
A Fine-Grained Reputation System for Reliable
Service Selection in Peer-to-Peer Networks

Yanchao Zhang, Member, IEEE, and Yuguang Fang, Senior Member, IEEE

Abstract—Distributed peer-to-peer (P2P) applications have been gaining momentum recently. In such applications, all participants

are equal peers simultaneously functioning as both clients and servers to each other. A fundamental problem is, therefore, how to

select reliable servers from a vast candidate pool. To answer this important open question, we present a novel reputation system built

upon the multivariate Bayesian inference theory. Our system offers a theoretically sound basis for clients to predict the reliability of

candidate servers based on self-experiences and feedbacks from peers. In our system, a fine-grained quality of service (QoS)

differentiation method is designed to satisfy the diverse QoS needs of individual nodes. Our reputation system is also application-

independent and can simultaneously serve unlimited P2P applications of different type. Moreover, it is semidistributed in the sense that

all application-related QoS information is stored across system users either in a random fashion or through a distributed hash table

(DHT). In addition, we propose to leverage credits and social awareness as reliable means of seeking honest feedbacks. Furthermore,

our reputation system well protects the privacy of users offering feedbacks and is secure against various attacks such as defaming,

flattering, and the Sybil attack. We confirm the effectiveness and efficiency of the proposed system by extensive simulation results.

Index Terms—P2P, QoS, reliability, reputation, security, DHT.

Ç

1 INTRODUCTION

IN many distributed peer-to-peer (P2P) applications, such
as grid computing [1], it is essential that a client be able to

predict the reliability of candidate servers in offering the
desired quality of service (QoS). A natural solution is to
leverage the reputations of candidate servers. This necessi-
tates the design of a sound reputation system, which is the
focus of this paper.

Reputation systems have been investigated extensively
in the past, for which a comprehensive survey can be found
in [2]. In such a system, users share QoS experiences and
consult others’ feedbacks on candidate servers before
making a choice. Most previous proposals focus on devising
reputation engines that derive dependable reputation scores
for servers. Among them, the line of approaches [3], [4], [5],
[6] based on single-variate Bayesian inference [7] are
notable for their firm basis in statistics. This is in contrast
to the intuitive and ad hoc natures of most other reputation
engines, as noted in [4]. The main drawback of [3], [4], [5],
[6], is that they all classify a service as either good or bad
without any interim state. Such a binary QoS differentiation
method limits their potential in many P2P applications in
which servers have diverse capabilities and clients have
various QoS demands. In addition, no strong incentives are
designed to stimulate honest participation in the reputation

system. These solutions do not consider protecting the
privacy of references either, which is important for seeking
honest feedback from them (see Section 4.4).

This paper presents the design of a novel reputation
system with the following notable properties:

. QoS-aware. We devise a novel Dirichlet reputation
engine based on multivariate Bayesian inference [7].
Firmly rooted in statistics, our design can satisfy the
diverse QoS requirements of individual nodes by a
fine-grained QoS differentiation method.

. Incentive-aware. We motivate honest participation in
the reputation system by charging users who inquire
about others’ reputations and rewarding those who
provide honest feedbacks on inquired servers.

. Socially aware. We incorporate the concept of social
groups into the reputation system design as a
reliable means of soliciting honest feedback and
alleviating the cold-start problem (see Section 4.1).
This design is motivated by the sociological fact that
people tend to contribute to the associated social
groups.

. Application-independent. Unlike many previous solu-
tions all designed for a concrete P2P application, our
reputation system can simultaneously serve unlim-
ited P2P applications of different type. This can
greatly amortize the design and development costs
of the reputation system.

. Semidistributed. The proposed system features a
central server1 that maintains user accounts and
answers reputation inquiries. All application-related
QoS information, however, is stored across system
users either in a random fashion or through a
distributed hash table (DHT) [8].

1134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

. Y. Zhang is with Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, University Heights, Newark, NJ
07102. E-mail: yczhang@njit.edu.

. Y. Fang is with the Department of Electrical and Computer Engineering,
University of Florida, 435 Engineering Building, PO Box 116130,
Gainesville, FL 32611. E-mail: fang@ece.ufl.edu.

Manuscript received 18 Nov. 2005; revised 5 July 2006; accepted 22 Sept.
2006; published online 9 Jan. 2007.
Recommended for acceptance by J.-P. Sheu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0482-1105.
Digital Object Identifier no. 10.1109/TPDS.2007.1043.

1. The central server can be replaced with a distributed server cluster for
reasons of fault tolerance, load balance, and resilience to DoS/DDoS attacks.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

. Secure. The proposed system can well protect the
privacy of references and withstand various misbe-
haviors, such as defaming and flattering, by light-
weight techniques like multivariate outlier detection
[9] and symmetric-key cryptographic functions.

The rest of this paper is organized as follows: Section 2
introduces some related terms and definitions as well as the
Dirichlet-Multinomial model on which our system is built.
This is followed by the detailed system design in Section 3.
Next, we illustrate a number of challenges facing the design
of a practical reputation system along with the correspond-
ing solutions. Section 5 evaluates the performance of our
reputation system. We then survey related work in Section 6
and end with conclusions and future work.

2 PRELIMINARIES

2.1 Terms and Definitions

Users of our reputation system can be classified as clients,
servers, and references giving feedbacks on servers. A feed-
back reflects a reference’s own QoS experiences with the
referred server. Each user may play one of the three roles
under different contexts. In this paper, we assume rational
users who only attempt to misbehave if the expected benefit
of doing so is greater than that of acting honestly. How to deal
with malicious users who intend to interrupt the system
functioning without considering their own gains is beyond
the scope of this paper. We also refer to each interaction
between a client and server pair as a transaction.

We define the reputation of a server as the probability that
he2 is expected to demonstrate a certain behavior, as
assessed by a client based on self-experiences with and
other users’ feedbacks on him. This definition implies that a
server can affect his reputation by different behaviors, but
cannot decide it. Reputation is also application-dependent. For
example, a user may be reputable in grid computing but
notorious in file sharing. A client considers a server reliable
if believing that server to meet his personal QoS need with a
sufficiently high probability. The most important factor
affecting the reliability decision-making process is the
reputation of that server.

2.2 The Dirichlet-Multinomial Model

Our system is firmly rooted in the classical Bayesian
inference theory used to estimate one or more unknown
quantities from the results of a sequence of multinomial trials.
For clarity, we outline the adopted Dirichlet-Multinomial
model as follows and refer to [7] for more details.

A multinomial trials process is a sequence of indepen-
dent, identically distributed (IID) random variables U1;
U2; . . . , each taking one of k possible outcomes foigki¼1.
We then denote the common probability density function
(PDF) of the trial variables by pi ¼ PrðUj ¼ oiÞ for 1 � i � k,
where pi > 0 and

Pk
i¼1 pi ¼ 1. Let p ¼ ðp1; . . . ; pkÞ and

z ¼ ðz1; . . . ; zkÞ, which is the vector of observation counts
of each outcome after N multinomial trials, namely,Pk

i¼1 zi ¼ N . The multinomial sampling distribution [7]
states that

fðzjpÞ ¼ MultðN jp1; . . . ; pkÞ ¼
N!Qk
i¼1 zi!

Yk
i¼1

pzii : ð1Þ

As a common practice in Bayesian inference, assume that
p has a conjugate prior distribution3 known as the Dirichlet,

fðpÞ ¼ Dirðpj�1; . . . ; �kÞ ¼
�ð
Pk

i¼1 �iÞQk
i¼1 �ð�iÞ

Yk
i¼1

p�i�1
i ; ð2Þ

where pi 6¼ 0 if �i < 1 and � is the gamma function.4 The
positive parameters �i can be interpreted as “prior
observation counts” for events governed by pi. Then, the
posterior distribution is also Dirichlet [7]:

fðpjzÞ ¼ fðzjpÞ � fðpÞ
fðzÞ

¼ �ð
Pk

i¼1 ð�i þ ziÞÞQk
i¼1 �ð�i þ ziÞ

Yk
i¼1

p�iþzi�1
i

¼Dirðpj�1 þ z1; . . . ; �k þ zkÞ:

ð3Þ

The posterior distribution can be used to make statements
about p considered as a set of random quantities. The
posterior mean of pi, which may be interpreted as the
posterior probability of observing outcome oi in a future
multinomial trial, is

E½pijz� ¼
�i þ ziPk

i¼1 ð�i þ ziÞ
: ð4Þ

To apply the Dirichlet-Multinomial model, we need to
first specify the prior distribution fðpÞ. In our reputation
system, we always use a uniform prior distribution by
setting �i ¼ 1 for 1 � i � k. This is equivalent to a priori
assuming that each oi is likely to occur with the same
probability, as E½pij0� ¼ 1

k .

3 SYSTEM DESIGN

This section illustrates the design of our reputation system.
We first give a design overview and explain how user
accounts are maintained. Then we present the concept of
fine-grained QoS experience vectors and how to efficiently
store such vectors. Finally, we detail the process of
reputation query and reliability assessment as well as how
to stimulate participation in the reputation system.

3.1 Design Overview

Fig. 1 depicts the architecture of our reputation system
consisting of a central server and distributed users.
Extending our system to a fully distributed one is part of
our ongoing work. The central server mainly comprises
four subcomponents: an account manager in charge of
registering users and crediting/debiting user accounts, a
query processor dealing with reputation queries from system
users, a feedback collector gathering feedbacks on queried
servers from system users, and a reputation engine deriving
reputation scores for queried servers based on the collected
feedbacks. For reasons of fault tolerance, load balance, and
resilience to DoS/DDoS attacks, the central server may be
replaced with a distributed server cluster in practice. We,
however, focus on the single server case in this paper for

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1135

2. No gender implication.

3. The property that the posterior distribution follows the same
parametric form as the prior distribution is called conjugacy [7].

4. If x is an integer, �ðxÞ ¼ ðx� 1Þ!.

ease of presentation. Each user logs QoS experiences with

servers after each transaction. Upon a query from the

central server, a user returns the QoS experiences (if any)

with the queried server. In addition, a user may inquire the

central server about the reputation of a candidate server

before transacting with him.
The operations of our reputation system can be best

illustrated by the following example in grid computing.

Suppose that Alice desires some computation services from

Bob, and that a higher QoS is associated with a greater

monetary cost and vice versa. Since Alice is asked to prepay

the service, she wishes to assess the reputation of Bob before

transacting with him. She achieves this by making a query

to the central server. Upon the query by Alice, the central

server collects feedbacks on Bob from some other users,

based on which to derive a reputation score for Bob which,

in turn, is returned to Alice. In addition, the central server

credits the accounts of the users offering honest feedbacks

and debits Alice’s account accordingly. Then Alice can

assess Bob’s reliability based on the reputation score and

decide whether to transact with him.
Realizing the above procedure requires solutions to the

following questions: First, how does the central server

maintain user account information to ensure secure opera-

tions of the reputation system? Second, how do system

users record their QoS experiences to enable fine-grained

QoS differentiation? Third, how does a system user check

with the central server about the reputation of a candidate

server and determine his reliability? Fourth, how does the

central server search feedbacks on queried servers and

differentiate between honest and dishonest feedbacks? Last,

how does the central server urge honest participation in the

reputation system? In the following, we will answer the

above questions one by one.

3.2 User Account Maintenance

Similarly to Gmail,5 our reputation system adopts an

invitation-based registration policy to reduce the amount

of abuse, so misbehaving users cannot register near-infinite

number of accounts as with a completely open registration

policy. In particular, the central server only registers users

with an invitation code which is received, for example, from
an existing account holder or through their mobile phone.

We assume that the central server maintains a suffi-
ciently long master key K which it keeps confidential. The
central server assigns a unique identifier ID� to each
registered user �. Let HMACkðmÞ denote a keyed-hash
message authentication code (HMAC) [10] of message m

using a symmetric key k. The central server also sends a
shared key k� ¼ HMACKðID�Þ to user � through the
Transport Layer Security (TLS) protocol [11]. The central
server need not store all the individual shared keys to save
its storage. Instead, it can derive any shared key using K on
the fly as needed. Since HMACkðmÞ is computationally
efficient, the computational overhead is negligible. Here-
after, when saying that a message is securely sent or
transmitted between two entities, we mean that the message
is encrypted and authenticated with efficient symmetric-
key algorithms based on their shared key. For example, a
secure message m from user � to the central server is of
format hfmgk� ;HMACk�ðmÞi, where fmgk denotes the
encryption of message m using a symmetric key k. Upon
receipt of it, the central server derives k� and then uses it to
decrypt fmgk� and compute an HMAC on m. If the HMAC
matches the received one, the central server is assured that
m indeed came from user �.

In addition to user accounts, the central server main-
tains a social network for system users, of which a
snapshot is shown in Fig. 2. Let G ¼ fGig1i¼1 be the set of
network social groups the central server maintains. In our
system, each user is affiliated with at least one social group
Gi 2 G, where the cardinality of Gi is jGij � 1. That is, each
user at least belongs to a social group containing only
himself. A joint request for group Gi needs the consensus
of �ð0 � � � 1Þ fraction of existing group members, where
� is a system parameter chosen by the central server. For
example, supposing that user � requests to join group Gi,
the central server performs the following operations:

1. Randomly select d�jGije existing members of
group Gi.

2. Poll each chosen user � about user �’s join request.
3. Verify the response HMACk� ðID�; IDGi

Þ from each
chosen user � to make sure that the response was
indeed sent by �, where IDGi

indicates the unique
ID of Gi.

4. Link user � to group Gi if all the responses are
authentic.

1136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

5. Gmail is a free Web mail and POP e-mail service provided by Google,
Inc.

Fig. 2. A snapshot of the social network of system users with four social

groups and five users, where the directed link indicates group affiliation.

Fig. 1. The reputation system architecture.

Note that similar operations can be performed to expel a
faulty group member. For example, the central server need
receive d� jGije (or another predetermined number) authen-
ticated requests from members of Gi to remove �. We will
show the use of the social network in solving the cold-start
problem in Section 4.1.

3.3 Fine-Grained QoS Experience Vectors

In this section, we introduce an important data structure,
called a QoS experience vector (Q-vector for short), to record
users’ QoS experiences. For ease of presentation, we take
client � and server s with regard to application C as an
example hereafter.

Our system adopts a fine-grained QoS differentiation
method in contrast to the binary one used in [3], [4], [5],
[6]. Assume that the QoS of C is divided into publicly
known $ � 2 levels and that any client can unambiguously
map the QoS he experienced into one of the $ levels after
each transaction. We denote by EC�;s ¼ ðIDs; C; e1

�;s; � � � ; e$�;sÞ
the Q-vector of client � for server s with respect to
application C. Each ei�;sð1 � i � $Þ is a counter correspond-
ing to the ith QoS level and initialized to zero. After each
transaction with s, user � maps his QoS experience into one
of the $ levels and then increases the corresponding
counter by one. Note that each user only needs to maintain
a Q-vector for who has ever offered services to him.

Old service experiences may not always be relevant for
determining the current reliability of servers that may vary
their behaviors or service qualities over time. To deal with
this situation, we introduce a discount factor � between
[0, 1.0] to assign more weight to recency. At regular
intervals, user � should update fei�;sg

$
i¼1 to f�ei�;sg

$
i¼1, so

the counter values may not be integers. If the counter values
are too small to be meaningful, e.g., all much smaller than 1,
user � can delete EC�;s to save memory space. Discounting
the past not only can help identify servers who offer good
services initially and bad services afterwards, but also can
permit a disreputable server to reform by starting to
provide high-quality services. Following the same process,
each user needs to periodically discount all the Q-vectors he
maintains. Note that each user has the right incentive to
properly discount his QoS-vectors that provide important
inputs to his reliability decision-making process.

The discount factor � and interval are system parameters
determined by the central server to control how fast past
experiences are forgotten. Obviously, the smaller �, the
shorter the discount interval, the more quickly past
experiences fall into oblivion, and vice versa. We will
further show the effects of these two parameters using
simulations in Section 5.4.

3.4 Deriving Reputation Scores from
Self-Experiences

Now, we discuss how user � derives a reputation score for
server s based on his own QoS experiences with s, i.e., EC�;s.
Let ps;i denote the probability of s providing the ith QoS
level of application C. Whenever updating EC�;s other than
using the discounting method, user � generates a reputa-
tion score RC�;s ¼ ðID�; IDs; C; r1

�;s; � � � ; r$�;sÞ, where

ri�;s ¼
ei�;s þ 1P$

i¼1 ei�;s þ 1
� �

is the posterior mean of ps;i computed according to (4). RC�;s
is one of the factors affecting the decision of � on s’s

reliability, as shown in Section 3.7.

3.5 Storage of Reputation Scores

In our reputation system, RC�;s also serves as �’s feedback
on s regarding application C. The next question is how to
store such reputation scores to enable efficient queries by
the central server. We are aware of the following four
approaches.

3.5.1 Approach 1

In the first approach, whenever deriving a new reputation
score, a user securely sends it to the central server which
saves all the received reputation scores for later use. This
method, though simple, would cause significant storage
overhead on the central server, as our reputation system
may involve numerous P2P applications and users and thus
contain thousands of millions of reputation scores. As a
result, we discard this method in our design.

3.5.2 Approach 2

In this approach, each user independently stores his
reputation scores. Upon receiving a query from the central
server, he responds with the reputation score (if any) for the
queried server. This approach can significantly reduce the
storage overhead of the central server and the communica-
tion overhead of dynamically submitting reputation scores.
The drawback, however, lies in the low query efficiency.
The reason is that the central server has no knowledge
about which users have the desired reputation scores, so it
may need to send a number of queries. We will dwell on
this point in Section 3.5.

3.5.3 Approach 3

The third approach is a novel combination of the first

approach with a distributed hash table (DHT) [8]. In

particular, the central server assigns to each user � a virtual

ID, gID� ¼ dhðID�Þe� , where h indicates a fast hash

function such as SHA-1 [12] and dme� denotes the first

� bits of value m. Hereafter, we may also refer to user � as

ID� or gID� . When a user submits a reputation score, the

central server dispatches the score to several users before

discarding it. The purpose is to harness the storage

capacity of all users to provide distributed storage of

reputation scores. Consider, for example, user � who

derived a new reputation score RC�;s. He securely transmits

it to the central server which, in turn, forwards RC�;s to

selected users by the following process.

The central server first calculates � values of � bits called

score IDs, fdhðIDs; C; iÞe�g�i¼1, where � � 1 is a system

parameter called the redundancy index. Let n be an integer

between 0 and 2� � 1 and successorðnÞ be the first virtual

user ID clockwise from n, if virtual user IDs and score IDs

are represented as a circle of numbers of 0 to 2� � 1. Then,

the central server securely transmits hIDs; C; fRC�;sgKi in-

dividually to users fsuccessorðdhðIDs; C; iÞe�Þg�i¼1. The en-

cryption of RC�;s is to ensure that only the central server can

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1137

decrypt and know the content of RC�;s.
6 Upon receiving

hIDs; C; fRC�;sgKi, the chosen users save it for later queries

by the central server. In addition, a timer needs to be set for

hIDs; C; fRC�;sgKi, which is deleted after the timer expires.

Why does the central server let � users store hIDs; C;
fRC�;sgKi? This is to improve system fault tolerance in case

some users cannot respond to its query for various

reasons, such as going offline. The choice of � represents

a trade-off between fault tolerance and system overhead:

the larger �, the higher fault tolerance, and the larger the

communication overhead and the average storage cost of

users, and vice versa.
Our system can well handle dynamic user sign-up or

sign-off requests. For instance, when user � signs up for
the reputation system, the successor of some score IDs
allocated to user successorðgID� Þ may become gID� . The
central server then redistributes such reputation scores
from user successorðgID� Þ to user �. When user � signs off
from the reputation system, all the reputation scores he
stores are reallocated to user successorðgID� Þ. No other
actions need be taken in the presence of user sign-ups or
sign-offs.

Another design issue is how to balance the load across
system users. Since the distribution of user virtual IDs and
reputation score IDs is unlikely to be uniform in practice,
some users may store many more reputation scores than
others, leading to load imbalance. A previous solution is to
let each user have multiple virtual IDs [8], [13] to ensure a
more uniform coverage of the range ½0; 2� � 1�. In our
system, this means that each user need store all the
reputation scores with successor IDs equal to one of his
virtual IDs. This technique, however, can only help balance
the distribution of reputation score IDs on system users,
and cannot address another reason for load imbalance
which is unique to our reputation system. Note that score
IDs are generated based on server IDs and application
indexes. It is very possible that some servers are highly
popular and serve many more users than others. As a
result, there will be many more reputation scores associated
with their score IDs and two users may have distinct
storage and communication costs even when they are
assigned the same number of score IDs.

We further alleviate the load imbalance by introducing

a popularity index technique. In particular, for each applica-

tion C, the central server maintains a popularity index

containing the top �users for which the maximum reputation

scores are submitted during the last time period . Upon

receiving a reputation score for any indexed user s, the central

server picks a random x 2 ½1; 	� and sends the encrypted

reputation score to users fsuccessorðdhðIDskckikxÞe�Þg�i¼1 as

before. Therefore, the storage of the reputation scores for any

indexed user is uniformly distributed to	� instead of�users.

The choice of 	, called the popularity branching factor,

determines a trade-off between load balance and system

overhead. It is also possible to use different values of 	

according to a user’s rank in the popularity index. A

popularity index may change after each time period , in

which case the central server need redistribute reputation

scores accordingly.
As compared to Approach 2, this approach can ensure

deterministic queries by the central server because it knows
exactly who store the desired reputation scores. This is
achieved at the cost of increased communication overhead
incurred by dynamic distributions of reputation scores.

3.5.4 Approach 4

In Approach 3, the central server is involved in distributing
reputation scores among users. We can reduce the load of
the central server by letting a user directly send a reputation
score to corresponding other users instead of via the central
server. For this purpose, a distributed routing protocol is
required to enable a user to locate other users who should
store his reputation score. This can be achieved by Chord
[8] or any other distributed P2P lookup protocol. Note that
each user needs to periodically download the popularity
index for the desired application from the central server
with the purpose of correctly achieving load balance.

An important problem Chord does not address is the
secure communication between two users, as otherwise
an attacker may easily impersonate authentic system users
to disseminate or even harmful useless information. To
address this issue, we require the central server to assign an
ID-based key IK� ¼ KHðID�Þ to each user � upon
registration, where HðxÞ indicates a hash function mapping
an input x to an element of a cyclic group GG1 defined in the
Appendix. Assume that user � computes a new reputation
score RC�;s to be sent to user � selected by the same method
in Approach 3. He derives a shared key k�;� by computing
k�;� ¼ êðIK�;HðID�ÞÞ, get �’s IP address through Chord,
and sends hM;HMACk�;� ðMÞi to �, where ê is the bilinear
pairing function defined in the Appendix and M :¼
hID�; IDs; C; fRC�;sgk�i. The purpose of fRC�;sgk� is to ensure
the privacy of user � (see Section 4.4) because only the
central server can decrypt it using k�.

Upon receiving the message, user � generates k�;� ¼
êðIK�;HðID�ÞÞ, which is equal to k�;� . The reason is that
k�;� ¼ k�;� because

êðIK�;HðID�ÞÞ ¼ êðHðID�Þ; HðID�ÞÞK

¼ êðHðID�Þ; HðID�ÞÞK

¼ êðKHðID�Þ; HðID�ÞÞ
¼ êðIK�;HðID�ÞÞ:

ð5Þ

The first-line and third-line equations are due to the
bilinearity of ê, and the second-line equation is because of
its symmetry. Then, user � calculates HMACk�;�ðMÞ and
compares it with HMACk�;� ðMÞ. If they are equal, � is
assured that the reputation score indeed came from �, who
is also a legitimate user of the reputation system. Note that
an attacker may impersonate user �, but he would not have
been in possession of IK�, thus being unable to derive a
correct k�;� .

In contrast to Approach 3, this approach can greatly
reduce the load of the central server. The cost is that each
user has to be involved in the Chord operations, which can

1138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

6. Note that the informative structure of RC�;s means that RC�;s is self-
authenticated, as any modification on fRC�;sgK will render a meaningless
decryption result.

be greatly amortized if our reputation system is integrated
with any P2P application (e.g., file sharing) built upon
Chord.

3.6 Query for Reputation Scores

Assume that user � cannot predict the reliability of server s
based on his own QoS experiences with s. He securely
transmits a reputation query containing hIDs; C; nri to the
central server, where nr is the number of desired references
to s. Upon receipt of the query, the central server performs
the following different operations, depending on how
reputation scores are stored.

3.6.1 Case 1

Consider first the case that the each user independently

stores his reputation scores (Approach 2). The central server

securely sends a query hIDs; Ci to each randomly chosen

user �. If user � has RC�;s, he securely sends it back to the

central server. Let ps be the probability of each user having

a reputation score for s, and let X be a random variable

denoting the number of users the central server needs to

inquire until obtaining nr reputation scores. Then, we have

PrðX ¼ xÞ ¼ x� 1
nr � 1

� �
pnrs ð1� psÞ

x�nr ;

and E½X� ¼ nr
ps

and Var½X� ¼ nrð1�psÞ
p2
s

. The inquiry overhead

is in inverse proportion to the popularity of servers. For

example, if ps ¼ 0:005 or 0:025 and nr ¼ 20, the central

server has to on the average inquire 4,000 and 800 users,

respectively, until obtaining 20 reputation scores.

3.6.2 Case 2

Now, we consider the case in which reputation scores are
stored through the DHT (i.e., Approaches 3 and 4). For ease of
presentation, below we assume that s is not on the popularity
index of applicationC, but the extension to any indexed server
is straightforward. Let user gID� be a random online one
among users fsuccessorðdhðIDskCkiÞe�Þg�i¼1. The central
server securely sends a query hIDs; C; nri to user �. Upon
receipt of the query, if user � stores fewer than nr encrypted
reputation scores, he sends all of them to the central server;
otherwise, he sends randomly selected nr of them. After
receiving the encrypted reputation scores, the central server
decrypts them using either the master key K (Approach 3)
or the individual shared keys (Approach 4). One may
consider reducing the load on the central server by letting
user � directly send reputation queries for s to other users.
This is impossible in our system because all the reputation
scores have been encrypted and can only be accessible to
the central server for protecting references’ privacy.

In both cases, let � be the set of reputation scores for s
returned to the central server, where j�j � nr. The central
server cannot simply aggregate these reputation scores
because there might be outliers in � which are very different
from the rest based on some measure. These outliers might
have been created by users who attempt to defame or flatter
user s, so it is necessary to identify and remove them from
�. Assuming that nonoutliers are the majority in �, we can
apply any existing multivariate outlier detection technique to

find outliers in �. Below we describe a distance-based
method [14] for its simplicity and efficiency. In particular,
we calculate the sum of the euclidean distances of each
reputation score in � from all the others. A reputation score is
said to be an outlier if there are no more than
 � 1 other distance
sums larger than its distance sum. Here,
 is called an outlier
index between 1; bnr2 c

� �
decided by the central server. There

is also a trade-off regarding the choice of
: if
 is large,
more outliers will be removed but more nonoutliers may be
mislabeled as outliers; and vice versa. Let �0 be the set of
reputation scores from which
 outliers have been elimi-
nated. The central server generates a reputation score
RCs ¼ fIDs; C; r1

s; � � � ; r$s g, where

ris ¼
P

x2�0 r
i
x;s

j�0j :

Finally, the central server securely sendsRs to the requesting
user �. If no reputation scores for s are found, the central
server also need inform � about it.

3.7 Reliability Assessment

Assume that user � has computed RC�;s and obtained RCs
from the central server and that his lowest and highest

tolerable QoS levels are #L� and #H� , both in½1; $�. He

computes a reliability indicator as

IC�;s ¼ ð1� ��Þ
X#H�
i¼#L�

ri�;s þ ��
X#H�
i¼#L�

ris: ð6Þ

Here, "� 2 ½0; 1:0� is called a trust indicator chosen by user � to
reflect the level of his trust on others’ QoS experiences with s.
User � considers s reliable if I�;s � ’� and unreliable
otherwise, where ’a 2 ½0; 1:0� is a threshold chosen by
� itself. In the former case, � starts to transact with s.
Otherwise, he starts to check another candidate server, if any.

It is obvious that our fine-grained QoS differentiation
method enables independent reliability decision-making of
individual nodes with diverse QoS requirements. Consider
grid computing [1] as an example whose QoS is defined as
the time t (in seconds) taken to finish a unit computation
task. Assume that if the binary QoS differentiation method
[3], [4], [5], [6] is used, the QoS is classified as good for t < 60
and bad otherwise, namely, $ ¼ 2. In contrast, in our
reputation system, the QoS is classified as six levels
ð$ ¼ 6Þ : t � 60, 48 � t < 60, 36 � t < 48, 24 � t < 36,
12 � t < 24, and t < 12. Suppose that the QoS requirements
of users �1 and �2 are t < 60 and t < 36, respectively.
Obviously, the binary method cannot enable �2 to correctly
assess the reliability of a candidate server, while our
method can do so.

3.8 Stimulating Participation With Credits

Another issue left for discussion is how to motivate users to
respond to reputation queries and participate in storing
reputation scores if the DHT is used. This is important
because users in the open system have individual interests
and are generally reluctant to serve others for free [15]. We
address this issue by a credit-based approach. In particular,
upon the registration of any user �, the central server opens
a credit account for him with zero balance. Below, we

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1139

continue with the previous example to illustrate the
crediting/debiting process of users’ credit accounts.

Upon receiving a reputation query hIDs; C; nri from
user �, the central server processes it only when his credit
balance exceeds nr. After obtaining �0, the central server
debits �’s account with j�0j credits and increases the
account of each reference in �0 by 1 credit. This means that
user � needs to pay more to learn more QoS experiences of
others. Since reputation queries require credits, a user is
well urged to share his reputation scores to earn credits for
future use. In addition, if the DHT is used, the central server
can grant certain credits to the user who returns stored
reputation scores. Alternatively, willingness to store and
return reputation scores can be part of the user agreement
that any user has to comply with.

Intuitively, one may think of punishing references who
offer outlier reputation scores identified in �. This measure,
however, may discourage good users from sharing their
QoS experiences. The reason is that some users may have
slightly different QoS experiences with the same server
from most other users due to subjective judgment. Even
when offering honest reputation scores, these users may still
be classified as outliers. As a result, we believe it enough not
to reward them without further punishing them.

4 PROBLEMS AND SOLUTIONS

In this section, we describe some important problems to be
aware of when designing a practical reputation system, as
well as our corresponding solutions.

4.1 Cold-Start

There are two types of cold-start problems to be considered.
The first one is pertinent to our reputation system, by

which we mean that a system newcomer with initially zero
credit is unable to immediately perform reputation queries.
He has no reputation scores to share with others for earning
credits, either. Of course, he can gradually create some
reputation scores by temporarily taking the risk of assum-
ing that all servers are reliable. We provide a better solution
by utilizing the social network the central server maintains
(see Section 3.2). In particular, we allow credit transfer
between system users so that existing members of a social
group can lend credits to either a group newcomer or an
existing member with insufficient credits. This measure
guarantees that at least part of a social group has to actively
share their reputation scores. It is possible that some selfish
users may exploit this measure to free ride on others’ efforts
and frequently request credits from social group peers. We
assume that social group members are alert to this situation.
They can also actively check with the central server about
the available credit of any group peer. If some peer always
has very few credits, the rest of the social group can request
the central server to remove that user from the social group
after reaching a consensus.

The second cold-start problem relates to the target P2P
applications of our reputation system. In particular, an
application newcomer will struggle to act as servers
because there are no reputation scores for him, and so
clients have no way to assess his reliability. This problem
can also be greatly alleviated by using the social network.

More specifically, social group peers of the newcomer can
initially offer reputation scores for him to make him
considered reliable by other users. However, they are
unable to overuse this feature because, as time goes on,
there will be more reputation scores available that reflect
the real QoS offered by the newcomer.

4.2 Change of Identities

A user may rejoin the system under a new identity if he can
benefit from doing so. A more advanced version is know as
the Sybil attack [16], where an ill-intended user is in control
of multiple identities and uses them in concert to take
advantage of the system. Such misbehavior is a challenging
issue for any practical reputation system. We are not
claiming to completely defeat such misbehavior, but
attempt to make it more difficult to launch and less
beneficial. First, by an invitation-based registration policy
(see Section 3.2), our reputation system renders it difficult
for an ill-intended user to freely register near-infinite
number of accounts. In addition, we can prevent computer-
automated registration requests by introducing a CAPCHA
[17] into the registration process, which typically requires a
user to type the letters of a distorted image, sometimes with
the addition of an obscured sequence of letters or digits that
appears on the screen. Furthermore, newcomers to our
reputation system are granted zero credit, which is the
lowest possible credit level. This measure can further
discourage a user from changing his identity.

Another form of the above misbehavior is that a user
may rejoin a P2P application under a new identity if he
knows he has been considered disreputable by many other
users.7 Our reputation system can partially mitigate this
misbehavior by the invitation-based registration policy and
the consensus-based social group enrollment: Existing
reputable group members may refuse the join request of a
user who frequently changes his identity. Other counter-
measures are totally application-dependent. For example,
the application administrator can charge a new user an
entry fee. Further investigation of this issue is beyond the
scope of this paper.

4.3 QoS Variations over Time

Servers may offer varied QoS over time either deliberatively
or unintentionally. For example, a server may initially
provide good services to build up a good reputation and
offer bad services afterward. On the other hand, a
disreputable server may start to provide good services to
regain a good reputation. Our reputation system can well
accommodate QoS variations, be they good or bad, by
discounting the past QoS experiences and deleting too old
reputation scores. Also note that, as discussed before, the
social network maintained by the central server can help a
disreputable user to participate in service provision. That is,
the disreputable user is treated as an application newcomer
by his social group peers.

4.4 Privacy of References

Resnick and Zeckhauser reported some interesting statis-
tics about eBay’s reputation system [18]: Only 0.6 percent

1140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

7. The user can learn this by asking his social group peers to perform a
reputation query on him.

and 1.6 percent of all the feedbacks provided by buyers
and sellers, respectively, were negative, which seem too
low to reflect the reality. A convincing explanation is fear
of retaliation from the rated party. We address this issue by
well protecting the privacy of references. In particular,
reputation scores submitted to the central server are
encrypted and can only be decrypted by it. Even if the
DHT is used, no user can learn the content of the encrypted
reputation scores he saves. In addition, the central server
only returns to the querying user an aggregated reputation
score instead of collected raw reputation scores. Therefore,
it is impossible for any server to know the reputation score
a particular client gives for him, and clients can be assured
of offering honest reputation scores without incurring
retaliation.

4.5 Dishonest Reputation Scores

Guaranteeing the privacy of references functions as a double-
edged sword to our reputation system. More specifically, it
not only encourages well-behaved users to share honest
reputation scores, but also facilitates ill-behaved users to offer
dishonest ones without fear of being punished. Dishonest
reputation scores can be either unfairly positive ones used to
flatter conspirators, or unfairly negative ones aimed at
defaming other users, say, competitors.

Our reputation system is designed to defend well against
dishonest feedbacks. Let us first revisit the process of
collecting reputation scores for a queried server (see
Section 3.6). If the DHT is not used, the central server
inquires random users about desired reputation scores.
Under the assumption that well-behaved users are always
the majority, the probability of ill-behaved users being
chosen will be very low. If the DHT is used, the contacted
user returns to the central server some reputation scores
randomly chosen from all the reputation scores he records
for the queried server. The probability of dishonest
reputation scores being selected will be low as well under
the same assumption. It is also worth noting that the
contacted user, if ill-behaved, cannot send purposefully
selected reputation scores to the central server for his
blindness to the content of encrypted reputation scores. In
both cases, the central server can run a multivariate outlier
detection technique to identify outliers or dishonest reputa-
tion scores (if any) as the last line of defense. We believe
that our countermeasures above are sufficient to discourage
ill-behaved yet rational users from propagating dishonest
reputation scores, as they might only achieve their ill
intention with a rather small probability.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
reputation system through simulations.

5.1 Simulation Setup

Unless otherwise stated, we use grid computing [1] as an
example and simulate 100 clients and two servers denoted
by s1 and s2, respectively. Again, the QoS is defined as the
time t (in seconds) taken to finish a unit computation task
and classified as six levels: t � 60 ðl1Þ, 48 � t < 60 ðl2Þ, 36 �
t < 48 ðl3Þ, 24 � t < 36 ðl4Þ, 12 � t < 24 ðl5Þ, and t < 12 ðl6Þ.
We assume that the probabilities of s1 and s2 providing each
QoS level are {0, 0.05, 0.05, 0.1, 0.3, 0.5} and {0, 0.5, 0.3, 0.1,
0.05, 0.05}, respectively. In addition, the clients are divided

into five equally sized groups, of which the lowest tolerable
QoS levels are l2=l3=l4=l5=l6, respectively, and the highest one
is all l6. The simulation is divided into discrete sessions. At
the beginning of each session, each client sends two
reputation queries to the central server, each requesting
99 references to s1 and s2, respectively. To simplify the
simulation, we assume that all the clients have the same trust
indicator 0.99 (see (6)), which amounts to assuming that each
client puts the same trust in his own QoS experiences and
those of each other client. Then each client requests service
from s1 or s2 who has the higher reliability indicator and
records his QoS experience after the transaction.

5.2 Benefits of Fine-Grained QoS Differentiation

Here, we show the advantages of our fine-grained QoS
differentiation method over the binary one [3], [4], [5], [6].
For the latter, we assume that the application specifies two
QoS levels: bad for t � 60 and good otherwise. Based on the
behavior profiles of s1 and s2 given above, all the clients will
derive the same reliability indicator equal to 1.0 for s1 and
s2, and thus will randomly choose one of them. In contrast,
the application specifies six QoS levels defined in Section 5.1
for our fine-grained method. We are also interested in two
performance metrics: server selection ratio (SSR), defined as
the fraction of clients selecting s1 in each session, and service
contentment ratio (SCR), defined as the fraction of clients
obtaining the desired QoS level in each session.

Fig. 3 shows the SSRs under both methods. In session 1,
there were no reputation scores for s1 and s2 so that each
client considered them equally reliable and randomly chose
one of them. Therefore, both methods have almost the same
SSR. As time goes on, however, more and more diverse
reputation scores for both servers were available with our
fine-grained method. As a result, increasingly more clients
derived a higher reliability indicator for s1 and thus selected
him, which leads to the shown big SSR difference. In
particular, the average and maximum SSR differences are
40.06 percent and 56 percent, respectively, and the variance
is 0.32 percent.

Fig. 4 depicts the SCRs under both methods. As we can
see, both methods have nearly identical SCRs in session 1
where clients randomly selected one of s1 and s2. Since most
clients selected the more reliable s1 afterward with our fine-
grained method, there are many more clients whose QoS
needs were satisfied across the subsequent sessions. More

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1141

Fig. 3. Comparing server selection ratios.

specifically, the average and maximum SCR differences are
23.14 percent and 42 percent, respectively, and the variance
is 0.29 percent.

To sum up, the above results clearly demonstrate the
benefits of our fine-grained QoS differentiation method in
meeting the various QoS needs of clients.

5.3 Filtering Outlier Reputation Scores

In the last section, each client is assumed to always offer
honest reputation scores. This subsection studies the
efficacy of distance-based multivariate outlier detection in
eliminating dishonest reputation scores (or outliers). For
lack of space, we focus on filtering defaming outliers, but it
should be noted that our approach performs equally well in
detecting flattering outliers. In the simulation, an outlier is
generated as a set of six random numbers normalized by
their sum, which follow the multinomial distribution {0, 0.5,
0.3, 0.1, 0.05, 0.05}. Similarly, a nonoutlier is generated with
the multinomial distribution {0, 0.05, 0.05, 0.1, 0.3, 0.5}. We
also assume that the central server aggregates the reputa-
tion scores for s1 from all the 100 clients and then
determines the reliability of s1 in offering a QoS level
higher than l3. In addition to s1’s reliability indicator
(denoted by Is1

), we have interest in the false positive rate,
defined as the proportion of nonoutliers that were
mislabeled as outliers, and the false negative rate, defined
as the proportion of outliers that were not detected.

We can see from Fig. 5 that, without outlier detection, Is1

decreases dramatically with the increase of outliers, which
is no surprise. In addition, the outlier detection technique
can greatly alleviate the impact of outliers and make Is1

approach its true value, 0.9. The larger the outlier index
,
the higher the efficacy of outlier detection. Another
observation is that outlier detection fails when the percen-
tage of outliers reaches 50 percent, in which case there is no
longer clear distinction between outliers and nonoutliers.
We believe that this issue cannot be easily solved by any
technical means. This scenario also reflects an underlying
assumption of all practical reputation systems: Outliers are
assumed to be always the minority.

Figs. 6 and 7 depict the false positive and negative rates
with varying outlier indexes, respectively. As we can see,
when the number of outliers is fixed, a larger outlier index

can result in a higher false positive rate but a lower false
negative rate, and vice versa. We opt for a larger
 because
it may lead to more trustable reliability decisions, though it
may cause some nonoutliers to be unable to get deserved
credits. In practice, the central server can decide
 and
dynamically adjust it by empirical means. Further investi-
gation on how to choose
 is part of our future work.

5.4 Effects of Discounting the Past

In this section, we evaluate the impact of the aforementioned
discount method on the reliability decision-making process.
For this purpose, we assume that each client always selects s1

1142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 4. Comparing service contentment ratios.

Fig. 5. The reliability indicator for s1 offering a QoS level higher than l3.

Fig. 6. The false positive rate.

Fig. 7. The false negative rate.

as the server and evaluates its reliability in offering a QoS
level higher than l3 based on his own QoS experiences in past
sessions. We also assume that the behavior profile of s1 is {0,
0.5, 0.3, 0.1, 0.05, 0.05} for the first 100 sessions and changes to
{0, 0.05, 0.05, 0.1, 0.3, 0.5} afterward.

Fig. 8 shows the average reputation indicators for s1 with
varying discount factors across sessions, where the discount
interval � is fixed to be one session. It is obvious that a
smaller discount factor, say � ¼ 0:25, can help catch the QoS
variations of s1 more quickly at the cost of generating
reputation indicators far from the true value. In particular,
when � ¼ 0, each client discards all his past QoS experi-
ences and derives a reliability indicator 0.6 for s1. On the
contrary, a larger � can lead to a more trustful reputation
indicator at the cost of accommodating the QoS variations
of s1 more slowly.

Fig. 9 depicts the impact of � , in which � is fixed to be
0.75. Since a larger discount interval is equivalent to a larger
discount factor, we can observe the similar trend as in Fig. 8.

5.5 Load Balance with the Popularity Index

Here, we show how the popularity index technique (see
Section 3.5) can help achieve load balance when the DHT is
used to store reputation scores. We assume that there are
100 clients and 100 reputation score IDs, and that the
redundancy index � is 1. The popularity index contains

10 reputation score IDs whose numbers of associated
reputation scores are uniformly distributed between
[80, 99]. For the rest of reputation score IDs, the numbers of
associated reputation scores are uniformly distributed be-
tween [10, 30]. Since the usefulness of multiple virtual IDs in
improving load balance has been validated in [8], we assume
that each client has one virtual ID to simplify the simulation.

Fig. 10 shows the standard deviation (STD) of the number
of reputation scores per node, where each point represents
the average of 150 runs. As we can see, the popularity index
can obviously result in a more balanced usage of client
resources: the greater the popularity branching factor 	, the
higher the level of load balance we can achieve.

6 RELATED WORK

Recent years have witnessed a growing interest in reputa-
tion systems research. Due to space constraints, we only
discuss prior art that is more germane to our work and refer
to [2] for a comprehensive survey.

Previous proposals [3], [4], [5], [6] use single-variate
Bayesian inference [7] to build reputation engines and thus
are all special cases of our Dirichlet reputation engine. Built
upon multivariate Bayesian inference, our system can satisfy
the diverse QoS needs of individual nodes. Our work also
differs significantly from [3], [4], [5], [6] by stimulating honest
participation in the reputation system by credits and social
awareness. In [19], Whitby et al. propose an iterative method
for filtering dishonest feedbacks, but their scheme is only
applicable to the single-variate Beta reputation systems [3],
[4], [5], [6]. Fernandes et al. [20] propose rewarding users for
active and honest participation in the reputation system but
do not consider fine-grained QoS differentiation or most of
the issues presented in Section 4. Furthermore, the issue of
service differentiation in P2P networks is addressed in [21],
where peer reputation scores are mapped to various levels of
service. By contrast, our scheme considers the QoS differ-
entiation issue when deriving the reputation scores via
multivariate Bayesian inference. Damiani et al. [22] present
a reputation-based approach for choosing reliable resources
in P2P file sharing applications, in which separate reputations
are associated with resources and servers who share
resources, respectively. This idea can help further alleviate
the application-related cold-start problem when our system
is applied to file-sharing-like P2P applications.

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1143

Fig. 8. Average reputation indicators for s1 with varying discount factors,

where the discount interval � is fixed to be 1 session.

Fig. 9. Average reputation indicators for s1 with varying discount

intervals, where the discount factor � is fixed to be 0.75.

Fig. 10. The standard deviation of the number of reputation scores per

node.

7 CONCLUSION

In this paper, we present a novel fine-grained reputation
system to support reliable service selection in P2P net-
works. Firmly rooted in statistics, our system offers a
theoretically sound basis for clients to choose reliable
servers based on their self-experiences and peers’ feedbacks
on candidate servers. In addition, it can meet the diverse
QoS requirements of individual nodes via a fine-grained
QoS differentiation method. Our system is also application-
independent and can simultaneously serve an arbitrary
number of P2P applications. Moreover, we design strong
incentives to motivate honest and active participation in the
reputation system. We also propose various methods to
ensure efficient storage and queries of users’ feedbacks.
Furthermore, our reputation system is designed to provide
strong defense against various attacks. The effectiveness
and efficiency of our system are confirmed by extensive
simulation results.

As the future work, we first plan to build an experi-
mental reputation system on PlanetLab [23] to further
evaluate our design in a more realistic setting. We will also
seek ways to reduce the involvement of the central server
and extend our current system to a fully distributed one.

APPENDIX

THE PAIRING TECHNIQUE

The pairing technique is finding growing applications in

cryptography [24], [25]. Let GG1 be an additive cyclic group

of prime order q and GG2 be a multiplicative cyclic group of

the same order. Assume that the discrete logarithm problem

(DLP) is hard8 in both GG1 and GG2. A pairing is a bilinear map

ê : GG1 �GG1 ! GG2 if, for all P;Q;R; S 2 GG1, we have9

êðP þQ; Rþ SÞ ¼ êðP;RÞêðP; SÞêðQ;RÞêðQ; SÞ: ð7Þ

Modified Weil [24] and Tate [25] pairings are examples of

such bilinear maps, for which the Bilinear Diffie-Hellman

Problem (BDHP) is believed to be hard.10 Also note that ê is

symmetric, i.e., êðP;QÞ ¼ êðQ;P Þ for 8P , Q 2 GG1, which

follows immediately from the bilinearity and the fact that

GG1 is a cyclic group. We refer to [24], [25] for a more

comprehensive description of how the pairing parameters

should be chosen in practice for both efficiency and security.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grants CNS-0626881, DBI-0529012, and
ANI-0093241 (CAREER Award).

REFERENCES

[1] Open Grid Forum, http://www.ogf.org/, 2007.

[2] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and
Reputation Systems for Online Service Provision,” Decision
Support Systems, http://sky.fit.qut.edu.au/josang/papers/
JIB2006-DSS.pdf, 2006.

[3] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt,
“Ratings in Distributed Systems: A Bayesian Approach,” Proc.
11th Workshop Information Technologies Systems, 2001.

[4] A. Jøsang and R. Ismail, “The Beta Reputation System,” Proc. 15th
Bled Electronic Commerce Conf., June 2002.

[5] S. Buchegger and J.-Y. Le Boudec, “A Robust Reputation System
for P2P and Mobile Ad-Hoc Networks,” Proc. Second Workshop
Economics of Peer-to-Peer Systems, June 2004.

[6] S. Ganeriwal and M.B. Srivastava, “Reputation-Based Framework
for High Integrity Sensor Networks,” Proc. ACM Workshop Security
of Ad Hoc and Sensor Networks (SASN ’04), Oct. 2004.

[7] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian Data
Analysis, first ed. Chapman & Hall/CRC, 1995.

[8] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM Special Interest Group Data Comm.
(SIGCOMM ’01), pp. 149-160, Aug. 2001.

[9] S.D. Bay and M. Schwabacher, “Mining Distance-Based Outliers in
Near Linear Time with Randomization and a Simple Pruning
Rule,” Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, pp. 29-38, Aug. 2003.

[10] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for
Message Authentication, IETF RFC 2104, Feb. 1997.

[11] T. Dierks and E. Rescorla, The Transport Layer Security (TLS)
Protocol, IETF RFC 4346, Apr. 2006

[12] Digital Hash Standard, Federal Information Processing Standards
Publication 180-1, Nat’l Inst. of Standards and Technology, Apr.
1995.

[13] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured p2p Systems,”
Proc. IEEE INFOCOM ’04, pp. 2253-2262, Mar. 2004.

[14] F. Angiulli and C. Pizzuti, “Outlier Mining in Large High-
Dimensional Data Sets,” IEEE Trans. Knowledge Data Eng., vol. 17,
no. 2, pp. 203-215, Feb. 2005.

[15] Y. Zhang, W. Lou, and Y. Fang, “A Secure Incentive Protocol for
Mobile Ad Hoc Networks,” Wireless Networks, to appear, available
online: http://dx.doi.org/10.1007/s11276-006-6220-3.

[16] J.R. Douceur, “The Sybil Attack,” Proc. First Int’l Workshop Peer-to-
Peer Systems (IPTPS ’02), pp. 251-260, Mar. 2002.

[17] L. von Ahn, M. Blum, N.J. Hopper, and J. Langford, “CAPTCHA:
Using Hard AI Problems for Security,” Proc. Int’l Conf. Theory and
Applications of Cryptology (EUROCRYPT ’03), pp. 294-311, May 2003.

[18] P. Resnick and R. Zeckhauser, “Trust among Strangers in Internet
Transactions: Empirical Analysis of Ebay’s Reputation System,”
The Economics of the Internet and E-Commerce, M.R. Baye, ed.,
Applied Microeconomics, vol. 11, Elsevier Science, 2002.

[19] A. Whitby, A. Josang, and J. Indulska, “Filtering Out Unfair
Ratings in Bayesian Reputation Systems,” The Icfaian J. Manage-
ment Research, vol. 4, no. 2, pp. 48-64, Feb. 2005.

[20] A. Fernandes, E. Kotsovinos, S. Östring, and B. Dragovic,
“Pinocchio: Incentives for Honest Participation in Distributed
Trust Management,” Proc. Int’l Conf. Trust Management (iTrust ’04),
pp. 63-77, Mar. 2004.

[21] M. Gupta and M. Ammar, “Service Differentiation in Peer-to-Peer
Networks Utilizing Reputations,” Proc. ACM Fifth Int’l Workshop
Networked Group Comm., Sept. 2003.

[22] E. Damiani, S. di Vimercati, S. Paraboschi, P. Samarati, and F.
Violante, “A Reputation-Based Approach for Choosing Reliable
Resources in Peer-to-Peer Networks,” Proc. ACM Conf. Computer
Comm. Security (CCS ’02), pp. 207-216, Nov. 2002.

[23] B.N. Chun, D.E. Culler, T. Roscoe, A.C. Bavier, L.L. Peterson, M.
Wawrzoniak, and M. Bowman, “Planetlab: An Overlay Testbed
for Broad-Coverage Services,” Proc. ACM SIGCOMM Computer
Comm. Rev., vol. 33, no. 3, pp. 3-12, July 2003.

[24] D. Boneh and M. Franklin, “Identify-Based Encryption from the
Weil Pairing,” Proc. Int’l Cryptology Conf. (CRYPTO ’01), pp. 213-
229, Aug. 2001.

[25] P. Barreto, H. Kim, B. Bynn, and M. Scott, “Efficient Algorithms
for Pairing-Based Cryptosystems,” Proc. Int’l Cryptology Conf.
(CRYPTO ’02), pp. 354-368, Aug. 2002.

1144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

8. It is computationally infeasible to extract the integer x 2 ZZ�q ¼
fij1 � i � q � 1g, given P , Q 2 GG1 (respectively, P , Q 2 GG2) such that Q ¼
xP (respectively, Q ¼ Px).

9 . I n p a r t i c u l a r , 8P , Q 2 GG1, 8a, b 2 ZZ�q ,
êðaP; bQÞ ¼ êðaP;QÞb ¼ êðP; bQÞa ¼ êðP;QÞab, etc.

10. It is believed that, given < P; xP ; yP ; zP > for random x; y; z 2 ZZ�q
and P 2 GG1, there is no algorithm running in expected polynomial time,
which can compute êðP;P Þxyz 2 GG2 with nonnegligible probability.

Yanchao Zhang received the BE degree in
computer communications from Nanjing Univer-
sity of Posts and Telecommunications, Nanjing,
China, in July 1999, and the ME degree in
computer applications from the Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China, in April 2002, and the PhD degree in
electrical and computer engineering from the
University of Florida, Gainesville, in August
2006. He is currently an assistant professor in

the Department of Electrical and Computer Engineering at the New
Jersey Institute of Technology, Newark. His research interests include
network and distributed system security, wireless networking, and
mobile computing. He is a member of the IEEE and the ACM.

Yuguang Fang received the PhD degree in
systems, control and industrial engineering from
Case Western Reserve University in January
1994 and the PhD degree in electrical engineer-
ing from Boston University in May 1997. He held
a postdoctoral position in the Department of
Electrical and Computer Engineering at Boston
University from June 1994 to August 1995. From
June 1997 to July 1998, he was a visiting
assistant professor in the Department of Elec-

trical Engineering at the University of Texas at Dallas. From July 1998 to
May 2000, he was an assistant professor in the Department of Electrical
and Computer Engineering at the New Jersey Institute of Technology. In
May 2000, he joined the Department of Electrical and Computer
Engineering at the University of Florida, Gainesville, where he received
early promotion to associate professor with tenure in August 2003 and
to full professor in August 2005. He holds a University of Florida
Research Foundation (UFRF) Professorship from 2006 to 2009. His
research interests span many areas, including wireless networks, mobile
computing, mobile communications, wireless security, automatic con-
trol, and neural networks. He has published more than 100 papers in
refereed professional journals and more than 100 papers in refereed
professional conferences. He received the US National Science
Foundation Faculty Early Career Award in 2001 and the Office of Naval
Research Young Investigator Award in 2002. He was the recipient of the
Best Paper Award at the IEEE International Conference on Network
Protocols (ICNP) in 2006 and the recipient of the IEEE TCGN Best
Paper Award at the IEEE High-Speed Networks Symposium, IEEE
Globecom in 2002. Dr. Fang has actively engaged in many professional
activities. He is an editor for several journals, including the IEEE
Transactions on Communications, the IEEE Transactions on Wireless
Communications, the IEEE Transactions on Mobile Computing, ACM
Wireless Networks, and the Journal of Computer Science and
Technology, and a technical editor for IEEE Wireless Communications
Magazine. He was also an editor of the IEEE Journal on Selected Areas
in Communications: Wireless Communications Series, an area editor of
the ACM Mobile Computing and Communications Review, an editor of
Wireless Communications and Mobile Computing, and a feature editor
for “Scanning the Literature” in IEEE Personal Communications. He also
served on the Technical Program Committee of many professional
conferences, such as ACM MobiCom ’02 (committee cochair for Student
Travel Award), MobiCom ’01, IEEE INFOCOM ’08, IEEE INFOCOM ’07,
INFOCOM ’06, INFOCOM ’05 (vice-chair for technical program
committee), INFOCOM ’04, INFOCOM ’03, INFOCOM ’00, INFOCOM
’98, IEEE WCNC ’04, WCNC ’02, WCNC ’00 (technical program vice-
chair), WCNC ’99, IEEE Globecom ’04 (symposium cochair), Globecom
’02, and the International Conference on Computer Communications
and Networking (IC3N, technical program vice-chair). He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG AND FANG: A FINE-GRAINED REPUTATION SYSTEM FOR RELIABLE SERVICE SELECTION IN PEER-TO-PEER NETWORKS 1145

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

