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Modeling and Performance Analysis for Wireless
Mobile Networks: A New Analytical Approach
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Abstract—In wireless mobile networks, quantities such as call
blocking probability, call dropping probability, handoff proba-
bility, handoff rate, and the actual call holding times for both
complete and incomplete calls are very important performance
parameters in the network performance evaluation and design.
In the past, their analytical computations are given only when the
classical exponential assumptions for all involved time variables
are imposed. In this paper, we relax the exponential assumptions
for the involved time variables and, under independence assump-
tion on the cell residence times, derive analytical formulae for
these parameters using a novel unifying analytical approach. It
turns out that the computation of many performance parameters
is boiled down to computing a certain type of probability, and the
obtained analytical results can be easily applied when the Laplace
transform of probability density function of call holding time is a
rational function. Thus, easily computable results can be obtained
when the call holding time is distributed with the mixed-Erlang
distribution, a distribution model having universal approximation
capability. More importantly, this paper develops a new analytical
approach to performance evaluation for wireless networks and
mobile computing systems.

Index Terms—Call blocking probability, call dropping proba-
bility, handoff probability, handoff rate, mobile computing, PCS,
wireless cellular networks.

NOMENCLATURE

Call holding time.
Cell residence time.
Residual cell residence time.
Number of handoffs in the life of a call.

, Probability density function and its Laplace
transform of .

, Probability density function and its Laplace
transform of .

, Probability density function and its Laplace
transform of .

, Probability density function and its Laplace
transform of .

, Probability density function and its Laplace
transform of actual call holding time for a com-
plete call.
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, Probability density function and its Laplace
transform of actual call holding time for an in-
complete call.
Average actual call holding time for a complete
call.
Average actual call holding time for an incom-
plete call.
New call arrival rate.
Handoff call arrival rate or handoff traffic arrival
rate.
Average call holding time.
Average cell residence time.
Call blocking probability.
Handoff blocking probability or forced termina-
tion probability.
Call completion probability.
Call dropping probability.
Handoff probability for a new call.
Handoff probability for a call after th handoff.
Residue operator at pole .
Set of poles of .

where indicates the real part.

I. INTRODUCTION

WIRELESS networks and mobile computing systems have
evolved into one of the most exciting areas in telecom-

munications industries [6], [9], [32], [36]. Future wireless net-
works will support a wide variety of services such as voice, data,
and image/audio/video to the users on the move. Mobile cus-
tomers can make a phone call as in wired telephony or make
an Internet connection to retrieve information messages such as
emails or stock quotes, to surf the Internet, or to do business over
the Internet (electronic commerce over the air or m-commerce)
while listening to one’s favorite music online. To achieve this
goal, wireless networks will have to be designed with desired
quality-of-service (QoS) requirements.

In a wireless mobile network, call blocking probability and
handoff blocking probability are most important QoS param-
eters. Usually, these two parameters are specified in the de-
sign. For example, in second-generation cellular systems, the
call blocking probability is lower than 5% while the handoff
blocking probability is lower than 2% for voice service. For
the third-generation networks and networks, where data or mul-
timedia services are dominant, these two blocking probabili-
ties can be used to characterize the quality of call connections,
which are then used for the general quality of service charac-
terization. To evaluate the performance of a wireless network,
the following performance metrics are of great importance: call
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dropping probability, handoff probability, handoff rate, and the
actual call holding times for a complete call and an incomplete
call (a call which is prematurely terminated due to the lack of
resource when it roams). Call dropping probability, the prob-
ability that a call is immaturely terminated due to lack of re-
sources (channels) in the network, is closely related to handoff
blocking probability. The handoff rate is used to find the handoff
traffic arrival rate, which is needed to find the call blocking prob-
ability and handoff blocking probability [14], [15]. The handoff
probability can be used to design channel reservation schemes,
and the actual call holding times can be used to design service
charging rate or devise a reasonable billing plan [17], [27]. In
the study of these quantities for the traditional cellular networks
and PCS networks, the following assumptions are commonly
used in order to obtain some analytical results: the interarrival
time of cell traffic, the call holding time, and the channel holding
time are all assumed to be exponentially distributed [11], [18],
[19], [41] (for the convenience of our discussion, we call these
assumptions the classical assumptions). However, field data and
simulation study showed that these classical assumptions are
not appropriate. In [3], [18], and [22]–[24], it has been shown
that the channel holding time is not exponentially distributed
for many wireless and cellular systems. In [15], under certain
assumptions, we showed that channel holding time is exponen-
tially distributed if and only if the cell residence time is exponen-
tially distributed, where the cell residence time is the time a mo-
bile user stays in a typical cell. The study for common-channel
signaling (CCS) networks [5] demonstrated that the call holding
time cannot be accurately modeled by exponential distribution
and showed that the mixed-type probability distribution model
is much more appropriate. In [34], the authors showed that the
cell traffic is smooth (which implies that the interarrival times
for the cell traffic cannot be modeled by Poisson process). Fur-
thermore, the call holding time distribution will vary with the
new applications (call holding times for data users may be sig-
nificantly different from those for voice users), the interarrival
time of cell traffic (a part of which is the handoff call traffic),
and the channel holding times will depend on the mobility of
the customers, the geographic situations, and the channel allo-
cation schemes used; therefore, the classical assumptions will
most likely fail, and more general distribution models for the
time variables may be needed.

The salient feature in wireless mobile networks is the mo-
bility, which complicates all design and analysis [7], [39]. In
order to bring the mobility into the picture of performance eval-
uation of wireless networks, we have to quantify the mobility
factors in the modeling. In most wireless network performance
study, we often focus on the homogeneous wireless networks:
all cells in the networks are statistically identical in terms of
resource dimensioning and network traffic, thus the network
performance evaluation can be reduced to the study of one
single cell, where a queueing model for the cell can be used
to find the aforementioned performance metrics such as call
blocking probability and handoff blocking probability (the
probability that a handoff call is blocked, also called the forced
termination probability) [19]. A careful observation shows
that in the homogeneous wireless networks, we can model the
cell as the following queueing system (Fig. 1). In this model,

Fig. 1. Queueing model for a typical cell.

the cell traffic consists of two traffic streams: new calls and
handoff calls, the channel holding time is determined by the
cell residence time and the call holding time, and both the
handoff traffic and channel holding time are determined by
the cell residence time. Since, in homogeneous networks, each
departed call, if not finished, will be handed off to the next cell
with equal probability ( if hexagonal cell layout is used for
analysis), the users’ mobility is completely characterized by the
cell residence time (i.e., the mobility model is characterized by
a semi-Markov process). The cell residence time is determined
by the geography, mobile moving speed, and direction (or other
factors such as fading) [39]. In many studies, the cell residence
time distribution has been derived based on some assumption
on the cell shape, moving speed, and moving direction, mostly
following the classical work by Hong and Rappaport [19].
Xie and Goodman [39] compared three mobility models and
pointed out that the probability density function (pdf) of ter-
minal speeds should be characterized by the biased sampling
formula. In this paper, we adopt a different approach: we use
a general probability distribution to directly model the cell
residence time. In this way, we can embed all mobility factors
into the cell residence time distribution. In fact, we can regard
our modeling as the second phase of the two-phase modeling:
the first phase is to derive the cell residence time distribution
from mobiles’ movement characteristics and cell shape, and the
second phase studies the effect of such distribution on the per-
formance metrics. What we need now is to find an appropriate
distribution model for cell residence time (mobility) and call
holding time.

Distribution models, such as the exponential distribution, the
lognormal distribution, the Erlang distribution, and the (gener-
alized) Gamma distribution have been used to approximate the
distributions of the channel holding times in the past [14]–[17],
[22], [29], [30], [42]. It is well known that exponential distribu-
tion can be used for one-parameter approximation of the mea-
sured data, while the Gamma distribution can be used for two-
parameter approximation. Although the exponential and Erlang
distribution models have simple good properties for queueing
analysis, however, they are not general enough to fit the field
data. The (generalized) Gamma and log-normal distributions
are more general, however, application of these model will lead
to the loss of the Markov property required in the queueing
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analysis [25]. Recently, two new models are proposed for the
mobility modeling for wireless and cellular networks. One is
the so-called Sum of Hyper-exponential (SOHYP) model [33],
which has been used to model the channel holding time for cel-
lular systems with mixed platforms and various mobility. The
other model, called the Hyper-Erlang model [14] (we will call
it mixed-Erlang distribution more appropriately in this paper),
is used to model the cell residence time for PCS networks and
mobile computing systems. It has been demonstrated that the
mixed-Erlang models and SOHYP models can approximate any
distribution of nonnegative random variables [1], [14], [33]. No-
tice that the Laplace transforms of the SOHYP models and the
mixed-Erlang model are rational functions. More importantly,
applying the distribution models with rational Laplace trans-
forms results in the preservation of the Markov property re-
quired for analytical queueing analysis. Hence, we can use these
two models to model the call holding time and the cell residence
time for the performance evaluation.

In this paper, we relax the classical exponential assumption
for the call holding time and cell residence time and develop
an analytical approach for the study of the following perfor-
mance metrics: call dropping probability, handoff probability,
handoff rate, and the actual call holding times for a complete call
and an incomplete call. It turns out that many interesting per-
formance quantities including the aforementioned performance
metrics can be derived in a unifying approach: they can be com-
pletely determined by a single probability result. We will present
analytical formulas for the above performance metrics for the
cases when the Laplace transforms of pdfs of call holding time
and cell residence time are rational functions. These results will
lead to some simple computational algorithms for the SOHYP
models and mixed-Erlang models.

As a final remark, we want to point out that, although we
have relaxed the assumptions on the distribution models for
some time variables such as cell residence time in this paper, we
still impose the independence assumption on the cell residence
time [i.e., we assume that cell residence times are independent
and identically distributed (i.i.d.)]. This assumption is indeed
valid under some mobility models. For example, the Hong and
Rappaport Model ([19] or model B in [39]) will give the i.i.d.
cell residence time because the moving speed and moving di-
rection are independently generated whenever a mobile crosses
a cell boundary. However, for some other mobility models (such
as Model A and Model C in [39]), the cell residence times may
be dependent, which may pose a serious challenge in obtaining
analytical results. For example, what is the dependence relation-
ship among the cell residence times? How does the dependence
relationship affect the analytical performance metrics? We will
investigate these issues in the future.

II. PRELIMINARIES

In this section, we present some preliminary results which
will be frequently used in the subsequent development.

Many analytical results for the evaluation of wireless network
performance are boiled down to the calculation of the following
type of probability for random variables and .

This probability can be further reduced to the computation of
the following integral:

(1)

where is a constant, and and are analytic over the
set in the complex plane ( denotes the
real part of a complex number). If and are known,
then the techniques used to find the inverse Laplace transforms
[28] can be used to find . In particular, if and
are rational functions in , then the well-known Residue The-
orem [28] can be applied to find , in which case, the partial
fractional expansion technique [25], [28] can be used to obtain
easily computable formula. Let denote the poles of
and let denote the residue at pole . Then we can
easily obtain the following.

Fact 1: If and are proper rational functions and
is the set of poles of , then we have

(2)

The mixed-Erlang distributions and SOHYP distributions
all have rational Laplace transforms, hence Fact 1 can be
applied when and are mixed-Erlang distributions
and SOHYP distributions. Since the mixed-Erlang distributions
are the simplest among many distributions, we will focus on
the mixed-Erlang distributions.

The mixed-Erlang distribution has the following pdf and the
corresponding Laplace transform:

(3)

where

and are nonnegative integers,
are positive numbers, and mixed-Erlang distribution

models contain the exponential distribution, the Erlang dis-
tribution, and the hyper-exponential distribution as special
cases. This distribution has been used in queueing systems and
stochastic modeling in the past [26], [38]. It has been shown
(see [1]) that any distribution of a nonnegative random variable
can be approximated by the mixed-Erlang distributions. In
[1], a rigorous proof of the universal approximation capability
of mixed-Erlang distributions is given, and statistical fitting
methods have been proposed. In [14], a physical interpretation
of the mixed-Erlang approximation from the point of the Sam-
pling Theorem has been provided. In [38], the two-term mixed
Erlang distribution (called generalized Erlangian distribution)
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is shown to have various coefficient-of-variation (CoV) values
and is easier to work with than the Gamma distribution.

If is the Laplace transform of the mixed-Erlang distri-
bution in (3), applying Fact 1, we can easily obtain the following
corollary.

Corollary 1: Assume that and are analytic over
and is the Laplace transform of an mixed-Erlang dis-

tribution in (3). Then we have

(4)

where denotes the th derivative of at the point
.

In the subsequent development, we often encounter the prob-
ability expression , where

and are random variables whose pdfs have Laplace trans-
forms and , respectively, and
are random variables, i.i.d., whose pdf has a Laplace transform

. The following result gives a method to compute the
aforementioned probability.

Fact 2: Assume that the random variables
are independent. If , and

are analytic in for a real number , then

(5)

Proof: Let . Let and
denote the pdf and the Laplace transform of , respec-

tively. From the independence of , we have

Thus, the pdf of is given by

Notice that the Laplace transform of (the distribution
function) is . Thus, we have ( is the pdf of )

This completes the proof.

Fig. 2. Time diagram for call holding time and cell residence time.

Remark: In this result, we show how the probability may be
obtained by evaluating an integral.

III. ANALYTICAL FORMULAS FOR PERFORMANCE METRICS

Before we undertake the investigation on the performance
metrics we mentioned earlier, we present the notation we will
use in the subsequent development. In a wireless mobile net-
work, a mobile user moves from cell to cell and engages call
services when he/she moves. Fig. 2 shows the time diagram for
a typical mobile user. Let be the call holding time (the time
of the requested connection to a wireless network, also known
as unencumbered call holding time) for a typical new call with
the mean value . In the mobile computing systems, can be
regarded as the session time. Let be the cell residence time
in the th cell a mobile user travels during a call life with the
mean value . Let be the time between the time instant the
new call is initiated at and the instant the new call moves out of
the cell if the new call is not completed (we call it the residual
cell residence time); let be the residual call holding
time when the call finishes the th handoff successfully. Let
and denote the arrival rates for new calls and handoff calls,
respectively. Let , and denote, respectively, the
probability density functions of , and with their corre-
sponding Laplace transforms and , respec-
tively. We assume throughout the paper that all distributions are
nonlattice, i.e., they do not contain the discrete singular com-
ponents. In what follows, we will use to denote the th
derivative of a function at the point , when , it gives
the function itself.

In the current literature, is assumed to be exponentially dis-
tributed, , are assumed to be independent and identi-
cally exponentially distributed [19], [21], [29]–[31], and, hence,
from the memoryless property of exponential distribution, is
also exponentially distributed. From these assumptions, we con-
clude that the channel holding time is exponentially distributed
(see [15] and references therein). However, as we mentioned
before, field study showed that channel holding time is not ex-
ponentially distributed, thus the above exponential assumption
will not be valid in general. Moreover, the independence as-
sumption for the cell residence times , is also in ques-
tion; the dependence effect has been touched upon in [39], in
which Xie and Goodman demonstrated that the probability den-
sity function of terminal speeds follows the biased sampling for-
mula. In real cellular systems, the dependence of cell residence
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times can also be observed in many scenarios, for example, in
the highway cellular models. However, it is not known what ef-
fect this assumption would have on the performance metrics.
In this paper, we focus on relaxing the first assumption, and we
relax the exponential assumption and invoke the following more
general conditions: the call holding time, cell residence time,
and the interarrival time for both new calls and handoff calls are
all independent. Specifically, we assume that , are
independent, and , are identically distributed with the
pdf . We will postpone the independence issue for future
research.

Next, based on the above general assumptions, we will derive
analytical results for the aforementioned performance metrics:
handoff probability, handoff rate, call dropping probability, and
actual call holding times for complete calls and incomplete calls.

A. Handoff Probability

Handoff probability is defined as the probability that a call
needs at least one more handoff during its remaining lifetime.
Depending on whether a call is a new call or a handoff call,
we call the probability the handoff probability for a new call or
the handoff probability for a handoff call. Handoff probabili-
ties have been used in the past in handoff scheme design [10],
[42], in the computation of handoff rates [42] under specific as-
sumptions for cell residence time and for channel reservation
schemes [20]. These quantities have been investigated in the
past only when cell residence time and call holding time are
exponentially distributed. In this section, we study these quan-
tities under general cell residence time and general call holding
time distribution assumptions.

We first study the handoff probability for a new call. Let
denote the handoff probability for a new call. We observe that a
new call needs at least one handoff if and only if the call holding
time is greater than the residual cell residence time . From
Fact 2 and Corollary 1, we obtain

(6)

where is the set of poles of . When is generally
distributed with certain property (e.g., its Laplace transform is a

proper rational function), some easily computable results can be
obtained. We observe that, when is exponentially distributed
with parameter , we can obtain the following simple formula:

.
Next we derive the handoff probability for a handoff call. This

quantity is important as it allows us to monitor a call in progress
and plan ahead for the next handoff of the call.

Let denote the probability that a handoff call needs
at least one more handoff in its remaining life time after the

th handoff. From the time diagram in Fig. 2, we observe that
this quantity can be expressed as the following conditional
probability:

(7)

Since satisfy all of the assumptions in Fact 2,
from Fact 2 and Corollary 1, we obtain the equation shown at
the bottom of the page.

When the call holding time is exponentially distributed,
, we can easily obtain

In other words, when the call holding time is exponentially
distributed, the handoff probability for a handoff call after the

th handoff is independent of , we can simply call this quan-
tity the handoff probability for a handoff call. The independence
of in when the call holding time is exponentially dis-
tributed is due to the memoryless property of the exponential
distribution: the remaining call life (residual call holding time)
after handoffs is still exponentially distributed with the same
distribution as that for the call holding time!

Remark: When the call holding time is not exponentially dis-
tributed, the handoff probability for a handoff call is not defined
in the literature because of the lack of memoryless property of
the call holding time distribution. Our definition for handoff
probability for a handoff call represents a new concept, which
coincides with the handoff probability concept when the call
holding time is exponentially distributed [10], [42].

In summary, we obtain the following result.
Theorem 1: Let , and be the Laplace

transforms of the pdf , and , respectively, for
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the call holding time, the residual life of cell residence time and
cell residence time, then we have

(8)

(9)

where is a sufficiently small positive number. If the call
holding time and cell residence time are distributed with ra-
tional Laplace transforms and , then the handoff
probabilities are given by

(10)

(11)

where is the set of poles of . In particular, when the
call holding time is exponentially distributed with parameter ,
we have

(12)

When the call holding time is mixed-Erlang distributed with
distribution in (3), we have

(13)

(14)

Proof: We only need to show (13) and (14), which can
be derived from the special case when is Erlang distributed.
The Erlang distribution has the following density function and
Laplace transform:

(15)

If is distributed with this distribution, taking it into (10) and
using the differentiation formula

we obtain

From this, we can easily obtain (13). Equation (14) can be
proved in a similar fashion.

Remark: If we assume that the call initiation occurs ran-
domly at a cell (i.e., the new call arrivals form a Poisson
process), then can be regarded as the residual life of the cell
residence time in the initiating cell; the Residual Life Theorem
[25] can be used to relate to , i.e.,

(16)

where is the cumulative distribution of the cell residence
time and is its mean value. In what follows, we will use

for simplicity.

B. Handoff Rate

Handoff rate, i.e., the average number of handoffs undertaken
during the actual call connection in the wireless network, is very
important parameter for network design and traffic characteri-
zation. Nanda [31] presented an analytic result of handoff rate
for the case when the call holding time is exponentially dis-
tributed and no handoff failure occurs (which is equivalent to the
case where each cell has an infinite number of channels avail-
able). Lin et al. [29] considered the more practical case where
handoff failure was taken into consideration and presented a
formula for the case when call holding time is exponentially
distributed. There are no results for handoff rate when the call
holding time is not exponentially distributed in the open litera-
ture except our prior works. In this section, we present a formula
for general cases where the call holding time and cell residence
time are generally distributed and for which handoff failures
are accounted. In fact, we have derived the probability distri-
bution of the number of handoffs experienced by a typical call,
which may be of great interest in wireless network performance
analysis.

From the definition of handoff rate, we know that the handoff
rate is the average number of i.i.d. time intervals (cell residence
times) falling into another random interval (call holding time)
under the constraint that, whenever we add one interval, we may
have failure. In order to find this average number, we need to
compute the distribution of the number of intervals fitted into
the given random interval. Let be the number of handoffs of
a typical admitted call (either completed or forced to terminate)
during the call connection. We first study the distribution of
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under general call holding time and cell residence time distribu-
tions. Fig. 2 shows the time diagram. We observe the following:

if and only if the call is not blocked and the call holding
time is shorter than the residual life , i.e., the call completes
before the mobile moves out of the cell; if and only if the
call is not blocked initially, and then it either makes a successful
handoff and completes successfully in the new cell or is forced
to terminate because of the first handoff failure, (an ad-
mitted call experiences handoffs during its call life) if and only
if the call is either successfully having handoffs and finishing
its service in the following cell without any forced termination
or successfully having handoffs and failed at the th
handoff. If the blocking probability for a new call is (call
blocking probability) and the blocking probability for a handoff
call (the handoff blocking probability) is , then we can easily
obtain

...

... (17)

When , we notice that is closely related to
the handoff probability for a new call. From the previous sub-
section, we obtain

(18)

When , applying Fact 2 in (17), we obtain

(19)

Applying the Residue Theorem, we obtain

(20)

From the distribution of , we can obtain the handoff rate as
follows:

(21)

It is obvious that the integrand without term is analytic
on the right half open complex plane and hence is analytic in

for sufficiently small positive number . If has no
branch point and has only finite possible isolated singular points
in the open right half plane, then the Residue Theorem can be
applied to (21) using a semicircular contour in the right half
plane. Therefore, we finally obtain the following theorem.

Theorem 2: Let , and be the Laplace
transforms of the pdf , and , respectively, for
the call holding time, the residual life of cell residence time,
and cell residence time. Then we have

(22)
where is a sufficiently small positive number. If the Laplace
transform of the density function of the calling holding time
is a rational function, then the expected number of handoffs for
an admitted call (the handoff rate) is given by

(23)
In particular, if is mixed-Erlang distributed with distribution
in (3), then we have

(24)
where

(25)
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If the call holding time is exponentially distributed with pa-
rameter , from Theorem 2, we obtain

(26)

If there is no blocking and no forced termination, i.e.,
, and from (26) , which is obtained in

[31]. In fact, this result is even valid when the call holding time
is generally distributed. Indeed, from Theorem 2 and (16), if

, we obtain

This relationship can be explained intuitively as follows: the
handoff rate is defined as the average number of handoffs. If
there is no blocking and no forced termination (i.e., no handoff
failure), the handoff rate is equivalent to the average number
of cell residence time intervals fitting into a call holding time
interval, which is given by .

However, in reality, due to limited resources, calls do experi-
ence blocking, handoff failures do occur, and hence the handoff
rate is different from the one given by Nanda [31]. Next, we want
to analytically show that the handoff rate is no more than the one
for the ideal case, which is intuitively true. In [15], we showed
this when the call holding time is exponentially distributed. We
now show that this is also true for the general case. First, we
notice that

Let . Then we have

(27)

We notice that the first term on the right-hand side of the last
equation in (27) is in fact the handoff rate for the ideal case,
which is equal to , while the second term can be shown to
be zero (using Fact 2 and noticing that for
sufficiently small positive number or applying Central Limit
Theorem or the Large Deviation Theorem). In summary, from
(27), we obtain .

The handoff call arrival rate, a very important quantity for call
blocking analysis, can be computed from the handoff rate for
the homogeneous wireless mobile networks. We observe that,
for each admitted new call, there will be on the average
number of handoff calls induced in the overall network, so the
handoff call traffic will have arrival rate . This is
the major reason why we are interested in the handoff rate.

C. Call Dropping Probability

Call dropping probability is the probability that a call is pre-
maturely terminated due to an unsuccessful handoff during the
call life. Customers are more sensitive to call dropping than to
call blocking at call initiation. Wireless service providers have
to design the network to minimize the call dropping probability
for customer care. This problem has been studied in [16], [17],
and [29] for some special cases. In this subsection, we study
the computation of the call dropping probability in the unifying
framework.

We observe that a call is dropped if there is no available
channel in the targeted cell during a handoff, i.e., a call is
dropped when a handoff failure occurs during a call life. Fig. 2
can also be used to illustrate the timing diagram for a forced ter-
minated call. As before, let and denote the call blocking
probability and handoff blocking probability, respectively. Let

denote the probability that a call is completed (without
blocking and forced termination). Then the call dropping
probability is given by

(28)

where we have again used Fact 2. Thus, we obtain the following
theorem.
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Theorem 3: Let , and be the Laplace
transforms of the pdf of the call holding time, the cell residence
time and the residual life of the cell residence time, respectively,
then the call dropping probability is given by

(29)

where is a sufficiently small positive number. When the call
holding time is mixed-Erlang distributed with the distribution
in (3), we obtain the following:

(30)

where

We observe that there is a close relationship between the call
dropping probability and the handoff rate: . This is
very intuitive: recall that is the average number of hand-
offs during the call life, each handoff has a probability to
fail, and hence the call dropping probability is then the summa-
tion of handoff failure probability for each handoff! Thus, if we
can compute the handoff rate, then we can easily obtain the call
dropping probability. Notice that we have , and
therefore, we have the following interesting result.

Corollary 2: The handoff rate, handoff call arrival rate, and
call dropping probability have the following relationships in the
homogeneous wireless networks:

(31)

This result tells us that, in homogeneous wireless networks,
the call dropping probability, which is a networkwide quantity,
can be completely determined by the call arrival rates for new
calls and handoff calls and the handoff blocking probability in
one single cell. This is consistent with the fact that a homoge-
neous wireless network can be completely characterized by a
single cell in the wireless network.

D. Actual Call Holding Times

The actual call holding time (or actual call connection time)
for a mobile user in a wireless network is a important quantity,
which can be used to determine the charging rate for the ser-
vices the user subscribes to. However, in a wireless network or a
mobile computing system, calls may be prematurely terminated
due to the limitation of finite resource. It is not fair to charge the
same rate to an incomplete call as the one to a complete call. In
order to obtain a fair billing rate planning, we need to determine
the actual connection times for a complete call and an incom-
plete call, the expected actual connection times for the complete

and the incomplete calls are called the actual call holding times
for a complete call and an incomplete call, respectively.

We first consider the actual call holding time for an incom-
plete call. Let denote the actual call connection time, let
denote the cumulative distribution function for an incomplete
call, then we have

(32)

where is the pdf of random variable and
is the call dropping probability. Let denote the Laplace

transform of , which is given by .
Let denote the density function of the actual call holding
time for an incomplete call, and then, from (32), we obtain

(33)

Let denote the Laplace transform of and the
expected actual call holding time for an incomplete call. Ap-
plying Laplace transformation on both sides of (33) and using
a similar procedure to the one used in the proof of Fact 2, we
obtain

(34)

where is a sufficiently small positive number. Since

we conclude that is a removable singular point [28] of the
integrand of (34). Thus, the poles of the integrand are those of

, i.e., , where is the set of poles
of .

The expected actual call holding time for an incomplete call
is given by

(35)
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Notice that since (from L’Hospital’s theorem)

then is a removable singular point of the integrand. Be-
cause the derivative of an analytic function has the same set of
poles as the function itself does (except the multiplicities), the
integrand in (35) has the same set of poles as does, i.e.,

. In summary, we obtain the following theorem.
Theorem 4: The actual call holding time for an incomplete

call can be characterized as follows:

If is a rational function in , then

In particular, if the call holding time is mixed-Erlang distributed
with the distribution in (3), then we have

where

Next, we study the actual holding time for a complete call.
Suppose that a call is completed when the mobile is in cell .
Let denote the actual call holding time. If , then

and , while if , then
and . Let , then we have

For (36)

For

(37)

Let denote the pdf of the actual call holding time. Using
an argument similar to the one for the actual call holding time
for an incomplete call, we obtain

(38)

Applying the similar technique we used for actual call
holding time for an incomplete call, we can obtain the fol-
lowing theorem.

Theorem 5: The actual call holding time for a complete call
can be characterized as follows:

where is a sufficiently small positive number. If the Laplace
transform is a rational function, then
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where is the set of poles of . If the call holding time
is mixed-Erlang distributed with distribution in (3), we have

(39)

where

When the call holding time is exponentially distributed with
parameter as commonly assumed in the literature, Theorems
4 and 5 give

It is interesting to observe that the trivial identities
and give formulas for the computation of and

; the resulting formulas are the same as what were obtained
earlier.

IV. DISCUSSIONS AND NUMERICAL RESULTS

Up to now, we observe that all of analytical results we have
developed are reduced to the computation of the following type
of integral:

(40)

as we mentioned earlier. The general computation of this type of
integral can be found in [2], where various rational approxima-
tions (Padé approximations) can be used. It has been shown that
the rational approximations such as the mixed-Erlang and the
SOHYP distributions can provide very good fits to sufficiently
general functions. In practice, measurements are taken for call
holding time and cell residence time, and thus the mixed-Er-
lang models or other models with rational Laplace transforms
can be used to fit such field data. Using the resulting distribu-
tion model, we can easily compute the performance metrics of
interest such as handoff probability, handoff rate, call dropping
probability, and actual call holding times. We believe that many
other time variables can be computed by our approach and that
many other problems in wireless and mobile computing systems
can be solved using the analytical approach we developed in this
paper.

If we choose rational approximation (Padé approximation)
for the probability distributions of the involved time variables,
then all computations are reduced to finding the high-order
derivatives of rational functions. We show that the high-order
derivatives of a rational function can be computed recursively.
Let denote a rational function, where
and are polynomials. Applying the differentiation formula

to both sides of the identity

, we obtain

from which we obtain

Thus, the computational complexity can be significantly
reduced. In fact, compared with the complexity in using expo-
nential assumption, the numerical computation burden in using
our general analytical results will not increase significantly, and
yet we can calculate the performance metrics more accurately.

Next, we present a few numerical examples to demonstrate
how the performance metrics obtained from our analytical
results deviate from those obtained under the exponential
assumptions on some time variables. Our approach here is as
follows: we choose some distributions, say, Erlang distribu-
tions, for some time variables, and we then use our analytical
results to compute the performance metrics of interest. We
then use the exponential distributions with the same average
values to approximate the distributions for the corresponding
time variables, and calculate the corresponding performance
metrics. In this way, we can compare the final results and
observe the deviations.

Fig. 3 shows the handoff probability for handoff calls, where
we use exponential distribution to model call holding time and
use the Erlang distribution with parameters to model
the cell residence time, the curve with corresponds to
the exponential approximation for cell residence time. We ob-
serve that there is a significant difference between the actual
handoff probability for handoff calls and the approx-
imate handoff probability by exponential distribution for the
cell residence time; this is particularly true when the mobility
factor is low. For example, when , the de-
viation between the actual handoff probability and the approx-
imate handoff probability is close to 18%. Intuitively, for the
high mobility case (when mobility factor is high), the mobile
user will have high probability to move into other cells, the first
moment statistics (the mean) will determine the handoff prob-
ability, and hence there is no significant difference between the
actual handoff probability and the approximated values. When
the mobility is low (i.e., when the mobility factor is small), the
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Fig. 3. Handoff probability for handoff calls.

Fig. 4. Handoff traffic arrival rate.

probability distribution for cell residence time will play a sig-
nificant role. When is large, the cell residence time tends to
be constant, and hence the mobility of the mobile user is much
more predictable than the case when the cell residence time is
exponentially distributed.

Fig. 4 gives the comparison result for the handoff traffic ar-
rival rate, where we use a Gamma distribution to model the
cell residence time and the Erlang distribution to model the call
holding time. The curve with corresponds to the case
in which the exponential distribution is used to approximately
model the call holding time. We observe that there is a signifi-
cant deviation between the actual handoff traffic arrival rate and
the approximate handoff traffic arrival rate. In this example, we
assume that the new call arrival rate is . When the new call
arrival rate is higher, the difference will be more pronounced.
The higher the mobility, the further the deviation. This is rea-
sonable, when the mobility is higher and there is more handoff
traffic, if the variance of the call holding time is low (i.e., is

Fig. 5. Call dropping probability.

large), the the call holding time is closer to the constant (i.e.,
), thus it seems that we can fit more Gamma distributed

random intervals into an constant interval than into an exponen-
tially distributed interval. The exponential approximation model
is likely to underestimate the handoff traffic.

Fig. 5 presents the result for the call dropping probability,
where the cell residence time is again Gamma distributed and
the call holding time is Erlang distributed. The case with
indicates the approximate result when the call holding time dis-
tribution is approximated by exponential distribution. We ob-
serve that, in quite a large mobility range (say, the mobility
factor from 1 to 20), there is no significant difference between
the actual call dropping probability and that obtained from the
approximate model. The reason is that the design requires the
handoff blocking probability to be less than . Since
the call dropping probability , although there
might be a significant difference in the handoff rate when
the approximate model is used, the call dropping probability
may not be significantly affected due to the smallness of .
Moreover, when the mobility is relatively low, the call dropping
probability may not be high enough to be noticed; when the mo-
bility is higher, the call dropping probability will be higher, and
the difference between the actual call blocking probability and
the approximate call dropping probability will not be significant
compared to their call dropping probability value. This is obvi-
ously shown in the figure.

To sum up, our numerical results show that the traditional
exponential modeling may not be appropriate for some perfor-
mance metrics while they may do reasonably well for some
other performance metrics. It is not clear when such modeling
is valid and when such modeling fails. The contribution of this
paper is the theoretical results: when cell residence time and call
holding time are not exponentially distributed, we can use the
analytical results developed in this paper and compute the per-
formance metrics analytically without too much computational
effort.
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V. CONCLUSION

In this paper, we develop a new analytical method for
the performance evaluation of wireless networks and mobile
computing systems. Under a very general assumption on
distributions of the call holding time and cell residence time,
we derive analytical formulas for handoff probability, handoff
rate, call dropping probability, and the actual call holding times
for both complete and incomplete calls. This new analytical
approach opens a new avenue for performance evaluation for
wireless networks and mobile computing systems. In fact,
we recently have used this approach to analytically evaluate
a few mobility management schemes under fairly general
assumptions [12], [13].

ACKNOWLEDGMENT

The author would like to thank the Editor, Prof. J. Daigle,
and the reviewers for their constructive comments, which sig-
nificantly improved the quality of this paper. The author is par-
ticularly indebted to the anonymous reviewer who brought [39]
to his attention.

REFERENCES

[1] S. Asmussen, Applied Probability and Queues. New York: Wiley,
1987.

[2] G. A. Baker Jr. and P. Graves-Morris, Padáe Approximants, 2nd
ed. Cambridge, U.K.: Cambridge Univ. Press, 1996.

[3] F. Barcelo and S. Bueno, “Idle and inter-arrival time statistics in public
access mobile radio (PAMR) systems,” in Proc. IEEE Globecom,
Phoenix, AZ, Nov. 1997.

[4] F. Barcelo and J. Jordan, “Channel holding time distribution in cellular
telephony,” in Proc. 9th Int. Conf. Wireless Communications (Wire-
less’97), vol. 1, Alberta, AB, Canada, Jul. 1997, pp. 125–134.

[5] V. A. Bolotin, “Modeling call holding time distributions for CCS net-
work design and performance analysis,” IEEE J. Sel. Areas Commun.,
vol. 12, no. 3, pp. 433–438, Mar. 1994.

[6] A. Bria, F. Gessler, O. Queseth, R. Stridh, M. Unbehaun, J. Wu, and J.
Zander, “4th-generation wireless infrastructures: Scenarios and research
challenges,” IEEE Personal Commun., no. 12, pp. 25–31, Dec. 2001.

[7] T. Camp, J. Boleng, and V. Davis, “A survey of mobility models for ad
hoc network research,” Wireless Commun. Mobile Computing, vol. 2,
pp. 483–502, 2002.

[8] E. Chlebus and W. Ludwin, “Is handoff traffic really poissonian?,” Proc.
IEEE ICUPC, pp. 348–353, Nov. 1995.

[9] D. C. Cox, “Wireless personal communications: What is it?,” IEEE Per-
sonal Commun. Mag., no. 4, pp. 20–35, Apr. 1995.

[10] E. Del Re, R. Fantacci, and G. Giambene, “Efficient dynamic channel
allocation techniques with handover queueing for mobile satellite net-
works,” IEEE J. Sel. Areas Commun., vol. 13, no. 2, pp. 397–405, Feb.
1995.

[11] D. E. Everitt, “Traffic engineering of the radio interface for cellular mo-
bile networks,” Proc. IEEE, vol. 82, no. 9, pp. 1371–1382, Sep. 1994.

[12] Y. Fang, “Movement-based location management and tradeoff analysis
for wireless mobile networks,” IEEE Trans. Comput., Special Issue on
Wireless Internet, vol. 52, no. 6, pp. 791–803, Jun. 2003.

[13] , “General modeling and performance analysis for location man-
agement in wireless mobile networks,” IEEE Trans. Comput., Special
Issue on Data Management Systems and Mobile Computing, vol. 51,
no. 10, pp. 1169–1181, Oct. 2002.

[14] Y. Fang and I. Chlamtac, “A new mobility model and its application in
the channel holding time characterization in PCS networks,” in Proc.
INFOCOM, vol. 1, New York, NY, Mar. 1999, pp. 20–27.

[15] Y. Fang, I. Chlamtac, and Y. B. Lin, “Channel occupancy times and
handoff rate for mobile computing and PCS networks,” IEEE Trans.
Comput., vol. 47, no. 6, pp. 679–692, Jun. 1998.

[16] , “Modeling PCS networks under general call holding times and
cell residence time distributions,” IEEE/ACM Trans. Netw., vol. 5, no. 6,
pp. 893–906, Dec. 1997.

[17] , “Call performance for a PCS network,” IEEE J. Sel. Areas
Commun., no. 8, pp. 1568–1581, Oct. 1997.

[18] R. A. Guerin, “Channel occupancy time distribution in a cellular radio
system,” IEEE Trans. Veh. Technol., vol. 35, no. 3, pp. 89–99, Mar. 1987.

[19] D. Hong and S. S. Rappaport, “Traffic model and performance analysis
for cellular mobile radio telephone systems with prioritized and nonpri-
oritized handoff procedures,” IEEE Trans. Veh. Technol., vol. VT-34, no.
3, pp. 77–92, 1986.

[20] J. Hou and Y. Fang, “Mobility-based call admission control schemes for
wireless mobile networks,” Wireless Syst. Mobile Computing, vol. 1, no.
3, pp. 269–282, Jul.–Sept. 2001.

[21] B. Jabbari, “Teletraffic aspects of evolving and next-generation wireless
communication networks,” IEEE Personal Commun. Mag., vol. 3, no. 6,
pp. 4–9, Dec. 1996.

[22] C. Jedrzycki and V. C. M. Leung, “Probability distributions of channel
holding time in cellular telephony systems,” in Proc. IEEE Vehicular
Technology Conf., Atlanta, GA, May 1996, pp. 247–251.

[23] J. Jordan and F. Barcelo, “Statistical modeling of channel occupancy in
trunked PAMR systems,” in Proc. 15th Int. Teletraffic Conf., 1997, pp.
1169–1178.

[24] J. Jordan and F. Barcelo, “Statistical modeling of transmission holding
time in PAMR systems,” in Proc. IEEE Globecom, vol. 1, Phoenix, AZ,
Nov. 1997, pp. 121–125.

[25] L. Kleinrock, Queueing Systems: Theory. New York: Wiley, 1975, vol.
I.

[26] H. Kobayashi, Modeling and Analysis: An Introduction to System Perfor-
mance Evaluation Methodology. Boston, MA: Addison-Wesley, 1978.

[27] W. Li, Y. Fang, and R. R. Henry, “Actual call connection time character-
ization for wireless mobile networks under a general channel allocation
scheme,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 682–691,
Oct. 2002.

[28] W. R. LePage, Complex Variables and the Laplace Transform for Engi-
neers. New York: Dover, 1980.

[29] Y. B. Lin, S. Mohan, and A. Noerpel, “Queueing priority channel as-
signment strategies for handoff and initial access for a PCS network,”
IEEE Trans. Veh. Technol., vol. 43, no. 3, pp. 704–712, Apr. 1994.

[30] Y. B. Lin, A. Noerpel, and D. Harasty, “The sub-rating channel assign-
ment strategy for PCS Hand-offs,” IEEE Trans. Veh. Technol., vol. 45,
no. 1, Feb. 1996.

[31] S. Nanda, “Teletraffic models for urban and suburban microcells: Cell
sizes and handoff rates,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp.
673–682, Aug. 1993.

[32] A. R. Noerpel, Y. B. Lin, and H. Sherry, “PACS: Personal access com-
munications system—A tutorial,” IEEE Personal Commun., vol. 3, no.
3, pp. 32–43, Jun. 1996.

[33] P. Orlik and S. S. Rappaport, “A model for teletraffic performance and
channel holding time characterization in wireless cellular communica-
tion with general session and dwell time distributions,” IEEE J. Sel.
Areas Commun., vol. 16, no. 5, pp. 788–803, May 1998.

[34] M. Rajaratnam and F. Takawira, “Nonclassical traffic modeling and per-
formance analysis of cellular mobile networks with and without channel
reservation,” IEEE Trans. Veh. Technol., vol. 49, no. 3, pp. 817–834, May
2000.

[35] S. S. Rappaport, “Blocking, hand-off and traffic performance for cellular
communication systems with mixed platforms,” Proc. Inst. Elect. Eng.,
pt. I, vol. 140, no. 5, pp. 389–401, 1993.

[36] T. S. Rappaport, A. Annamalai, R. M. Buehrer, and W. H. Tranter,
“Wireless communications: Past events and a future perspective,” IEEE
Commun. Mag., no. 5, pp. 148–161, May 2002.

[37] S. Tekinay and B. Jabbari, “A measurement-based prioritization scheme
for handovers in mobile cellular networks,” IEEE J. Sel. Areas Commun.,
vol. 10, no. 8, pp. 1343–1350, Aug. 1992.

[38] H. C. Tijms, Stochastic Models: An Algorithmic Approach. New York:
Wiley, 1994.

[39] H. Xie and D. J. Goodman, “Mobility models and biases sampling
problem,” in Proc. 2nd IEEE Int. Conf. Universal Personal Communi-
cations (ICUPC), vol. 2, 1993, pp. 803–807.

[40] H. Xie and S. Kuek, “Priority handoff analysis,” in Proc. IEEE Vehicular
Technology Conf., 1993, pp. 855–858.

[41] T.-S. P. Yum and K. L. Yeung, “Blocking and handoff performance
analysis of directed retry in cellular mobile systems,” IEEE Trans. Veh.
Technol., vol. 44, no. 3, pp. 645–650, Jun. 1995.

[42] M. M. Zonoozi and P. Dassanayake, “User mobility modeling and char-
acterization of mobility patterns,” IEEE J. Sel. Areas Commun., vol. 15,
no. 7, pp. 1239–1252, Oct. 1997.



1002 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 5, OCTOBER 2005

Yuguang Fang (S’92–M’94–SM’99) received the
B.S. and M.S. degrees in mathematics from Qufu
Normal University, Qufu, Shandong, China, in 1984
and 1987, respectively, the Ph.D. degree in systems
and control engineering from the Department of
Systems, Control and Industrial Engineering, Case
Western Reserve University, Cleveland, OH, in
January 1994, and the Ph.D. degree in electrical
engineering from the Department of Electrical and
Computer Engineering, Boston University, MA, in
May 1997.

From 1987 to 1988, he held research and teaching position in both Depart-
ment of Mathematics and the Institute of Automation at Qufu Normal Univer-
sity. From September 1989 to December 1993, he was a teaching/research as-
sistant in Department of Systems, Control and Industrial Engineering at Case
Western Reserve University, where he held a research associate position from
January 1994 to May 1994. He held a post-doctoral position in Department of
Electrical and Computer Engineering at Boston University from June 1994 to
August 1995. From September 1995 to May 1997, he was a research assistant in
Department of Electrical and Computer Engineering at Boston University. From
June 1997 to July 1998, he was a Visiting Assistant Professor in Department of
Electrical Engineering at the University of Texas at Dallas. From July 1998 to
May 2000, he was an Assistant Professor in the Department of Electrical and
Computer Engineering at New Jersey Institute of Technology, Newark, NJ. In
May 2000, he joined the Department of Electrical and Computer Engineering
at University of Florida, Gainesville, where he got early promotion to Associate
Professor with tenure in August 2003, and to Full Professor in August 2005.

His research interests span many areas including wireless networks, mobile
computing, mobile communications, wireless security, automatic control, and
neural networks. He has published over 160 papers in refereed professional
journals and conferences. He received the National Science Foundation Fac-
ulty Early Career Award in 2001 and the Office of Naval Research Young In-
vestigator Award in 2002. He also received the 2001 CAST Academic Award.
He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in
America, and Who’s Who in World.

Dr. Fang has actively engaged in many professional activities. He is a senior
member of the IEEE and a member of the ACM. He is an Editor for IEEE
TRANSACTIONS ON COMMUNICATIONS, an Editor for IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, an Editor for IEEE TRANSACTIONS ON MOBILE

COMPUTING, an Editor for ACM Wireless Networks, and an Editor for IEEE
Wireless Communications. He was an Editor for IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATIONS: Wireless Communications Series, an Area Editor
for ACM Mobile Computing and Communications Review, an Editor for Wiley
International Journal on Wireless Communications and Mobile Computing,
and Feature Editor for Scanning the Literature in IEEE Personal Communica-
tions. He has also been actively involved with many professional conferences
such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award),
MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Tech-
nical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00,
INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 (Technical Pro-
gram Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair),
Globecom’02, and International Conference on Computer Communications
and Networking (IC3N) (Technical Program Vice-Chair).


	toc
	Modeling and Performance Analysis for Wireless Mobile Networks: 
	Yuguang Fang, Senior Member, IEEE
	N omenclature
	I. I NTRODUCTION

	Fig.€1. Queueing model for a typical cell.
	II. P RELIMINARIES
	Corollary 1: Assume that $X(s)$ and $Y(s)$ are analytic over ${\
	Proof: Let $\xi=X_0+X_1+X_2+\cdots+X_k$ . Let $f_{\xi}(t)$ and $



	Fig.€2. Time diagram for call holding time and cell residence ti
	Remark: In this result, we show how the probability may be obtai
	III. A NALYTICAL F ORMULAs FOR P ERFORMANCE M ETRICS
	A. Handoff Probability
	Remark: When the call holding time is not exponentially distribu
	Theorem 1: Let $f_c^*(s),$ $f_r^*(s)$, and $f^*(s)$ be the Lapla
	Proof: We only need to show (13) and (14), which can be derived 

	Remark: If we assume that the call initiation occurs randomly at

	B. Handoff Rate
	Theorem 2: Let $f_c^*(s),$ $f_r^*(s)$, and $f^*(s)$ be the Lapla

	C. Call Dropping Probability
	Theorem 3: Let $f_c^*(s),$ $f^*(s)$, and $f_r^*(s)$ be the Lapla
	Corollary 2: The handoff rate, handoff call arrival rate, and ca

	D. Actual Call Holding Times
	Theorem 4: The actual call holding time for an incomplete call c
	Theorem 5: The actual call holding time for a complete call can 


	IV. D ISCUSSIONS AND N UMERICAL R ESULTS

	Fig.€3. Handoff probability for handoff calls.
	Fig.€4. Handoff traffic arrival rate.
	Fig.€5. Call dropping probability.
	V. C ONCLUSION
	S. Asmussen, Applied Probability and Queues . New York: Wiley, 1
	G. A. Baker Jr. and P. Graves-Morris, Padáe Approximants, 2nd ed
	F. Barcelo and S. Bueno, Idle and inter-arrival time statistics 
	F. Barcelo and J. Jordan, Channel holding time distribution in c
	V. A. Bolotin, Modeling call holding time distributions for CCS 
	A. Bria, F. Gessler, O. Queseth, R. Stridh, M. Unbehaun, J. Wu, 
	T. Camp, J. Boleng, and V. Davis, A survey of mobility models fo
	E. Chlebus and W. Ludwin, Is handoff traffic really poissonian?,
	D. C. Cox, Wireless personal communications: What is it?, IEEE P
	E. Del Re, R. Fantacci, and G. Giambene, Efficient dynamic chann
	D. E. Everitt, Traffic engineering of the radio interface for ce
	Y. Fang, Movement-based location management and tradeoff analysi
	Y. Fang and I. Chlamtac, A new mobility model and its applicatio
	Y. Fang, I. Chlamtac, and Y. B. Lin, Channel occupancy times and
	R. A. Guerin, Channel occupancy time distribution in a cellular 
	D. Hong and S. S. Rappaport, Traffic model and performance analy
	J. Hou and Y. Fang, Mobility-based call admission control scheme
	B. Jabbari, Teletraffic aspects of evolving and next-generation 
	C. Jedrzycki and V. C. M. Leung, Probability distributions of ch
	J. Jordan and F. Barcelo, Statistical modeling of channel occupa
	J. Jordan and F. Barcelo, Statistical modeling of transmission h
	L. Kleinrock, Queueing Systems: Theory . New York: Wiley, 1975, 
	H. Kobayashi, Modeling and Analysis: An Introduction to System P
	W. Li, Y. Fang, and R. R. Henry, Actual call connection time cha
	W. R. LePage, Complex Variables and the Laplace Transform for En
	Y. B. Lin, S. Mohan, and A. Noerpel, Queueing priority channel a
	Y. B. Lin, A. Noerpel, and D. Harasty, The sub-rating channel as
	S. Nanda, Teletraffic models for urban and suburban microcells: 
	A. R. Noerpel, Y. B. Lin, and H. Sherry, PACS: Personal access c
	P. Orlik and S. S. Rappaport, A model for teletraffic performanc
	M. Rajaratnam and F. Takawira, Nonclassical traffic modeling and
	S. S. Rappaport, Blocking, hand-off and traffic performance for 
	T. S. Rappaport, A. Annamalai, R. M. Buehrer, and W. H. Tranter,
	S. Tekinay and B. Jabbari, A measurement-based prioritization sc
	H. C. Tijms, Stochastic Models: An Algorithmic Approach . New Yo
	H. Xie and D. J. Goodman, Mobility models and biases sampling pr
	H. Xie and S. Kuek, Priority handoff analysis, in Proc. IEEE Veh
	T.-S. P. Yum and K. L. Yeung, Blocking and handoff performance a
	M. M. Zonoozi and P. Dassanayake, User mobility modeling and cha



