He was an
assistant professor in the Department of Elec-
trical and Computer Engineering, New Jersey
Institute of Technology from July 1998 to
May 2000. He then joined the Department of
Electrical and Computer Engineering, University

of Florida, in May 2000 as an assistant professor, got an early promotion
to an associate professor with tenure in August 2003 and to a full
professor in August 2005. He holds a University of Florida Research
Foundation (UFRF) Professorship from 2006 to 2009. He has published
more than 200 papers in refereed professional journals and conference
proceedings. He received the US National Science Foundation (NSF)
Faculty Early Career Award in 2001 and the Office of Naval Research
Young Investigator Award in 2002. He is the recipient of the Best Paper
Award in IEEE International Conference on Network Protocols (ICNP) in
2006 and the IEEE TCGN Best Paper Award in the IEEE High-Speed
Networks Symposium, IEEE Globecom in 2002. He is also active in
professional activities. He is a fellow of the IEEE and a member of ACM.
He has served on several editorial boards of technical journals including
the IEEE Transactions on Communications, IEEE Transactions on
Wireless Communications, IEEE Wireless Communications Magazine,
and ACM Wireless Networks. He was an editor for IEEE Transactions
on Mobile Computing and currently serves on its Steering Committee.
He has been actively participating in professional conference organiza-
tions such as serving as the Steering Committee Co-Chair for QShine,
the Technical Program Vice Chair for the IEEE INFOCOM 2005,
Technical Program Symposium Cochair for IEEE Globecom 2004, and a
member of Technical Program Committee for IEEE INFOCOM (1998,
2000, and 2003-2009).

Hairong Sun received the BS and MS degrees in
electronic engineering from the Shanghai Jiao-
tong University, China, in 1988 and 1991,
respectively, and the PhD degree in electronic
engineering from the University of Electronic
Science and Technology of China (UESTC) in
1993. He is a staff engineer in the System Group,
Sun Microsystems. He is responsible for relia-
bility, availability, and performability assessment
of storage products. He worked as an associate

professor with UESTC in 1994 and a professor in 1997. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WEN ET AL.: DIFFERENTIATED BANDWIDTH ALLOCATION WITH TCP PROTECTION IN CORE ROUTERS 47

Authorized licensed use limited to: University of Florida. Downloaded on January 19, 2009 at 14:26 from IEEE Xplore. Restrictions apply.

