
1062 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 7, JULY 1999
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Abstract—Channel holding time is of primary importance in
teletraffic analysis of PCS networks. This quantity depends on
user’s mobility which can be characterized by the cell residence
time. In this paper we show that when the cell residence time
is not exponentially distributed, the channel holding time is not
exponentially distributed either, a fact also confirmed by available
field data. In order to capture the essence of PCS network
behavior, including the characterization of channel holding time,
a correct mobility model is therefore necessary. The new model
must be good enough to fit field data, while at the same time
resulting in a tractablequeueing system. In this paper we propose
a new mobility model, called thehyper-Erlang distribution model,
which is consistent with these requirements. Under the new
realistic operational assumption of this model, in which the cell
residence time is generally distributed, we derive analytical re-
sults for the channel holding time distribution, which are readily
applicable to the hyper-Erlang distribution models. Using the
derived analytical results we demonstrate how the distribution of
cell residence time affects the channel holding time distribution.
The results presented in this paper can provide guidelines for
field data processing in PCS network design and performance
evaluation.

Index Terms—Call holding time, cell residence time, channel
holding time, mobility, mobility model, PCS.

I. INTRODUCTION

CHANNEL holding (occupancy) time is an important
quantity in teletraffic analysis of PCS networks. This

quantity is needed to derive key network design parameters
such as the new call blocking probability and the handoff call
blocking probability [17]. Bolotin [1] studied common-channel
signaling (CCS) systems and found that channel throughput
drops significantly more under an exponential call holding
time distribution model than under the actual measured call
holding time distribution. This observation is expected to be
true for PCS networks. Thus, it is important to realistically
characterize channel holding time in PCS networks and in-
vestigate how its distribution affects PCS network traffic. In

Paper approved by D. Everitt, the Editor for Wireless Network Performance
of the IEEE Communications Society. Manuscript received February 16, 1998;
revised August 7, 1998 and January 20, 1999. This work was supported in
part by the U.S. Army Research Office under Contract DAAG55-97-1-0312
and DAAG55-97-1-0382. The work of Y. Fang was supported in part by the
New Jersey Institute of Technology under Grant SBR421980 and New Jersey
Center for Wireless Telecommunications.

Y. Fang is with the Department of Electrical and Computer Engineer-
ing, New Jersey Institute of Technology, Newark, NJ 07102 USA (e-mail:
fang@oak.njit.edu).

I. Chlamtac is with the Erik Jonsson School of Engineering and Computer
Science, University of Texas at Dallas, Richardson, TX 75083 USA (e-mail:
chlamtac@utdallas.edu).

Publisher Item Identifier S 0090-6778(99)05224-1.

order to accomplish this, we need to have an appropriate traffic
model to reflect the actual traffic situation and the user mobility
patterns.

For the sake of convenience and tractability, most previous
traffic analysis made the assumption that the channel holding
time is distributed exponentially [9], [10], [17], [28], [37], [38].
However, this assumption is not valid for PCS networks. For
these networks, Guerin [16] demonstrated that when the rate
of direction change is “low,” the channel holding time is no
longer exponentially distributed. Bolotin [1] showed that the
channel holding time for CCS (common channel signaling)
networks is no longer exponentially distributed either. Linet
al. [28] gave a condition under which the channel holding
time is exponentially distributed, that is, the cell residence time
needs to be exponentially distributed. Recent experiments with
operational systems and field data showed that channel holding
times for cellular systems and mobile radio systems are
not exponentially distributed. Using field data Jedrzycki and
Leung [19] observed that channel holding time distribution for
cellular telephony systems is not exponential, and statistically
showed that the lognormal distribution provided a better
fit for the field data for channel holding time. Orlik and
Rappaport [32] observed that the data profile used in [19]
can also be approximately modeled by the SOHYP (the Sum
of Hyperexponential) distribution. Barceloet al. [3], [4], [20],
[21] conducted a series of experiments for mobile radio and
cellular systems and concluded that channel holding times
and related time variables are not exponentially distributed.
They further showed that the lognormal distribution and the
mixture of Erlang distributions provided better statistical fitting
to the experimental data. In summary, the above research and
experiments demonstrate that the exponential assumption for
channel holding time is not appropriate. Although it is a well-
known fact in queueing theory [25] that blocking probability
in is insensitive to service time distribution (cor-
responding, in our case, to channel holding time), this may not
be true for systems. Chlebus and Ludwin [5] and
Rajartnam and Takawira [35] showed that the handoff traffic
in cellular and PCS networks is not Poissonian. Rajartnam
and Takawira [35] also showed that the handoff call blocking
probability under realistic mobility modeling is significantly
different from that under the assumption that the channel
holding time is exponentially distributed. Thus, for cellular
or PCS networks, the queueing system for each cell is a

system and the blocking probability is indeed
sensitive to the service time (i.e., the channel holding time)
distribution. This phenomena is another important reason why
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it is necessary to study channel holding time for PCS network
performance evaluation under more realistic situations.

In this paper we deal with channel holding time (i.e., the
time a call spends in a cell) under more general assumptions.
We observe that channel holding time depends on the users’
mobility, which in turn can be characterized by the cell
residence time (the time a mobile user stays, or dwells, in a
cell). Thus, in order to appropriately characterize the channel
holding time, it is necessary to have a good mobility model
for the cell residence time. One approach to modeling the cell
residence time can be had by assuming that a cell has specific
(hexagonal or circular) shape. When combined with specific
distributions of speed and movement direction of a mobile
user it then becomes possible to determine the probability
distribution of cell residence time [10], [17]. However, in
practical systems cell shapes are irregular, and the speed
and direction of mobile users may be hard to characterize.
It is therefore more appropriate to directly model the cell
residence time as a random variable with an appropriate
probability distribution to capture the overall effects of the
cellular shape and the users’ mobility patterns. This approach
has been adopted in the past by a few researchers. Zonoozi and
Dassanayake [39] used the generalized Gamma distribution to
model the cell residence time. Unfortunately, the generalized
Gamma distribution leads to the loss of Markovian property
in the resulting queueing model of the cellular network, which
makes the resulting queueing system intractable. Orlik and
Rappaport [31], [32] modeled the cell residence time as a
SOHYP random variable. The advantage of using the SOHYP
distribution is the preservation of the Markovian property in
the queueing network model. It was shown in [33] that SOHYP
models can be tuned to have the coefficient of variation
of the cell residence time less than, equal to, and greater
than unity, while the exponential (even Erlang) distribution
model for cell residence time only applies to cases where the
coefficients of variation are less than unity. However, it is
not known whether the SOHYP models have the capability of
universal approximations. Moreover, the Laplace transform of
the SOHYP distribution remains a complex rational function.

A good mobility model must satisfy at least the following
two conditions: 1) it must be simple but good enough to
fit field data, and 2) the resulting queueing system model
must still be tractable. The classical Cox model [7], [15],
[26], used in queueing systems in the past is known to
provide a good approximation for general distribution. In
particular, the exponential distribution, the Erlang distribution,
the hyperexponential distribution, and the SOHYP distribution
are all special cases of the Cox distribution models. However,
the Cox models (including SOHYP models) contain too many
parameters to be identified, hence the statistical fitting using a
Cox model is very complicated.

In this paper, we propose a new mobility model, called the
hyper-Erlang distribution model, which satisfies the above two
conditions 1) and 2). We find that the hyper-Erlang distribution
preserves the Markovian property of the resulting queueing
network models and has universal approximation capability,
which will be demonstrated in this paper. We observe that
the above two approximation models (hyper-Erlang or Cox)

share the same attractive property: they all have rational
Laplace transforms and preserve the Markovian property of
the resulting queueing networks, hence the multidimensional
Markov chain theory can be applied to find the required
teletraffic parameters such as the call blocking probabilities.

In this paper we first discuss the hyper-Erlang distribution
model and its universal approximation capability, then we
derive formulae for the (conditional) distribution of channel
holding time with general cell residence time distributions.
We then provide an easy-to-compute procedure when the cell
residence time has rational Laplace transform, in particular for
the hyper-Erlang models. Using our results, we show analyt-
ically that when the cell residence time is not exponentially
distributed and the channel holding time is indeed not expo-
nentially distributed. Surprisingly, a counterintuitive result is
observed: the low variance of the cell residence time leads
to the invalidity of the exponential assumption for channel
holding time. We observe that while for cellular networks the
cell size is large, and hence the variance of the cell residence
time is high, the exponential assumption for channel holding
time may be appropriate for some cellular networks. For the
PCS networks, the cell size becomes much smaller and the
variance of the cell residence time will be lower. Hence, the
exponential assumption is not valid anymore. Therefore, if
field data for cell residence time shows a low variation, the
exponential assumption for the channel holding time in the
teletraffic analysis for PCS networks cannot be used. In this
instance, our analytical results can be conveniently used to
characterize the channel holding time. With the mobility model
for the cell residence time and the analytical results for the
channel holding time we present in this paper, we can study
the resulting queueing systems for the PCS network using the
multidimensional Markov chain models as illustrated in [26].
In this way we can investigate the validity of several classical
analytical results in traffic theory for PCS systems. This paper
takes the first step toward this goal.

II. HYPER-ERLANG DISTRIBUTION MODEL

As mentioned in the previous section, the cell residence time
can be used to characterize the users’ mobility. We observe
that the cell residence time can be treated as a nonnegative
random variable. Hence, a good distribution model for the
random variable will be sufficient for characterizing the users’
mobility. In this section we discuss such a model, thehyper-
Erlang distribution model.

The hyper-Erlangdistribution has the following probability
density function and Laplace transform:

(1)

where
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Fig. 1. Probability density function for Erlang distribution:m = 1, 5, 20, 50, 100.

and are nonnegative integers,
are positive numbers.

We next show that these distribution functions provide
sufficiently general models, i.e., hyper-Erlang distributions are
universal approximators. This can be accomplished by the
following result (in what follows we will use star to denote
the Laplace transformation):

Lemma [24]: Let be the cumulative distribution func-
tion of a nonnegative random variable. Then it is possible to
choose a sequence of distribution functions , each of
which corresponds to a mixture of Erlang distributions, so that

for all at which is continuous. In particular, can
be chosen as

where is the distribution function of an Erlang distribu-
tion with mean and variance (i.e., the distribution
of the sum of exponential random variables each with mean

).
Let and denote the density function and

Laplace transform of , and denote the density
function of . Then we have

(2)

The resulting distribution is called the mixed Erlang distri-
bution. The advantage of using this distribution is that the

coefficients can be determined from the experimental data. We
can use a finite number of terms to approximate the distribution
function. In this case, the resulting distribution approximates
the hyper-Erlang distribution.

In fact, we can intuitively illustrate from the Sampling The-
orem [34] why the distribution provides the universal
approximation to general distribution models. Fig. 1 shows
the density function by varying the shape parameter[see
(26)]. We observe that as the shape parameterbecomes
sufficiently large, the density function approaches the Dirac
function. This can also be shown analytically. Consider the
Erlang distribution with the following density function

This density function attains the maximum value

at the point . Using the Stirling’s
approximation [24]

(where indicates that the ratio of the two sides tends to
unity as ), we obtain

which implies that as . Hence,
approaches the function as sufficiently large. From signal
processing theory [22] we know that thefunction can be
used to sample a function and reconstruct the function from
the sampled data (the Sampling Theorem). We can replace the

function by the Erlang density function with sufficiently large
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Fig. 2. The time diagram for call holding time and cell residence time.

shape parameter, and the resulting approximation is exactly in
the form of the hyper-Erlang distribution.

We remark that the hyper-Erlang distribution model is much
easier to use than the Cox models. Letbe the generic form for
the cell residence time. If is modeled by the hyper-Erlang
distribution as in (1), we can easily find itsth moment given
below

The parameters and can
be found by fitting a number of moments from field data.
Moreover, if the number of moments exceeds the number of
variables, then the least-square method can be used to find the
best fit to minimize the least-square error.

We also point out that hyper-Erlang distribution can be used
to model other time variables such as channel holding time,
interarrival time of calls and call holding time. In this research
we only focus on cell residence time modeling. Specifically,
we model cell residence time instead of channel holding time
directly, since channel holding time can be derived from the
cell residence time distribution and the cell residence time
distribution can also be obtained directly from any other
specific mobility models.

III. CHANNEL HOLDING TIME

The channel holding time distribution depends on the mobil-
ity of users, which can be characterized by the cell residence
time. As the assumption of exponentially distributed cell
residence time is too restrictive for real world systems, we wish
to relax this assumption. In this section, we study the channel
holding time under the condition that the cell residence time is
generally distributed, in particular, hyper-Erlang distributed.

Let the call holding time (i.e., the unencumbered call
holding time of requested connection to a PCS network for a
new call, as in wireline telephony) be exponentially distributed
with parameter . Let be the cell residence time, be
the time between the instant a new call is initiated and the
instant the new call moves out of the cell if the new call
is not completed, and let be the residual life
time distribution of call holding time when the call finishes

th handoff successfully. Let and denote the channel

holding times for a new call and a handoff call, respectively.
Then, from Fig. 2, the channel holding time for a new call
will be

(3)

and the channel holding time for a handoff call is

(4)

Let and have density functions
, and with their corresponding Laplace

transforms , and , respec-
tively, and with cumulative distribution functions

, and , respectively.
From (4) we obtain the probability

or

(5)

where we have used the independency of and , and
the memoryless property of the exponential distribution from
which we have that the distribution of has the same
distribution as . Differentiating (5), we obtain

(6)

From (6), applying Laplace transform, we obtain
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From the above equations, we obtain the expected handoff
call channel holding time we will use to denote theth
derivative of any function at point in the subsequent
development

From (3) and a similar argument, we obtain

Applying Laplace transform, we have

(7)

and the expected new call channel holding time is

The preceding discussion differentiates between new calls
and handoff calls when considering the channel holding times.
If such distinction is not made, we need to consider the
channel holding time distribution for any call (either new
call or handoff call), i.e., the channel holding time for the
merged traffic of new calls and handoff calls, as used in current
literature. We will simply call this the channel holding time,
using no modifiers such as new call or handoff call. Let
denote the channel holding time and the handoff call arrival
rate, and let denote the new call arrival rate. Then, it is
easy to show that with probability and

with probability . Let and be
its density function and the corresponding Laplace transform.
It is easy to obtain

(8)

Summarizing the above we arrive at:
Theorem 1: For a PCS network with exponential call hold-

ing time and Poisson new call arrivals with arrival rate, we
have the following.

1) The Laplace transform of the density function of the new
call channel holding time is given by

(9)

and the expected new call channel holding time is

(10)

2) The Laplace transform of the density function of the
handoff call channel holding time is given by

(11)

and the expected handoff call channel holding time is

(12)

3) Let denote the handoff call arrival rate, then the
Laplace transform of the density function of channel
holding time is given by

(13)

and the expected channel holding time is given by

(14)

When the residual life time of is exponentially
distributed with parameter , then its Laplace transform
is . Taking this into (9), we obtain

which implies that the new call channel holding time is
exponentially distributed with parameter . Similarly,
if the cell residence time is exponentially distributed with
parameter , then the handoff call channel holding time is also
exponentially distributed with parameter . In this case,
the channel holding time is hyperexponentially distributed.
If , then the channel holding time [see (13)] is
exponentially distributed with parameter . In fact, since

is the residual life of , from the Residual Life Theorem
[26], we have

Hence, the channel holding time is exponentially distributed
with parameter when the cell residence time is expo-
nentially distributed.

Based on the field data collected for channel holding time,
Jedrzycki and Leung [19] demonstrated that the channel hold-
ing time is not exponentially distributed and that the log-
normal distribution provides a satisfactory approximation after
the spikes of data are removed (the spikes correspond to the
handoff calls). Orlik and Rappaport [31], [32] interpreted the
distribution reported in [19] as theconditional distribution
given that the call completes in its current cell, and derived
the results for conditional distributions for the channel holding
time when the cell residence time is SOHYP distributed. We
adopt a different approach and use a more general distribution
model for cell residence time. Simple results for the con-
ditional distribution for channel holding time when the cell
residence time is generally distributed are presented next.

Let , and denote the conditional
density functions for new call channel holding time, the hand-
off call channel holding time, and the channel holding time,
respectively, with Laplace transforms , , and

, and with cumulative distribution functions
and .
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We first study the conditional distribution for the handoff
call channel holding time. We have

Differentiating both sides, we obtain the conditional density
function

(15)

We observe that

Taking this into (15), we obtain

Hence,

(16)

In a similar fashion, we obtain the following result for the
new call channel holding time:

The conditional channel holding time distribution
[ ] is the average of the conditional new call channel
holding time distribution and handoff call channel holding time
distribution. In summary, we therefore have

Theorem 2: For a PCS network with exponential call hold-
ing time and Poisson new call arrivals, the conditional dis-
tributions for the new call channel holding time, the handoff
call channel holding time, and the channel holding time can

be characterized by their Laplace transforms as follows:

(17)

(18)

(19)

Let and denote the expected conditional new
call channel holding time, the expected conditional handoff
call channel holding time, and the expected conditional chan-
nel holding time, respectively, then we have

(20)

(21)

(22)

When the residual life is exponentially distributed with
parameter , from (17) we obtain

. Hence, the conditional new call channel holding
time is also exponentially distributed. Moreover, this holding
time has the same distribution as the unconditional new
call channel holding time due to the memoryless property
of the exponential distribution. Similarly, the handoff call
channel holding time is also exponentially distributed if the
cell residence time is exponentially distributed.

In order to apply Theorems 1 and 2, we need to determine
the handoff call arrival rate . This parameter depends on the
new call arrival rate, the new call blocking probability, and the
handoff call blocking probability. Let and denote the
new call and handoff call blocking probabilities, respectively.
Let be the number of handoffs for a call. Its expectation

is also called handoff rate. Using a procedure similar to
the one in [11] and [14], we can obtain the following:

where denotes the set of poles of in the right half of
the complex plane and denotes the residue at the pole

. Since is exponentially distributed with parameter,
hence , from the above we obtain

(23)

Since each unblocked call initiates handoff calls on the
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average, the handoff call arrival rate can be obtained

(24)

From the discussion above we can observe that as long
as and are proper rational functions, then the
Laplace transforms of distribution functions of all channel
holding times (either conditional or unconditional) are all
rational functions (see Theorems 1 and 2). To find the cor-
responding density functions, we only need to find the inverse
Laplace transforms. This can be accomplished by using the
partial fractional expansion [22]. To illustrate the idea, we
present the following procedure. Suppose that is a proper
rational function with poles with multiplicities

. Then can be expanded as

(25)

where the constants can be found easily by the formula

Notice the relationship ( denotes the inverse Laplace
transform operator)

Taking this into (25), we obtain the inverse Laplace transform

We also notice that the inverse Laplace transform of a
rational function is in fact the impulse response of a linear
system in which the rational function is the system transfer
function of the resulting linear system [22] and the cumulative
distribution function is the step response of the linear system.
By studying the impulse response and step response of the
linear system, we can characterize the properties of the channel
holding time. Several ready-to-use software packages for the
study of the impulse response and step response in signals
and systems [22] are available. In the well-known software
package Matlab, the commandsimpulseandstepcan be used
to find the density function and the distribution function.
Therefore, Theorems 1 and 2 can be readily applicable to the
case where the cell residence time distribution is Coxian [26]
or SOHYP [31].

When applying the hyper-Erlang distribution model for cell
residence time, we can in fact reduce the computation further.

As an example, we use Theorem 1 (2) to illustrate this point.
If we substitute with , we obtain

where corresponds to the handoff call channel
holding time when the cell residence time is Erlang distributed
with parameters . Thus, we can concentrate on finding
the algorithm for computing the channel holding time for the
case when the cell residence time is Erlang distributed.

As a final remark in this section, we illustrate the relation-
ship between and . If we are interested in all calls
for a long run (i.e., we have large samples for cell residence
time), the residual life time can be regarded as the residual
life of the cell residence time, as it is the time that a mobile
user spends in the initiating cell (where the call is made). From
the Residual Life Theorem [26], we obtain

where is the average cell residence time. If we only have
small number of samples for cell residence time, then the
Residual Life Theorem may not be appropriate [26] and we
can only use the best distribution fit for from the available
samples, in which case we can regard the cell residence time
sequence as a renewal process [8].

IV. EFFECT OFDISTRIBUTION OF THE CELL RESIDENCE

TIME ON THE CHANNEL HOLDING TIME DISTRIBUTION

It is well known that the exponential distribution is com-
pletely determined by a single parameter, i.e., the average
value. Thus, if we use exponential distribution to model the
cell residence time for the field trials, the fitted distribution
is completely determined by the average value of the field
data. Therefore, this model hardly captures the variation of
the cell residence time for a mobile user. In this case, the
resulting channel holding time, which is also exponentially
distributed, is also completely determined by the average
channel holding time (or the average cell residence time).
In a real situation, however, a mobile user’s cell residence
time significantly deviates from the average value from time
to time and from cell to cell. It is important to understand
how the distribution of the cell residence time affects the
channel holding time distribution. One statistical quantity to
characterize the deviation of the field data from the average
value is the variance. In fact, the variance of the cell residence
time is one of the reasons why the channel holding time is not
exponentially distributed when the cell residence time is not
exponentially distributed.

In this section, we present a case study to show the
applications of our analytical results and analytically show
how variance of cell residence time affects the channel holding
time distribution. We show that when the cell residence time is
not exponentially distributed, the channel holding time is not
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Fig. 3. Probability density function of handoff call channel holding time (solid line) and its exponential fitting (dashed line) when cell residence time
is Erlang distributed with parameter(m; �).

Fig. 4. Probability density function of handoff call channel holding time (solid line) and its exponential fitting (dashed line) when cell residence time
is hyper-Erlang distributed with parameter(m1; m2; �).

exponentially distributed either. In fact, for some cases (where
the variance is small), the approximation using the exponential
distribution is severely inappropriate. This suggests that a
careful study is needed for the channel holding time in
teletraffic analysis.

We first study the channel holding time for the case when
the cell residence time is Erlang distributed. The Erlang
distribution is characterized by its density function and Laplace

transform as follows:

(26)

where is called the scale parameter andis called
the shape parameter. The mean of this Erlang distribution is

and its variance is . When the mean is fixed,
varying the value is equivalent to varying the variance and
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Fig. 5. Conditional probability density function of handoff call channel holding time (solid line) and its exponential fitting (dashed line) when cell
residence time is Erlang distributed with parameter(m; �).

Fig. 6. Probability density function of a lognormal distribution (solid line), its hyper-Erlang approximation (dash line) and its exponential fitting (dashdot line).

larger means smaller variance and lesser spread of the cell
residence time.

Due to the similarity of the formulae for new call and
handoff call, we only study the handoff call channel holding
time. Fig. 3 shows the handoff call channel holding time
probability density functions with different variance of cell
residence time distributed according to Erlang distribution with
the same mean. It can be observed that when the cell residence
time become less spread, the handoff call channel holding time
shows severe mismatch to the exponential distribution. This

implies that we can not simply apply the exponential distribu-
tions for handoff call channel holding time during the network
study of PCS networks where mobility is a major issue.

Next we study the case when the cell residence time is
hyper-Erlang distributed with two terms as follows:

The Laplace transform of the handoff call channel holding
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time can be written as

This representation illustrates that the distribution of the hand-
off call channel holding time is in fact an average of two
distributions of handoff call channel holding times, each of
which is obtained from Erlang distributed cell residence time
cases. The mean value of the cell residence time for this case is
still , which is the same as in the Erlang case. Different values
of and signify the different variances. Fig. 4 shows
the distribution plotting. When and choose different
values, the variances of cell residence time are different and the
handoff call channel holding time is no longer exponentially
distributed.

Fig. 5 shows the conditional probability density function for
the handoff call channel holding time when the cell residence
time is Erlang distributed. From this example, we observe
the conditional distribution for handoff call channel holding
time is a better match to the exponential distribution when the
variance of cell residence time is large. However, when the
variance becomes small, i.e., the cell residence time is less
spread, this match disappears.

From the scenario of the field data [2], [4], [19]–[21],
we observe that the channel holding time probability density
function have one or multiple peaks, which shows why the
channel holding time is not exponentially distributed, while
the hyper-Erlang distribution is a better model. Lognormal
distribution has been used [4], [19] for statistical fitting, we
demonstrate that hyper-Erlang distribution can be used to ap-
proximate lognormal distribution. Fig. 6 shows the lognormal
distribution from field data [21] for channel holding time and
its exponential and hyper-Erlang fits. Hence with the field
data, we can observe that the hyper-Erlang distribution indeed
provides a very good fit to the lognormal distribution.

V. SUMMARY

This paper proposed a new mobility model and analytically
characterized the distribution of the channel holding time
under a realistic assumption, whereby the cell residence time
is generally distributed. Our modeling effort focused on the
characterization of the channel holding time under the assump-
tion that the distribution of the cell residence time has rational
Laplace transform. Hence, our analytical results are readily
applicable to the hyper-Erlang distribution models for the cell
residence time. The analytical results presented in this work
provide a general framework for further study of teletraffic
aspects in PCS networks in which classical assumptions do
not hold.
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