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Modeling PCS Networks Under General Call
Holding Time and Cell Residence Time Distributions

Yuguang FangsStudent Member, IEEEmrich Chlamtac,Fellow, IEEE,and Yi-Bing Lin

Abstract—In a personal communication service (PCS) network, data for call holding times collected in office buildings and
the call completion probability and the effective call holding times  residence areas in Taiwan show that the call holding times
for both complete and incomplete calls are central parameters cannot be modeled by exponential distribution, while Gamma

in the network cost/performance evaluation. These quantities dl | distributi id d d-ord
will depend on the distributions of call holding times and cell @nd lognormal distributions provide good (second-order) ap-

residence times. The classical assumptions made in the past thatProximations to the experimental data. Not only does call
call holding times and cell residence times are exponentially dis- holding time distribution vary with the new applications, also,
tributed are not appropriate for the emerging PCS networks. This the time a customer spends in a cell (the cell residence time)
paper presents some systematic results on the probability of call \ ;i qepend on the mobility of the customer, the geographic
completion and the effective call holding time distributions for . . ’

complete and incomplete calls with general cell residence times Situation, and the handoff scheme used, and therefore needs to
and call holding times distributed with various distributions such be modeled as a random variable of general distribution.

as Gamma, Erlang, hyperexponential, hyper-Erlang, and other  In order to facilitate our presentation of the modeling of
for PCS network modeling, which can be chosen to accommodate . . ' .
the measured data from PCS field trials. The application of these the C‘f"" connection process f'rSt.' Ina PCS syste.m, the service
results in billing rate planning is also discussed. area is populatgd W|th_ b_ase stations w_|th Fhe rad_|o coverage of
each base station definingcall, each with its assigned set of
customers. When a new call is originated by a customer in a
cell, one of the channels assigned to the base station is used for
the communication between the mobile portable and the base

l. INTRODUCTION station if a channel is available (a survey on channel allocation

HE emerging personal communications services (pcg)hemes can be found in [10]). If all channels are in use while
technologies have captured considerable attention in agaRew call (or handoff call) is being attempted, the call will be
demic research as well as commercial deployment. A P®®&cked and cleared from the system. If a call can be assigned
network can support a wide host of services when users aredihannel, it will keep it until the call is completed or until the
motion [2], [13], [20], [21] and can serve a large number ohobile moves out of the cell. When the mobile moves into a
customers by using spectrally efficient cellular systems [13]ew cell while its call is active, a new channel needs to be
[21]. In a PCS system, customers can make a phone call ag@gluired in the new cell using a “handoff procedure.” During
wired telephony or make a connection to retrieve informatidhe handoff, if no channel is available for the “old” call the
messages such as email or stock information or even makea will be forced to terminate before its completion [13].
connection to surf the internet. The duration of the requested call connection is referred
For billing and general performance tuning purposes, tt@ as thecall holding time When the call is connected, the
probability of a call completion and effective call holdingcall may be completed after several successful handoffs, or
times need to be analyzed. To this end, the distributions of calhy be incomplete due to a failed handoff. We shall call the
holding times and cell residence times need to be evaluatddration of an incomplete cathe effective call holding time of
As a result of the new applications in the PCS networkan incomplete callind the duration of a call connection of a
the classical assumptions on exponential call holding timeemplete calthe effective call holding time of a complete call
and cell residence times may not be appropriate for modelingTo evaluate the performance of a PCS network with ap-
the new emerging integrated services in these systems. Figidpriate rating programs such as flat-rate program [1], the
effective call holding times, as well as the probability of a call
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uses the assumption of geographic cell (hexagonal) shapesantages of such distributions are clear in that they reflect
and the assumption of the constant mobiles’ speeds, randthra emerging services, applying these distributions to obtain
distances, or uniformly distributed directions to determine tranalytical results is a nontrivial task. This paper shows how
distribution of cell residence times and call holding times [8}p accommodate general call holding time distributions in
[18], [26]. This approach faces a difficulty when applied tpreviously proposed analytic models [5], [15]. The following
existing cellular systems since, in reality, cell shapes are oftganeral assumptions will be used in this paper:

highly irregular, the speeds of mobiles or distances covered by the call arrivals form a Poisson process;

the mobiles are highly random (considering highly populated. the cell residence times are independent identically dis-
area), and the directions of mobiles may vary in random tributed (iid) with nonlattice distribution:;

fashion. It becomes, therefore, very hard with this model to« the call holding times are independent identically dis-
characterize analytically the cell residence times using these tributed (iid) with nonlattice distribution.

modeling assumptions. . _ Based on these assumptions, we obtain general formulas
The second approach treats the cell residence times ggfe call completion probability (hence, the call dropping
call holding times directly, using information measured fromopapility) and the distribution (its Laplace transforms) of the
the PCS field trials. Distribution models such as exponeifective call holding times of both the complete and incom-
tial distribution, lognormal distribution have been used tgiete calls from which expected effective call holding times
approximate the distributions of call holding times and Cegan be obtained. We derive computable formulas for the cases
residence times using data from field tests (see [5], [1&}hen call holding times are distributed according to Gamma,
[1_7] _and_ references therein). It is well known that ex_pon_entig[aged exponential or Erlang, hyperexponential, and hyper-
distribution can be used for one-parameter approximation gfjang distributions. Billing rate plans using the expected call
the measured data while Gamma distribution can be used fgjiding times for a complete call and an incomplete call are
two-parameter approximation [9]. It is also known [11] thakiso proposed and discussed briefly. The analysis of the call
mixed Erlang distribution (hyper-Erlang distribution in thig;ompletion probabilities and effective call holding times can
paper) can be used to approximate any specific nonlattigg,ide the necessary guideline for network performance eval-

distributions. Hence, the application of these distributions {gytion tuning and importantly designing billing rate schemes
model the call holding times and cell residence times in thg the future PCS networks [1].

emerging PCS networks appears to be more practical when
field data are available. ll. CALL COMPLETION PROBABILITY

In the traditional wired-line telephone models, the call hold- . . . .
ing times are usually assumed to be exponentially distribute ,In this .sectlon, we study the c_aII completion probability.
which has been shown to be a reasonable approximation?g r previous work [5], [15] obtained formulas for the call

measured data. This assumption has been used in past s pIeFion pro_babilit_y f_or a PCS network with a general
network analysis for reasons of tractability [6], [8], [26], [27] cell residence time distribution and Erlang (exponential) call
iy ' holding time distribution. Here, we give further results for

When call holding times are exponentially distributed, kein ) k o
9 b y cases when the call holding times have other distributions.

al. [16], [17], Rappaportt al. [8], [22], [23], Yum and Yeung . . .
[27], and Tekinay and Jabbari [25] studied the performance FW technlque IS dgveloped for the case where the residue
%srem is not applicable.

channel assignment strategies and obtained analytical resh . . . . .
9 9 y e first consider the effective call holding tintefor an

for forced termination probability and new call blocking proba- ; i e .

bility. Under the same assumption regarding call holding timér%comple_te Ca”' Fig. 1 |Ilustra_1tes the timing diagram fof the

and general cell residence time distribution, Lin and ChlamtS?" holding t'me',Tl IS thg time thqt the pqrtable resides

[15] obtained formulas for call completion probability and th cell .1’ andt; (i > 2) IS the residence time ?t cell

expected effective call holding times. When call holding timggecording to our assumptionda, ts, - -+, tx, -- - are iid. Let

are Erlang distributed and cell residence times have a gengfapave nonlattice density functiofi(-) with the ”?eanl/”
and f*(s) be the Laplace transform of(-) (we will use *

nonlattice distributions, Fang, Chlamtac, and Lin [5] Obtameto denote the Laplace transform following the tradition [12]).

easily computable formulas for the call completion probabilit
and expected effective call holding times of a complete or aénu_ppose that a call for the portable occurs when the portable

incomplete call, IS in cell 1. Lett; be the interval between the time instant

when the call arrives and when the portable moves out of cell

As emerging PCS networks are poised to provide varoys Letr(¢;) andr*(s) be the density function and the Laplace
new services they are expected to attract more users wtyrle

. , . . . nsform of¢; distribution, respectively. From the renewal
changing the users’ calling habits. Therefore, as pointed . : : . :
. . - ory [12],¢; is the residual life of the cell residence time of
earlier, the call holding times are not expected to be distribut .
i . o e portable in cell 1, so we have
with respect to the exponential (Erlang) distribution. More

general distributions for call holding times are, therefore, r(t1) :n/oo ) 0
needed to model these networks. In this paper, we propose t
a general model that assumes that the cell residence times () :ﬂ[l — 1 s)]. @)

have general nonlattice distribution and the call holding times
are distributed with general distributions such as Gammiset ¢t = ¢; + #2 + - - - + ¢ be the effective holding time and
hyper-exponential, and hyper-Erlang distributions. While thg.(¢t) and f;(s) be its density function and Laplace transform.
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t Y Y1 Y
Fig. 1. The timing diagram for a forced terminated call k&dh handoff.
Sincety, to, - - -, t, are independent, it is easy to derive Assume that the call holding times are Gamma distributed
X with the following density function:
fi(s) = Blexp (-sj{jti>] OO N C) JRan—— .
i— ty= ———, >0
=1 fc( ) 1—\(’7) 8 ( )

Let p, be the probability that a new call attempt is blocked ) )
(i.e., the call is never connected), be the probability that a Where v is the shape parameter and = ~u is the scale
call is completed (i.e., the call is connected and completedrameter. This density has the following Laplace transform:

andp; be the forced termination probability or the probability o \7
0=(52) )

that no radio channel is available when a handoff call arrives. fi(s) =

Then the call dropping probability or the call incompletion

probability (i.e., the call is connected but is eventually forcedpstituting (7) into (5), we obtain

to terminate)p; is 1 — p, — p., which is given by '
_ (1= po)py /"““’

1_p0_pc:Z{/Oo/oo(l_po)fk(t)(l_pf)k_l 1_p0_pc— 27T] —joo
k=l 270 A - f(s)A = (of(=s + ))7)) ,

s+«

. S.
-Mﬂmﬁmﬁ} 2- (=) )]
. (8)
=3 {/ (1—po) fa(®)(1 —pp)Ft In order to evaluate this integral, we need the following
k=1 70 - lemma.
- py [/ fc(tc)dtc} dt} @) Lemma 1:Let o> o >0 and R(s) is analytllc (Q)nco =
¢ {s|Re(s) > o} (Re(-) denotes the real part) witR'"/(s)s —

where f.(t.) is the density function of the call holding times? (¢ = 0.1-:-,[7]) @ss — oo in Cy ([z] denotes the
. integral part ofz for any positive real number). Then, we have
In [5], we have obtained

o+joo R(S) 1 — =927y
1—p, —pe ds =
gl —po)py [T 1— f(s) /a_joo G-y G-D -2 (- 1)
T 2 Lﬁmsu—a—mﬁ%ﬂ [T EE s o g
f:(—S) -1 g 0 3"/_|."/J
e 1
s oo where(y — 1)(v —2)---(v— |v]) =1 when0 <~y < 1.
_ (1 —po)py / o0 (1= f()(1 = fi(=9)) ds. Proof: The proof is given in the Appendix. O
27 o—joo S —=(1—=ps)f(s)] Now, we are ready to give an expression for Let
(5) .
o(s) = L) (10)

Since f*(s) has no poles in the right half complex plane, sH1-Q=pp)f+(s)}
[(1—pp)f*(s)| < 1. Let 0. denote the set of poles ¢ (—s) _ _ _
in the right half complex plane (i.eso. = {—z|z € 0.} is Note thatg(s) is analytic onC, andlim;_.o g(s)s = 0 on
the set of poles of *(s) in the left half plane). In [5], we have C,. In fact, g(s) satisfies all conditions in Lemma 1 and
obtained the call completion probability for the case when the otjoo
call holding times are Erlang distribution. Next, we study other s)ds = 0.

ki = S 9(s)

cases when the call holding times have other distributions. 4
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Taking this into consideration in (8) and using Lemma 1, weistribution) with parameterg.;, po, ---, p, (wWhich are
have distinct) whose Laplace transform is [12]
nps(—a)? [TH 1 112 iy
= -p{1 - A= = () (22 ) (). s
27Tj o—joo fc (8) s+ 1 S+ o s+ py ( )

A random variable with this distribution is in fact the summa-
tion of » exponentially distributed random variables with the

[L = SN[/ (s — )]
s2[L—= (L =ps)f*(s)] ds}

—(1—yp ){1 g™ /UHOO g(s) ds} parametersu, iz, - - -, jir. From this, we have the following.
’ 27y o—joo (85— )Y Corollary 1: For a PCS network with-stage exponential
npra el ™ (1 — e=I2) distribution of distinct positive parameters, 2, -, fr,
=(1—po)1l—5——— — — the probability of a call completion is
2mj(y = D(v=2)-- (v = 7)) P y P
. mwds pc:(l_po)
0 sT— L] ”
r 22
from which we obtain the following theorem. : {1 + (=1 npr Y (H ” _JN> Nig(ﬂi)}' (15)
Theorem 1:For a PCS network with Gamma distributed =1 \g# !
cglllng holding times, the probability of a call completion is Proof: From Theorem 2, we obtain
given by
B npypa” sinmy —(1— 14 (=1)"
pc—(l—po){l— pe =( po){ +(=D)"npr Y
m(y =Dy =2)---(v— 7] =1
o (7))
. / W ds}. (11) . Res g(s)pa - pr
0 ST =i (s —p1) - (5 — o)
Remark: When v is a positive integer, the Gamma distri- .
bution becomes Erlang distribution. In this case =(1—p,) 1+ (=1)"npy Z H u‘liju' ig(pi) ¢ -
sin 7y i=1 \g#i "' ’
— meosmy = w(—1)7 12)
v = vl This completes the proof. O
From (11) and (12), we obtain the same result obtained fromAssume now that the call holding times are distributed ac-
the residue theorem in [5]. cording to ther-stage Erlang distribution with distinct param-
If the call holding time has such a distribution that it$tersu, o, ---, pi, and positive integersi,, m, ---, m.,
Laplace transfornf*(s) has no branch points but has possibl#hich has the following Laplace transform:
isolated poles, then from the residue theorem we can obtain m ma m.
o= ()" (2 (252)
‘ S+ 1 S+ p2 S+

Theorem 2:If the Laplace transform of the call holding
time distribution only has isolated poles in the left half of the (16)

complex plane, then the probability of a call completion I?‘his distribution can be obtained from the sum sofinde-

given by pendent Erlang distributed random variables with parameters

(1— f*())fr(—s) (m, i) (i =1, 2, -+, 7).
pe=(1— po){l +apr Yy 55}532{1 0= p)f () For this case, we have the following:
pCoe Corollary 2: For a PCS network withr-stage Erlang dis-
(13)  tributed call holding times, we have

where Regs_, denotes the residue at the pole= p. In
particular, whenf*(s) is rational function, then (13) is valid. r
We have obtained the formula for the case that the callp. = (1 — p,)3 1+ (—=1)¥=™igp; <H ug’“)
holding times are Erlang distributed [5]. It is well known i=1
[12] that the Erlang distribution can be obtained by a series
of independent identically distributed random variables. By

serial-parallel stages, a large number of general distributions T gmit 9(s)

can be obtained from exponential distributed random variables y demi—1 o

[12]. It is easy to observe that whefi(s) is a rational i=1 H(S_“j) !

function, then Theorem 2 can be easily applied to find J# s=p;

The distributions obtained by the method of stages belong to (17)

this class. We will discuss some of the important cases next.
Let the call holding times be distributed according to Equation (17) is specific for serial stages. FFestage paral-
the r-stage exponential distribution (the generalized Erlargl exponential distribution (the hyperexponential distribution)
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with the parameterg,;, -, u, anday, ---
following Laplace transform [12]:

897

, «, with the call holding time of an incomplete call that is forced to

terminate is given by

. Hi . k—1
=) o ) a; = L. < ) [ =po)(L—pp)*p
; S+ ; [Z ! !
Corollary 3: For a PCS network with hyperexponential / Fo(t)dt
distributed call holding times, we have cresTe

=(1- po){l — sy ocimg(m)}-

=1

More general cases can be obtained from serial-parallel
stages. One important case [12] is the hyper-Erlang distribution

with the following density function:

1

1_po = 1
J— 1_
<1—pc 0)[2 fr(t p) oy

: / fulte) dtc] (23)

wherep; = 1 — p, — p. denotes the probability of a call to
be incomplete ang. is computed in the previous section. In

_ - miui(miuit)nli_ —m; it
fe(t) = Z i (m; — 1)! e M, t20 (20) {he first equation, the term under the summation is the density
=t that the call is forced to terminate aftérhandoffs.
with the following Laplace transform: We want to find the Laplace transform gf(=) from which
” . the expected value can be easily obtained. As in [5], from
Mg f; i
*(g) = P L 21) (17) we can obtain
() =S ) (21)

i=1

This distribution is obtained from parallel Erlang distributed

9 (2) =

2p;my

n(1 — po)py /"““’ 1— f*(s)
o—joo SIL=(1—=ps)f*(s)]

random variables. It is shown [11] that the hyper-Erlang distri- fi(=s+2) -1
butions can approximate any general (nonlattice) distribution. T e, ds. (24)

Corollary 4: For a PCS network with hyper-Erlang dis-...

. . . Since
tributed call holding times, we have

. i im fe(zst2) =1 = 7o)
Qg g ) 5=z s—z
=1 —-p,)s1+ )M . . . .
(1-p ){ s ;( ) (m; — 1)! s = z is a removable singular point [14] of the integrand of

(24). Thus, the poles of the integrand in the right half-complex
(22) plane is those of ! (—s + z), i.e., {z + p|p € o.}. Let

o 1— f*(s)
hi(s) = sg(s) = s[L—(1—pp)fe(s)]

Assume that the call holding times are Gamma distributed

g (my i) } .

One general and interesting case obtained by the method of
stages is the distribution with Laplace transform

(25)

as in (6) and (7). Taking (7) into (24), choosiago be greater
than the real part of and using Lemma 1, we have

A similar result for the probability of a call completion can be
derived, details are left to the reader. For the method of stages,
the interested reader is referred to [12]. For the computation
of ¢®(a) needed in the above, a recursive algorithm is
constructed in [5].

I1l. EXPECTED EFFECTIVE CALL HOLDING TIMES

In the preceding section we discussed the probability for a
call to complete. To fully characterize the performance of a
PCS network it is necessary to also know the expected elapsed
times for the complete and the incomplete calls (their so-
called effective call holding times), respectively. In [5], we
have presented results for the effective call holding times of
complete and incomplete calls, in particular for the case when
the call holding times are Erlang distributed. This section
provides new results for other cases of interest.

We first consider the effective call holding time of an
incomplete call. As in [5], the density function for the effective

1— . g—z4jo0
g;(z):w/ hi(s + 2)

2pz7rj —z—joo
(cafs—a) -1
8 .
1— . g—z4jo0
_ = po)py ,)pf / hi(s+ z)
2pz7rj o—z—joo
(cafs-—a)
8 .
_ (1= po)ps(=a) /"_Z““’
2pz7rj o
hi(s+2)/s

(s —a)

—z—joo

ds

77(1 _ po)pfoﬂcj’w(l _ C—J'Qﬂ) oo
)

T iy - D)y —2) (v - [

dW (hy(x + 2)
dx ] T

r=s+t+a«
ds.

sV Lv]

(26)
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Using the well-known formula Corollary 5: For a PCS network with call holding times
r-stage exponentially distributed with Laplace transform as in
p
(n — Py &), (p—) (14), then
(o) = ; <L )u v (27)
1+1 _

we obtain the following theorem. <H“> (1= po)py

Theorem 3: For a PCS network with Gamma call holding g (2) = 1—p.—p
times, the Laplace transform of the density function of the - e
effective call holding times of an incomplete call is given by . ha(z + pa) (31)

= [ = )
) == D1 — po)psa|y]!sin (77) i#i

(1 —p, . -1 — Ny —
(m e 2 )<,y ) r=Dhl) and the expected effective call holding time of an incomplete
> 1! [ A s+z+a) ds. (28) call is given by

i o (s+ a)lvl—itlgr=ln] 7

. 7!
2=0

The expected effective call holding time of an incomplete call <H“7> (1= po)p r h(l)( )
is given by T, = Z L\
1=po—p. i=1 NiH(Ni_Nj)
(=1)Pd*1n(1 — po)psa?|y]!sin (77) 37
L= G- —2) (= (32)
(1 =po —pe)(y—D(v—2)--- (v — 7))
L) 7 [e%9) (i4+1)
> =1 / b stae) (29) Proof: By taking (14) into (30), we obtain
= 2! 0 (3 + a) 7] =i+l gv—1v]
1+1 H 1 _
Here,(v—1)(y—2)---(y—|7v]) = 1 when0 <~ <1 and the Hi po)PS
limit will be taken forsin (7v)/(v — [v]) (= 7(=1)" when  g*(2) = Z
v is an integer). ’ 1 — Po — Pe P
Proof: Since ¢/™(1 — ¢=9%77)/(25) = sin (), from . Res hi(s)/(s — 2)
(26) we have smatpi T
[I¢s = (= + pi))
P i ) i i=1
d_ hl(aj + Z) — Z(_l)z p & h(P Z)(x +7)
w ) R o ([T
=0 HN 1 - pO Df "
p= 7] _ hi(z 4 i) '
1=po=pe pel) || (2T

from which we complete the proof. O i

Remark: When ~ is an integer, the Gamma distribution
becomes the Erlang distribution, the above result will redudéis proves (31). Equation (32) can be obtained ‘fy=
to our previous result [5]. —g:(l)(()). This completes the proof. O
If fZ(—s) does not have any branch points in the right For,-staged Erlang distributed call holding times, we have
half complex plane, then the residue theorem can be usedd{g following result.

obtain certain computable results. In fact, from (24) we hav Corollary 6: For a PCS network with call holding times
the following general result [5].

Theorem 4:1f f*(s) only has isolated poles in the left halfdistributed according te-stage Erlang distribution as in (16),

of the complex plane, then we have
* po p m mny;
gi(e) == LS A 7<Hﬂ ) (A=po)ps
oot 9= -
- Res (30) e

s=ztp s(s — 2)[1— (L—pp) f*(s)]

i: 1 dmi—1 hi(s+ z)
In particular, whenf*(s) is rational function, then (30) is — (m; — 1)l dsmi~t SH(S_ i)™
valid. G
If the call holding times arer-stage exponentially dis-
tributed, we have the following result.

8=

(33)
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and the expected effective call holding time of an incomplete Corollary 8: For a PCS network with hyper-Erlang call

call is given by holding times, we have
r m;—1
g*(z) — 77(1 _po)pf Zaz Z ( mZI/LZ) h(})(7 +mzﬂz)
=17 <Hl¢bmz> 1 — po ’ 1—p,—pe i—1 =0 J-
T; I (37)
Po = Pe and the expected effective call holding time of an incomplete
i: 1 gmi—1 h(l)( ) call is given by
: . r m;—1
; — )tdsmi—L — )™ (1 —po)p . g i
Py (mi SH s T = — 1(_ _) f Zai Z (- e ) h(J-I—l)(miui)
J# s=ps Do — DPe i1 =0 J-
(34) (38)
Proof: Taking (21) into (30), we have
Proof: Taking (16) into (30), we have (1
* _ — Do pf (S)
o (Tl o n =R R, (249)
Sevm | L 0= po)py . - _
() = — 5 (=1)™ i (mipi)™
g = 1—-po—p. P (8 — (Z + mi/y))mi
) R(_?_S _ hl(s)/(s — Z) _ ]_ - P pf Z m7 o mz/h)
e~ s=ztpi 1—0 (‘4 m7_1
SR § (CERCRYIE PPz
im1 . dmi—t <h1( ))
dsnli_l §—z s=z4+m
( 1—1—27 L my <Hunlz> 1 - P pf . :l ifhq
_ 1 _Po)Pf Z oy mzﬂz)
B 1—po—pe 1—po pe = (m; — 1)!
r dmi—l hl(S + Z)
St [ e ( )
P — 1 Vdgmi—1 SH(S _ /ii)mi Hi
Jeti —, — Do pf Z Z mzuz IL(J)(7+miM)
This proves (33). Equation (34) can be proved = ‘ ’
_gm?(o) (33). Eq (34) P by 0 from which the corollary can be proved. O
For hyperexponentially distributed call holding times wi Ne>|<t, we thl_JI%y the. exp()jgcted effec::ve hpldllr.]g gme fr(]).rr?
have the following. complete ca e timing diagram is shown Idr:é ig. 2 in whic
Corollary 7: For a PCS network with hyperexponentiall}he call is completed when the portable is in égllAs before,
distributed call holding times (as in (18)), we have Itf ]rct';}prelseont<s ;hie:fed';]’? C?"kr/mlql'ntg tmle foracotmpletg call.
=L0s 7. <t while |l >Lti+to+-Ftp_1 <
1-p, te <t +ts+---+tw. Letk =k — 1; then we have
:(«):Z( p pf Zazhl 7+Hz) (35) >~ 1+ 12+ +
—Po — Pe i1 For k= 0, 0<t. <t (39)
and the expected effective call holding time of an incomple{:é)r k>0, tittat i Ste<titiat o+
call is given by (40)
(1= po)p Using a simple conditional probability argument, we can
T, = 1 — S, 2o N azh(l) i) (36) obtain the density functiop.(t..) of the effective call holding
Po=DPe 1o time of a complete call is given by
Proof: Taking (18) into (30), we obtain ge(te) =U(t.) + W(t.) (41)
*( ) 1 — Po Pf hl g fhrg where 1 0o
Sz _
: 1 — Do = Pe = s—~+u7 s—zs— (24 ) Ut,) = < po) [fc(tc)/ r(t1) dtl} (42)
= Pe
77(1 Po)Py Z -
=L b (z+ ) <1—po> / /
1-— c “ w te) = c
—Pe i (te) o ;f Jr(t)
from which the proof can be easily completed. O
For the hyper-Erlang distributed call holding times, we have (L =pp)Ff(r)dr dt] NS
the following.
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t
t 2 k Yerl

Fig. 2. The timing diagram for the effective call times of a complete call; the call completeskaftandoffs.

U(t.) corresponds to (39) an®(t.) corresponds to (40), Theorem 5:For a PCS network with Gamma distributed
where (1 — p,) is the probability of nonblocking(1 — ps) call holding times, we have

is the probability of no-forced termination. Equation (42) can

be derived fromP(t. < z) = > 72 P(t. < x,k), where () = (1 —po)asin (7y) /°°
P(t. < z, k) denotes the probability that the call is completedgC o mpe(y =Dy =2) (v = |7]) Jo

in cell k+1 and the effective call holding time is not exceeding h(m)(s tz+a)+n(l-p )h(m)(s tz+4a)
z. Rigorous derivation can be obtained following a similar -2 P g 13
argument in [16]. - ds s (48)

The Laplace transform&™*(z) and W*(») of U(¢.) and

W(t.), respectively, are [5] and the expected effective call holding time of a complete call

_ o4joo o . .
U*(z):(l 1@)/ s 77(12f (3))f;(z_3)d3 is given by
27rpc] g—joo s
@44 o ___ (1-pyaTsin(my) /°°
W) = n(1=po)(1—py) /”+J'°° ey =Dy =2)- (v = 7))
2= 27 pe] oo hgmﬂ)(s +a)+n(l-— pf)hgm'i'l)(s +a) 4
[P ; 45 5170 )
- —ppp T @) (49)
Let O
b _s—n(1— f*(s)) ) . e
2(s) = ———5— (46) Remark: When v is a positive integer, then Theorem 5
il i F(s)? 1= f*(s) reduces to the result for the case when the call holding times
ha(s) = = g(s).  (47) are Erlang distributed [5].

s L= (L =pp)f*(s)] s? When f#(s) does not have any branch points and has only
Assume that the call holding times are Gamma distributeghite isolated poles, an application of the residue theorem to
with the Laplace transform (7). Then, from Lemma 1 we hav@4) and (45) leads to the following result [5].

the Laplace transform of the density function of the effective Theorem 6: For a PCS network, the Lap'ace transform of

call holding time of a complete call

9:(2) =U"(2) + W"(2)
1 — P, g+joo
~(F2) [ thate) + = st
o5+ 2)ds
_(L=po)(=a)Y [T ho(s) + n(1 — py)hs(s) o
B 27pey /o_joo (s —z—a)Y d
B I
2mpei(y — Dy =2) - (v—vD) Jo
WY (s + 2+ a) + (L = pp)hi (s + 2 + )

sY— L]

-ds

from which we obtain the following theorem.

the density function of the effective call holding time of a
complete call is given by

gi(z) = <1 ;cpo) { Z SBEkSp ha(s)f*(=s+z)
+ 77(1 —p) Y.
pea.
JReshs(s)fo(=s+2) } (50)

If the call holding times arer-stage exponentially dis-
tributed, then we have the following.

Corollary 8: For a PCS network with the-stage exponen-
tial call holding times [see (14)], the Laplace transform of the
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effective call holding time of a complete call is given by  and the expected effective call holding time of a complete call

is given by
1+1<Hu> 1_po 1_

Po O
() = To=—— 223 aipn{h” () + (1 = p)hS ()}
Pe ¢ 4=l
— ha(z + ) + (1 —pp)hs(z + i) (51) (56)
i=1 1T (i = 1) O
i Finally, for the call holding times are hyper-Erlang dis-
and the expected effective call holding time of a complete céﬂbUted' we have the following. i ) i
is given by Corollary 11: For a PCS network with call holding times
distributed according to hyper-Erlang distribution as in (20),
we have
HN7 1 - po 1 ” ( )
* — Do Mg [ (m;—
T, ga(z)=— azi hs Z 4+ mgp
Pe ) De ; (mZ ) { ( )
T (D _ Wy, e —
Z h’ (N7)+77(1 pf)h’ (Nz). (52) +77(1 _pf)h;(), i 1)(Z+miﬂi)} (57)
=t jl;Ii(uZ ) and the expected effective call holding time of a complete call
is given b
Proof: This and the following few results can be proved g Y
as those for the effective call holding times of an incomplete,, 1 —p, (=mipa)™ ¢ (mo)
call and are left to the readers. a T pe ;az (m; — 1)! {ha ™ mipi) + (1 = py)
If the call holding times are-stage Erlang distributed, then (i) =
we obtain the following result. ~hg " (mipi)} (58)

Corollary 9: For a PCS network with call holding times

O
distributed according to the-stage Erlang distribution (16),
then IV. BILLING RATE PLANNING
a i, H,j’“ In previous section, we derived analytical expressions for
"(2) = — (=1)™=mi (1~ p,) Z =1 dmi—! expected call holding times for both complete and incomplete
9ol De P (m; — 1) dsgmi—1 calls. From these two quantities, we can easily compute
B the expected call holding timei.e., the expected time of
service usage for any call (either complete or incomplete).
h 2 1—pe)h 2 o . SN
23+ 2) + 0l = py)hals +2) The objective of this section, is to demonstrate the usefulness
H(S — 1) of the effective call holding times not only for the performance
JFi s=pu; evaluation of the system, but also for effective service charging

(53) planning.
Customers may have different calling habits in different

and the expected effective call holding time of a complete C%"aces at different times, creating the need for service providers

is given by to determine the best rate plan. Based on customer’'s usage,
H - service prowd_ers may try to adapt]vely change their charging
(—1)STmmi (1 7 i gmi—1 plans to provide the customer with an optimal rate. For a
T. = Po) Z = service provider this may serve to gain customer satisfaction
Pe = — Dtds and stay competitive.

As PCS networks are targeted to provide integrated services,
one can stipulate that it is not fair to charge the users for
54 the incomplete calls the same rate as for complete calls. For

by ’ example, in the FTP application, if the portable is forced to
B terminate, the file needs to be retransferred. It may be more
O reasonable for this loss to be shared by the customer and the

If the call holding times are hyperexponentially distributedservice provider. On the other hand, it may be considered
then the following result can be obtained. unfair for service providers to charge the same rate for short

Corollary 10: For a PCS network with call holding timesand long incomplete calls. The possibility to differentiate
distributed according to hyperexponential distribution, then between service quality and charge accordingly is also in the

1—p, & marketing interest of the PCS providers. Such differentiation

gn(z) = - Z a;pi{ho(z 4+ i) + (1l — py) is not possible without solutions for the effective call holding
¢ = times unavailable in the past. Thus, cellular rating systems did
~ha(z+ i)} (55) not differentiate between complete call and an incomplete calls
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using the same rate for the air time, which can be determin€d Nonlinear Charging Planning
by the effective call holding time. Given our results above, |, this case, the charges for complete calls and incomplete

it becomes possible to distinguish between the air times f0kys are nonlinear functions of the effective holding times for

complete calls and incomplete calls so that different ratirlﬁ)mplete calls and incomplete calls. The cost per call may be
systems can be developed. expressed as

One may contend that it would be difficult to distinguish
the “true” forced termination from the false one. The user
may purposely terminate the connection, claiming a forced
termination. This issue does not exist in the current PC
systems. A service provider only provides services within t
service area. In this area, the service provider is responsible
the support of handoffs. The service provider is not responsi
for signal disconnection when the portable moves out of t
service area. Forced termination can be easily detected when B B
handoff fails due to the channels being assigned by the base C > CWiT; +p1e) = C(T)
stations.

In the following, we briefly discuss a few possible servichich implies that the rating scheme usifiy and Z.. sepa-

charging (rating) systems for PCS network services. rately can generate more revenues than a rate scheme which
uses the single paramet&t The convexity ofC(-) implies

A. Flat-Rate Planning that we encourage medium length of calls, and discourage

The simplest rate planning is the flat-rate plan, which appli%/ﬁery short calls and very long calls by applying a higher rate to

. : . ose calls (observing the shape of convex functions). Another
a flat rate to all calls (either complete or incomplete). This rate_ ™ . .
: : factical example is to choose the functioi(x) to be
is easy to implement and easy for customers to understand:;

the determining factor for the charging rate is the expected ¢ z<T,
effective call holding time Ci(x) = {cz T, <x§ T,
A R A X

1—p, 1-p,
where §; = p;/(1 — p,) and . = p./(1 — p,). Noticing while C.(-) may choose linear function. In this example, we
that p, + p; + p. = 1, we havep, + p. = 1. In wireline may choose the parametey, c;, and ¢; such thate; <
networks, where there is no forced terminatign= 0, the flat- min {c;, ¢;}. These choices reflect the fact that the setup proce-
rate planning is reasonable. Obviously, when the call droppifigre is more expensive, while the longer calls are discouraged
probability is sufficiently small (this is the case when eithdh order to accommodate more users.
call traffic is light and mobility is comparably low or the
number of channels is sufficient to support all incoming calls),
flat rate planning is useful.

C = p:Ci(T3) + p.Ce(1) (60)

%ere C; () and C,(-) are nonlinear functions. By choosing
se two functions, we can have different rate planning. It is
vious if we choose&’;(z) = C.(z) = C(z) andC(z) is a

[gQnvex function, then we have

T = C; .T>Ti

V. ILLUSTRATIVE EXAMPLES

This section presents some illustrative examples to show
B. Partial Flat-Rate Planning how results obtained in this paper can be used to evaluate the

Due to the increase of the number of users and the mob"ﬁ)?rformance of PCS networks. We use following scenarios.
of users, cell traffic will tend to increase. Hence, the effective 1) The cell residence times are iid according to the Gamma
call holding times for incomplete calls may be significant.  distribution with parametey = 1.5 and with different
In this case, one should consider using different rates for 7 values (change of mobility);
complete calls and incomplete calls. L&t andC, denote the ~ 2) The call holding times are iid according to the following
rates for an incomplete call and a complete call, respectively. ~ distributions:

Then the average cost per call is given e .
9 P g » exponential distribution with parametgr= 1/1.76;

C = p;CiT; + p.C.T.. (59) « Gamma distribution with parametef8, .);

Clearly, C; < C.. From previous section, we know that the - r-stage exponential distribution with parameters
expected effective call holding tinf€ for an incomplete call 2, p1 = 3p, and pz = 1.54;

is longer than the expected effective call holding tifiefor « hyper-exponential distribution with parameters-
a complete call. Hence, from (59), we observe that slightly 2, ay =04, g = 0.6, pu1 = 0.8, andpue = 1.2p;
increasing the rate”. and decreasing the ratg; does not » hyper-Erlang distribution with parameters =
change the cost significantly. However, it is important to ob- 2, a1 =04, ag =06, my =1,mg =2, g =
serve that customers are usually sensitive to call interruption, 0.84, and pio = 1.2,

and insensitive to the new call blocking. Thus, using discounts

for interrupted calls is a desirable policy, while these discounts3) The mobility /4 is changing from 0 to 25.

can be compensated by increasing the rate for complete calls#) po = 0.05 andp; = 0.02, typically values for current
to which the customers are less sensitive. cellular networks.
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Fig. 3. Call completion probability for different call holding time distribu-Fig. 5. Expected effective call holding time for an incomplete call.
tions.

08 T . T T . T
solid: exponential : :
5+:Gamma§ : 0.95F - AL-o- E SRARRLLRNILEER R RASLRRLEEEE ERETREREERERRRRE P
: *: r-stage exponential : : : : :
: x: hyper—exponential :
. dash: hyper-Erlang

0.9k e : e Fer

o

N

a
T

0.85}- RS S PN A

T c*'mu

ogh.. réamma_ SRR R N S SR M

©

~
T
L

*: r-stage exponential
075l iTste ge exponential R N S

p_c——the call completion probability

0.7~ X "YRar-exponenta

o
>
5l
T
%
¥
&
1

dash: hyperéErIang 1 ‘ . X

: : : 5 10 15 20 25
) 1 L 1 Mobility eta/mu

12 14 16 18 20 22 24 26

Mobility eta/mu

0.65
* 0

Fig. 6. Expected effective call holding time for a complete call.
Fig. 4. Call completion probability; localized piece of Fig. 3.

e The call completion probability is always decreasing
In our examples, the considered distributions have the same as the mobility increases, which is consistent with our
expected values (for exponential and Gamma distributions, intuition that the higher the mobility, the more the hand-
their expectations are/ ., for r-stage exponential distribution offs; hence, the higher the chance that the call will be
its expectation isl/u; + 1/pu2, for hyper-exponential and incomplete or the smaller the call completion probability.

hyper-Erlang distributions their expectations ai/;1 +  These results are very important to the PCS network designers.
a2/ p2). The choice of parameters above is to guarantee thakhe network is designed for low mobility, then the call
the average call holding times with different distributions amgolding time distributions can be ignored. If high mobility
all the same for comparisons, which are equal fp = 1.76 s expected in the PCS system, further analysis of the call
minutes, a value commonly used in the wired telephony trighg|ding time distributions are required.
[13]. Figs. 5 and 6 show the expected effective call holding times
Figs. 3 and 4 show the call completion probability fofor a complete call and an incomplete call, respectively. The
different call holding time distributions in the above scenariggertical axis shows the normalized effective call holding times
(the marking in Fig. 4 is used for curve reading). Thefollowingy the 1/, the average call holding time when there is no
can be observed. new call blocking and no handoff call blocking (the ideal
« With low user mobility, the call holding time distributionscase). Although the type of the call holding time distributions
do not have significant impact on the call completiodoes not significantly affect the call completion probability
probability (hence, the call dropping probability); withfor low user mobility, it does greatly affect the effective call
high user mobility, the call holding time distributions ddholding times for a complete call and an incomplete call. This
have significant impact on the call completion probabilityis why we should consider the effective call holding times in
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evaluating the performance of PCS networks. From these teontours — joo — o + joo — Cr — Iy — €, — I3 — Ckg,
figures, we have the following observations. the functionR(s)/(s— )7 is analytic, hence, from the residue

« The expected effective call holding times (for either #1eorem [14] we have

complete call or an incomplete call) are always decreasing
as mobility increases as expected intuitively.

« For the expected effective call holding time of a complete
call, the dependency on the type of call holding time

ol )

=0

V)

distributions increases as the mobility increases, howevéigm which we obtain

it is just the opposite for the expected effective call
holding time of an incomplete call.

* The expected effective call holding time of a complete
call is smaller than the absolute expected call holding
time (the ideal case when there is no blocking and no
forced termination), i.e.7. < 1/u, while the expected
effective call holding time of an incomplete call can b
larger than the absolute expected call holding time for
ideal case, for exampl&; > 1/ for hyper-exponentially
distributed call holding times for low mobility. This
seems to be counter-intuitive. One can give the following

/:HR & ds

iR (s —a)Y

</c /z /z />3_a ds. (1)

PSlncethECR R—oo R(s)s = 0, we have

lim &

ds = 0.
R—oo Cr (S—OC)

explanation, however: an incomplete call most likely goesn the linely, (s — a)¥ = |s — a|7, while only, (s — a)” =
through many handoffs; hence, only “long” calls to bes _ o|7¢/2%7. From (61), by lettingR — oo, we obtain

dropped, therefore, the completion of “short” calls and

dropping of “long” calls display the above phenomenonJ"J”"<> (s)

The phenomenon that the expected effective call holdin

time for an incomplete call tends to be longer than the
expected call holding time was not shown up in our

previous study [5]. In fact, for the case when call holding

times are exponentially distributed, we have shown [5]
analytically that the expected effective call holding times

for both a complete call and an incomplete call are shorter
than those of the ideal case.

VI. CONCLUSIONS

Previous performance studies of PCS channel allocation as-
sumed that the call holding times are exponentially distributed.
While this assumption is justified for existing cellular systems,
future PCS systems will provide new types of services that will
affect the calling behavior of the users. Thus, a more general
distribution is desirable to model the call holding times. In this
paper, we use a general distribution to model the call holding
times and derive general formulas for the call completion
probability (hence, call dropping probability) and the expected
effective call holding times of both complete and incomplete
calls. For Gamma, (staged) Erlang, hyperexponential and
hyper-Erlang call holding time distributions, we obtain easy-
to-compute formulas to compute these quantities. These results
can be expected to become significant in evaluating and tuning
PCS network performance and help in designing new billing
rate programs for these networks.

APPENDIX

Proof of Lemma 1:1If ~ is not an integer, thes = « is
a branch point of the integrand [14]. Let us cut the complex
plane on the real axis from = « right to theco as shown
in Fig. 7, whereCr = {s = 0 + Re’? |0< 0 < 7/2,37/2 <
6<2r},C, = {s = a+pef?|0<f<2r},l; = {s]lm(s) =

g

—J

271'
. / R(a + pcje)c_j(”’_l)e df — 3%

71277”/ _
(s — )Y prL

a+p

/ R(a+ pe'®)e iv=1)¢ g9
0

=(1- C_ﬂﬁw)/ Rlats) ds —
r v

27
. / R(a+ pe?®)e 701 gp
0

1—e 727 % RW(a+s) J

S
-1 J, 571 (y—1)p72

27
/ R (a4 pei®)e=10=2 gy
0

1 — 92wy /00 RUD(a + s) J
= S
(y=-D(v=2)--(v=[1]) 577
gpt—=vb

R ENCEIET))
27

/ RUD (o 4 pel?ye=iO-bI=18 gg
0

_ 1 — 9277 o R(LWJ)(aJr s) }
_(’7—1)(’7—2)~-~(’7—L'7J)/o EETE

(letting p — 0)

0}, andly = {s|Im (s) = 27 }. In the domain enclosed by thefrom which the lemma is proved. O
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