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Teletraffic Analysis and Mobility
Modeling of PCS Networks
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Abstract—Channel holding time is of primary importance in  order to accomplish this, we need to have an appropriate traffic
teletraffic analysis of PCS networks. This quantity depends on mgodel to reflect the actual traffic situation and the user mobility
user’s mobility which can be characterized by the cell residence patterns.

time. In this paper we show that when the cell residence time For th ke of . d bili .
is not exponentially distributed, the channel holding time is not or the sake of convenience and tractability, most previous

exponentially distributed either, a fact also confirmed by available traffic analysis made the assumption that the channel holding
field data. In order to capture the essence of PCS network time is distributed exponentially [9], [10], [17], [28], [37], [38].
behavior, including the characterization of channel holding time, However, this assumption is not valid for PCS networks. For

a correct mobility model is therefore necessary. The new model w,oq0 natworks, Guerin [16] demonstrated that when the rate
must be good enough to fit field data, while at the same time

resulting in a tractablequeueing system. In this paper we propose ©Of direction change is “low,” the channel holding time is no
a new mobility model, called thehyper-Erlang distribution model longer exponentially distributed. Bolotin [1] showed that the
which is consistent with these requirements. Under the new channel holding time for CCS (common channel signaling)
[g;‘iﬂs‘;ﬁcgpﬁ%&eﬁ%‘a'e?]ses;‘;wpz?sqrguttgij Tv%dggr:\r;ew;rigl] H‘C‘;Cg' networks is no longer exponentially distributed either. kin
sults for the chann?al hoIdir?/g time distribution, which areyreadily gl. [2.8] gave a -condl'.tlor? under Wh'.Ch the chanr?el holdl_ng
applicable to the hyper-Erlang distribution models. Using the time is exponentially distributed, that is, the cell residence time
derived analytical results we demonstrate how the distribution of needs to be exponentially distributed. Recent experiments with
cell residence time affects the channel holding time distribution. operational systems and field data showed that channel holding
The results presented in this paper can provide guidelines for imes for cellular systems and mobile radio systems are
field data processing in PCS network design and performance . o . . .
evaluation. not exponentially distributed. Using field data Jedrzycki and
Leung [19] observed that channel holding time distribution for
cellular telephony systems is not exponential, and statistically
showed that the lognormal distribution provided a better
fit for the field data for channel holding time. Orlik and
|. INTRODUCTION Rappaport [32] observed that the data profile used in [19]

HANNEL holding (occupancy) time is an importantc@n lso be approximately modeled by the SOHYP (the Sum
quantity in teletraffic analysis of PCS networks. Thi§f Hyperexponential) distribution. Barceét al. [3], [4], [20],
quantity is needed to derive key network design parametéfd] conducted a series of experiments for mobile radio and
such as the new call blocking probability and the handoff cfllular systems and concluded that channel holding times
blocking probability [17]. Bolotin [1] studied common-channefNd related time variables are not exponc_antl_ally_ distributed.
signaling (CCS) systems and found that channel throughgdtey further showed that the lognormal distribution and the

drops significantly more under an exponential call holdingixture of Erlang distributions provided better statistical fitting
time distribution model than under the actual measured cilthe experimental data. In summary, the above research and
holding time distribution. This observation is expected to pexperiments demonstrate that the exponential assumption for
true for PCS networks. Thus, it is important to realisticallghannel holding time is not appropriate. Although it is a well-
characterize channel holding time in PCS networks and itown fact in queueing theory [25] that blocking probability
vestigate how its distribution affects PCS network traffic. IR #/G/m/m is insensitive to service time distribution (cor-
responding, in our case, to channel holding time), this may not
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it is necessary to study channel holding time for PCS netwoskare the same attractive property: they all have rational
performance evaluation under more realistic situations. Laplace transforms and preserve the Markovian property of
In this paper we deal with channel holding time (i.e., ththe resulting queueing networks, hence the multidimensional
time a call spends in a cell) under more general assumptioMarkov chain theory can be applied to find the required
We observe that channel holding time depends on the usdgdetraffic parameters such as the call blocking probabilities.
mobility, which in turn can be characterized by the cell In this paper we first discuss the hyper-Erlang distribution
residence time (the time a mobile user stays, or dwells, inn@odel and its universal approximation capability, then we
cell). Thus, in order to appropriately characterize the chanrigrive formulae for the (conditional) distribution of channel
holding time, it is necessary to have a good mobility modéiolding time with general cell residence time distributions.
for the cell residence time. One approach to modeling the ci#e then provide an easy-to-compute procedure when the cell
residence time can be had by assuming that a cell has spec#igidence time has rational Laplace transform, in particular for
(hexagonal or circular) shape. When combined with specitite hyper-Erlang models. Using our results, we show analyt-
distributions of speed and movement direction of a mobileally that when the cell residence time is not exponentially
user it then becomes possible to determine the probabilitistributed and the channel holding time is indeed not expo-
distribution of cell residence time [10], [17]. However, innentially distributed. Surprisingly, a counterintuitive result is
practical systems cell shapes are irregular, and the spedgerved: the low variance of the cell residence time leads
and direction of mobile users may be hard to characterie. the invalidity of the exponential assumption for channel
It is therefore more appropriate to directly model the cellolding time. We observe that while for cellular networks the
residence time as a random variable with an appropriatell size is large, and hence the variance of the cell residence
probability distribution to capture the overall effects of théime is high, the exponential assumption for channel holding
cellular shape and the users’ mobility patterns. This approaidtne may be appropriate for some cellular networks. For the
has been adopted in the past by a few researchers. ZonooziB@G& networks, the cell size becomes much smaller and the
Dassanayake [39] used the generalized Gamma distributiorvasiance of the cell residence time will be lower. Hence, the
model the cell residence time. Unfortunately, the generalizedponential assumption is not valid anymore. Therefore, if
Gamma distribution leads to the loss of Markovian properfield data for cell residence time shows a low variation, the
in the resulting queueing model of the cellular network, whicexponential assumption for the channel holding time in the
makes the resulting queueing system intractable. Orlik ateletraffic analysis for PCS networks cannot be used. In this
Rappaport [31], [32] modeled the cell residence time asimstance, our analytical results can be conveniently used to
SOHYP random variable. The advantage of using the SOHYRaracterize the channel holding time. With the mobility model
distribution is the preservation of the Markovian property ifor the cell residence time and the analytical results for the
the queueing network model. It was shown in [33] that SOHY€&hannel holding time we present in this paper, we can study
models can be tuned to have the coefficient of variatidhe resulting queueing systems for the PCS network using the
of the cell residence time less than, equal to, and greafultidimensional Markov chain models as illustrated in [26].
than unity, while the exponential (even Erlang) distributiol this way we can investigate the validity of several classical
model for cell residence time only applies to cases where tAgalytical results in traffic theory for PCS systems. This paper
coefficients of variation are less than unity. However, it itakes the first step toward this goal.
not known whether the SOHYP models have the capability of
universal approximations. Moreover, the Laplace transform of [I. HYPER-ERLANG DISTRIBUTION MODEL
the SOHYP distribution remains a complex rational function. As mentioned in the previous section, the cell residence time

t A googl'r.nobl.llti/ model leI)St sghsfly at'; least tge followrl]ngcan be used to characterize the users’ mobility. We observe
wo conditions: 1) it must be simple but good enough tg o the cell residence time can be treated as a nonnegative
fit field data, and 2) the resulting queueing system modgl,yom variable. Hence, a good distribution model for the

must still be tractable. The classical Cox model [7], [15kanqom variable will be sufficient for characterizing the users’

[26]’_ used in queueing_ systems in_the past is_ kn_own Fﬂobility. In this section we discuss such a model, kiyper-
provide a good approximation for general distribution. "Erlang distribution model

particular, the exponential distribution, the Erlang distribution, 1,4 hyper-Erlangdistribution has the following probability
the hyperexponential distribution, and the SOHYP distributio&bnsity function and Laplace transform:
are all special cases of the Cox distribution models. However,
the Cox models (including SOHYP models) contain too many (mym;)migmi—L —
parameters to be identified, hence the statistical fitting using a J%(t) = > o T t20
Cox model is very complicated. i;

In this paper, we propose a new mobility model, called the ., mig \
hyper-Erlang distribution modelvhich satisfies the above two Jres) = Z i <3 + mmi>
conditions 1) and 2). We find that the hyper-Erlang distribution =t
preserves the Markovian property of the resulting queueitgiere
network models and has universal approximation capability, M
which will be demonstrated in this paper. We observe that a; 20, Z a; =1
the above two approximation models (hyper-Erlang or Cox) i=1

1)
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probability density

Fig. 1. Probability density function for Erlang distributiom = 1, 5, 20, 50, 100.

and M, my, mo, ---, mys are nonnegative integerg;, 12, coefficients can be determined from the experimental data. We
-+, mp are positive numbers. can use a finite number of terms to approximate the distribution
We next show that these distribution functions providiinction. In this case, the resulting distribution approximates
sufficiently general models, i.e., hyper-Erlang distributions atee hyper-Erlang distribution.
universal approximators. This can be accomplished by theln fact, we can intuitively illustrate from the Sampling The-
following result (in what follows we will use star to denote orem [34] why the distribution,,,(¢t) provides the universal
the Laplace transformation): approximation to general distribution models. Fig. 1 shows
Lemma [24]: Let G(¢) be the cumulative distribution func- the density function by varying the shape parametefsee
tion of a nonnegative random variable. Then it is possible {86)]. We observe that as the shape parametebecomes
choose a sequence of distribution functiafs,(¢), each of sufficiently large, the density function approaches the Dérac
which corresponds to a mixture of Erlang distributions, so thainction. This can also be shown analytically. Consider the
] Erlang distribution with the following density function
lim G,,(t) = G() )
m—0o0 nltnl_

fe(t) = ()™ 477 et t>0.

for all ¢ at whichG(¢) is continuous. In particulaz,,, (¢) can (m —1)! ’

be chosen as . : . . .
This density function attains the maximum value

Grn(t) = i |:G<£> - G<k7n;1>:| an(t), t Z 0 f _ mn(m _ 1)771—16—(771—1)

k=1 (m - 1)'

whereG¥ () is the distribution function of an Erlang distribu-at the POiNttnax = (m — 1)/(mn). Using the Stirling’s
tion with meank/m and variance:/m? (i.e., the distribution approximation [24]
of the sum oft exponential random variables each with mean
1/m). O n! ~ V2 /20

Let g.(t) and g:,(s) denote the density function and
Laplace transform of,,(¢), and ¢g*,(t) denote the density
function of G* (¢). Then we have

(where ~ indicates that the ratio of the two sides tends to
unity asn — oo), we obtain

n
> k E—1 ] fmax ~ = \/E
gm(t) = Z [G<E> - G<T>}9iz(t) Vm
k=1 which implies thatfi,.x — oo asm — oo. Hence, f.(¢)

() Z [G(%) 3 G<k - 1)} < k/m ) L © approaches thé function asm sufficiently large. From signal

m s+k/m processing theory [22] we know that tlefunction can be
used to sample a function and reconstruct the function from

The resulting distribution is called the mixed Erlang distrithe sampled data (the Sampling Theorem). We can replace the

bution. The advantage of using this distribution is that th&function by the Erlang density function with sufficiently large

k=1
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n 2 m m+1

Fig. 2. The time diagram for call holding time and cell residence time.

shape parameter, and the resulting approximation is exactlyhiolding times for a new call and a handoff call, respectively.

the form of the hyper-Erlang distribution. Then, from Fig. 2, the channel holding time for a new call
We remark that the hyper-Erlang distribution model is muchill be

easier to use than the Cox models. tbe the generic form for

the cell residence timg. If ¢ is modeled by the hyper-Erlang tnp, = min{te, 11} (3)
gleslt(;:ISutlon as in (1), we can easily find iksh moment given and the channel holding time for a handoff call is
M thh = Inin{Trna trn}- (4)
‘ e ;+k—1)! &
Etkz—lk*(k)oz 1(77747 T k. . .
"] = (=1)" o (0) Z @ (m; — 1! (mim;) Lett., tm, 71, thr, @andt,, have density functiong.(t), f(¢),

=t £+, frn(t), and f.;,(¢) with their corresponding Laplace

The parametersy;, m;, and 7; (i = 1,2,---, M) can transformsf(s), f*(s), fi(s), fin(s), and f7,(s), respec-
be found by fitting a number of moments from field dataively, and with cumulative distribution functions.(¢), F(t),
Moreover, if the number of moments exceeds the number Bf(¢), F;,;.(t), and F,,;,(t), respectively.
variables, then the least-square method can be used to find therom (4) we obtain the probability
best fit to minimize the least-square error.

We also point out that hyper-Erlang distribution can be uselr(tnn < 1)
to model other time variables such as channel holding time, = Pr(r,,, <t ort¢,, <t)

interarrival time of calls and call holding time. In this research  — py(;, . < ¢) + Pr(t,,, < t) — Pr(ry < t,tm < 1)

we only focus on cell residence time modeling. Specifically, B B L

we model cell residence time instead of channel holding time — Pr(rm S 1) + Pr(tm < t) = Pr(rm < ) t(tm <)
directly, since channel holding time can be derived from the = Pr(tc <t)+Pr(tm <t) — Pr(te <t) Pr(t, <t) (5)

cell residence time distribution and the cell residence tim
distribution can also be obtained directly from any oth
specific mobility models.

ehere we have used the independencyrgf and ¢,,, and
ethe memoryless property of the exponential distribution from
which we have that the distribution of,, has the same
distribution ast.. Differentiating (5), we obtain
[ll. CHANNEL HOLDING TIME

The channel holding time distribution depends on the mobil-fhh( ) = Felt) + S(8) = folt) Pr(tm <) —Pr(te < H)F (1)
ity of users, which can be characterized by the cell residence = f.(t / flr)ydr + f(t / fo(7) dr. (6)
time. As the assumption of exponentially distributed cell
residence time is too restrictive for real world systems, we wish g, (6), applying Laplace transform, we obtain
to relax this assumption. In this section, we study the channel
holding time under the condition that the cell residence time is . e « R '
generally distributed, in particular, hyper-Erlang distributed. Tials) =17 () + fe(s) _/0 ¢ f(t)/ Je(r)dr dt

Let the call holding timet. (i.e., the unencumbered call = _, t
holding time of requested connection to a PCS network for a - / e / J(r)drdt
new call, as in wireline telephony) be exponentially distributed 0

o0 t
with parameter.. Let ¢, be the cell residence time, be = f*(s)+ f1(s) —u/ e—(s+u)t/ f(r)drdt
the time between the instant a new call is initiated and the - 0 0
instant the new call moves out of the cell if the new call _/ e—st(l _ e—pt)f(t) dt
is not completed, and let,, (m > 1) be the residual life 0
time distribution of call holding time when the call finishes =1 st

mth handoff successfully. Lét,;, andt;;, denote the channel S+p o s+p
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From the above equations, we obtain the expected handoff and the expected handoff call channel holding time is
call channel holding time we will use” () to denote théth

derivative of any functiom(z) at pointz in the subsequent Eltwn] = 1 (1— f*(u). (12)
development H

“(1) 1 3) Let A, denote the handoff call arrival rate, then the
Eltun] = = frr, " (0) = m (1= f"(m)- Laplace transform of the density function of channel
holding time is given by
From (3) and a similar argument, we obtain by
Fu) = 240) [ g+ 50 [ ) = S o e, 89
nh = (el r + r (el - . . . .
’ t e t e and the expected channel holding time is given by
Applying Laplace transform, we have A w
PRYIng -ap Eltr] = —— (1= fr ()
fi) =+ st ™ S
;:h S) = + 1\b 8+N 7 )‘h
S+ s+p + —— (1= f . 14
o eI AN
and the expected new call channel holding time is When the residual life timer; of ¢; is exponentially
@ 1 . distributed with parametet,., then its Laplace transforify (s)
Eltnn] = ~for, (0) = o [ = fr ()l is 1/(s + ). Taking this into (9), we obtain
The preceding discussion differentiates between new calls ¥, (s) = —~ prs __ptm
and handoff calls when considering the channel holding times. st (s+p)(s+ptp)  s+ptpn

If such distinction is not made, we need to consider thghich implies that the new call channel holding time is
channel holding time distribution for any call (either nevexponentially distributed with parametgr+ ... Similarly,
call or handoff call), i.e., the channel holding time for théf the cell residence time; is exponentially distributed with
merged traffic of new calls and handoff calls, as used in currgsirameter,, then the handoff call channel holding time is also
literature. We will simply call this the channel holding timeexponentially distributed with parametgr+ 7. In this case,
using no modifiers such as new call or handoff call. kgt the channel holding time is hyperexponentially distributed.
denote the channel holding time aigd the handoff call arrival If 4, = 5, then the channel holding time [see (13)] is
rate, and let\ denote the new call arrival rate. Then, it issxponentially distributed with parametgr+ 7. In fact, since
easy to show that;, = t,,;, with probability A\/(A + An) and 7, is the residual life oft;, from the Residual Life Theorem
tn, = tps With probability A, /(A+Ar). Let fi.(t) and f;:(s) be  [26], we have

its density function and the corresponding Laplace transform.

: - . ni—f ) _ n .
It is easy to obtain fi(s) = : =orn [ (s).

fun@) = A Fan(t) + A fun(®) Hence, the channel holding time is exponentially distributed

A+ An A+ An with parameter: + n when the cell residence time is expo-

A nentially distributed.

fu(s) = S frn(s) + ST S (s). (8)  Based on the field data collected for channel holding time,
. . Jedrzycki and Leung [19] demonstrated that the channel hold-

Summarizing the above we arrive at: ing time is not exponentially distributed and that the log-

Theorem 1: For a PCS network with exponential call holdnormal distribution provides a satisfactory approximation after
ing time and Poisson new call arrivals with arrival ratewe the spikes of data are removed (the spikes correspond to the

have the following. handoff calls). Orlik and Rappaport [31], [32] interpreted the
1) The Laplace transform of the density function of the newistribution reported in [19] as theonditional distribution
call channel holding time is given by given that the call completes in its current ¢edind derived

the results for conditional distributions for the channel holding

Ton(s) = . j: p + ﬁ fr(s+p) (9) time when the cell residence time is SOHYP distributed. We

adopt a different approach and use a more general distribution
and the expected new call channel holding time is model for cell residence time. Simple results for the con-
ditional distribution for channel holding time when the cell
* 1 id time is generally distributed are presented next
Elt,] = — Wy = 211 — (). 10y residence ti g y p .
(o] Jui(0) 1= frwl (10) Let fenn(t), fenn(t), and f.n(t) denote the conditional
density functions for new call channel holding time, the hand-
Bff call channel holding time, and the channel holding time,
respectively, with Laplace transformg' , (s), f,,(s), and
" 1 s N f5.(s), and with cumulative distribution functions.,, (¢)
— 11 ch ’
fhh(s) 3+N + 3+N f (S+I’L) ( ) Fchh(t)a and Fch(t)-

2) The Laplace transform of the density function of th
handoff call channel holding time is given by
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We first study the conditional distribution for the handofbe characterized by their Laplace transforms as follows:
call channel holding time. We have

Fchh(h) = Pl“(thh S h|7’m S tm) f:nh(S) B s :f K . : Ifr‘;’f(—;)ﬁb) (17)
L oo *
. /0 fe(t) /t f(r)drdt n(s) =73 i u <>\ +A A : Ifrﬁ;*(;)u)
Finzi S )

fe@ = F(8)] dt
0 ..
Pr(rm < tm) : Let 7.1, Te11, andT,; denote the expected conditional new
call channel holding time, the expected conditional handoff
Differentiating both sides, we obtain the conditional densityall channel holding time, and the expected conditional chan-

function nel holding time, respectively, then we have
_ LWL = F(W)] #(1)
fchh(h) - PI‘(Trn S trn) " (15) Tcnh — l + M (20)
We observe that Ton = 1 + i (21)
o o 1= ()
) B (1) *(1)
Pr(rm < tm) = / / F@) fo(r) dr dt 1 A () Ao ()
Tc , = — + . —+ . (22
o Jo L W T—fr(pw) A+ 1—f(p) (22)

— [ s ear
0 When the residual life-; is exponentially distributed with
—1_ / FHe tdt = 1— f*(u). parameten,., from (17) we obtainf* , (s) = (i + pr) /(s +
0 © + ). Hence, the conditional new call channel holding
time is also exponentially distributed. Moreover, this holding

Taking this into (15), we obtain ) A o
time has the same distribution as the unconditional new

[1— F(h)|pe—H" call channel holding time due to the memoryless property

Jern(h) = T of the exponential distribution. Similarly, the handoff call

channel holding time is also exponentially distributed if the

Hence, cell residence time is exponentially distributed.

o0 In order to apply Theorems 1 and 2, we need to determine

u/ e G — F(h)] dh the handoff call arrival raté,. This parameter depends on the

Jonn(s) = —2 1= /() new call arrival rate, the new call blocking probability, and the

1 p ! handoff call blocking probability. Lep, and p; denote the
p fr(s+mp) : L :
i u Ty ) (16) new call and handoff call blocking probabilities, respectively.

Let H be the number of handoffs for a call. Its expectation
In a similar fashion, we obtain the following result for theF’[H] is also called handoff rate. Using a procedure similar to

new call channel holding time: the one in [11] and [14], we can obtain the following:
[1 — Fn(h)|peHh f2(s)
fcnh(h) = - FIHl = —(1 - A Res T : —S
- ) (H == =r0) 3 B G s g Y
o s+p 1= fHp) whereo,. denotes the set of poles §f(—s) in the right half of

The conditional channel holding time distributiofy, (¢) the ComP'eX plfsme anHBS'*:,P den-ote.s the re§|due at the pole
= (s)] is the average of the conditional new call channel = P- Sincet. is exponentially distributed with parametey
holding time distribution and handoff call channel holding tim8encef:(s) = u/(s + ), from the above we obtain
distribution. In summary, we therefore have

Theorem 2: For a PCS network with exponential call hold- E[H] = (A —po) i) (23)
ing time and Poisson new call arrivals, the conditional dis- 1—(1—pp)f*(p)
tributions for the new call channel holding time, the handoff

call channel holding time, and the channel holding time c&Bince each unblocked call initiatég H] handoff calls on the
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average, the handoff call arrival rate can be obtained As an example, we use Theorem 1 (2) to illustrate this point.
If we substitutef*(s) with f;_(s), we obtain
(L= po) S (1)
AL = AE[H]| = ! . (24) M . m;
[H] 1= —pp)f(p) fl*i(s)zzai[ by < min; ) }
" s+ s+ p\ s+

i=1

From the discussion above we can observe that as long M
as f*(s) and f*(s) are proper rational functions, then the = Z i f2(s; mi, i)
Laplace transforms of distribution functions of all channel P} '
holding times (either conditional or unconditional) are all
rational functions (see Theorems 1 and 2). To find the cd¥here f&(s; mi, 1;) corresponds to the handoff call channel
responding density functions, we only need to find the inverQQld'ng time when the cell residence time is Erlang dlst_nbgted
Laplace transforms. This can be accomplished by using t§dh parametergm;, ;). Thus, we can concentrate on finding

partial fractional expansion [22]. To illustrate the idea, wihe algorithm for computing the channel holding time for the

resent the following procedure. Suppose §{al is a proper ¢3¢ whgn the cell rgsidgnce ti.me Is E_rlang distributed. .
P gp PP Yia brop As a final remark in this section, we illustrate the relation-

rational function with pole®, po, - - -, pi With multiplicities . i N : .
n1, na, -+, ny.. Theng(s) can be expanded as ship betweery; (_s) and f*(s). If we are interested in all c_aIIs
for a long run (i.e., we have large samples for cell residence
ko i time), the residual life time can be regarded as the residual
g(s) = Z Z Ajj — (25) life of the ce!l res@e_ch time, as it is the time that a mobile
o1 = (s 4 pi)m user spends in the initiating cell (where the call is made). From
the Residual Life Theorem [26], we obtain
where the constantd;; can be found easily by the formula ) o[l — £(s)]
fr(s) = T2

s

) wherel/n is the average cell residence time. If we only have
small number of samples for cell residence time, then the
Residual Life Theorem may not be appropriate [26] and we
can only use the best distribution fit for from the available

esamples, in which case we can regard the cell residence time

& .
Aig = o5 s +pi)" g(s)] .
F=0,1,-+,4, i=1,2 - k

Notice the relationship 4~ denotes the inverse Laplac
transform operator)

sequencery, to, t3, --- as a renewal process [8].
1r.J dj 1
LT f(s)] = p7e L]} IV. EFFECT OFDISTRIBUTION OF THE CELL RESIDENCE
y TIME ON THE CHANNEL HOLDING TIME DISTRIBUTION
-1 I -3 . . . . . .
L7 (s +8) =17 e " It is well known that the exponential distribution is com-

pletely determined by a single parameter, i.e., the average

Taking this into (25), we obtain the inverse Laplace transformalue. Thus, if we use exponential distribution to model the
cell residence time for the field trials, the fitted distribution

m; & [ is completely determined by the average value of the field

ij < —m) data. Therefore, this model hardly captures the variation of

the cell residence time for a mobile user. In this case, the

_ ) resulting channel holding time, which is also exponentially
We also notice that the inverse Laplace transform of Jstributed, is also completely determined by the average

rational function is in fact the impulse response of a lineghannel holding time (or the average cell residence time).
system in which the rational function is the system transfgf 5 real situation, however, a mobile user's cell residence
function of the resulting linear system [22] and the cumulatiigye significantly deviates from the average value from time
distribution function is the step response of the linear systegg. time and from cell to cell. It is important to understand
By studying the impulse response and step response of Hify the distribution of the cell residence time affects the
linear system, we can characterize the properties of the chard¥@nnel holding time distribution. One statistical quantity to
holding time. Several ready-to-use software packages for ifiaracterize the deviation of the field data from the average
study of the impulse response and step response in signalfie is the variance. In fact, the variance of the cell residence
and systems [22] are available. In the well-known softwatime is one of the reasons why the channel holding time is not
package Matlab, the commaniispulseandstepcan be used exponentially distributed when the cell residence time is not
to find the density function and the distribution functionexponentially distributed.
Therefore, Theorems 1 and 2 can be readily applicable to then this section, we present a case study to show the
case where the cell residence time distribution is Coxian [2&pplications of our analytical results and analytically show
or SOHYP [31]. how variance of cell residence time affects the channel holding
When applying the hyper-Erlang distribution model for cellime distribution. We show that when the cell residence time is
residence time, we can in fact reduce the computation furthanot exponentially distributed, the channel holding time is not
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Fig. 3. Probability density function of handoff call channel holding time (solid line) and its exponential fitting (dashed line) when cell residence t
is Erlang distributed with parametdnn, n).
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exponentially distributed either. In fact, for some cases (whetansform as follows:

the variance is small), the approximation using the exponential mpm—1 m

o ee R : . ; Bt o 8

distribution is severely inappropriate. This suggests that a f(t) = CEDE fr(s) = Py (26)
careful study is needed for the channel holding time in )

teletraffic analysis. where 3 = mn is called the scale parameter andis called

We first study the channel holding time for the case whehe shape parameter. The mean of this Erlang distribution is
the cell residence time is Erlang distributed. The Erlang and its variance isl/(mn?). When the meam is fixed,
distribution is characterized by its density function and Laplasgrying the valuen is equivalent to varying the variance and
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Fig. 6. Probability density function of a lognormal distribution (solid line), its hyper-Erlang approximation (dash line) and its exponergiédiéighdot line).

largerm means smaller variance and lesser spread of the delplies that we can not simply apply the exponential distribu-
residence time. tions for handoff call channel holding time during the network

Due to the similarity of the formulae for new call andstudy of PCS networks where mobility is a major issue.
handoff call, we only study the handoff call channel holding Next we study the case when the cell residence time is
time. Fig. 3 shows the handoff call channel holding timbyper-Erlang distributed with two terms as follows:
probability density functions with different variance of cell
residence time distributed according to Erlang distribution with . min \ man \
the same mean. It can be observed that when the cell residence Fs) = al(s +m ) “ < + ) )

11 s+ man

time become less spread, the handoff call channel holding time
shows severe mismatch to the exponential distribution. Thitie Laplace transform of the handoff call channel holding
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time can be written as

my
* H S
h = + )
fun(s) al{ st i <s+m177> }

S+ p
mamn

I,L s mo
+ o2 + . .
S+ s+ u S+ mamn

man

(1]

[2]
(3]

This representation illustrates that the distribution of the hand[zl]

off call channel holding time is in fact an average of two

distributions of handoff call channel holding times, each of
which is obtained from Erlang distributed cell residence timd®l

cases. The mean value of the cell residence time for this casejés

still , which is the same as in the Erlang case. Different values
of m; andms signify the different variances. Fig. 4 shows !

the distribution plotting. Whenn; and m, choose different

(8]

values, the variances of cell residence time are different and th&
handoff call channel holding time is no longer exponentially

distributed.

[10]
Fig. 5 shows the conditional probability density function for

the handoff call channel holding time when the cell residenger]
time is Erlang distributed. From this example, we observe
the conditional distribution for handoff call channel holding, ,
time is a better match to the exponential distribution when the
variance of cell residence time is large. However, when the
variance becomes small, i.e., the cell residence time is 1¢&¥

spread, this match disappears.

From the scenario of the field data [2], [4], [19]-[21],

[14]

we observe that the channel holding time probability density
function have one or multiple peaks, which shows why thig5]

channel holding time is not exponentially distributed, whil?
the hyper-Erlang distribution is a better model. Lognorm

i

distribution has been used [4], [19] for statistical fitting, wél7]
demonstrate that hyper-Erlang distribution can be used to ap-
proximate lognormal distribution. Fig. 6 shows the lognormal

distribution from field data [21] for channel holding time and8l
its exponential and hyper-Erlang fits. Hence with the fielﬂg]
data, we can observe that the hyper-Erlang distribution indeed

provides a very good fit to the lognormal distribution.

V. SUMMARY

[20]

This paper proposed a new mobility model and analyticallg1]

characterized the distribution of the channel holding tims,,

under a realistic assumption, whereby the cell residence tifag]
is generally distributed. Our modeling effort focused on the

characterization of the channel holding time under the assumpn
tion that the distribution of the cell residence time has rational

Laplace transform. Hence, our analytical results are readIRp!
applicable to the hyper-Erlang distribution models for the cefg;
residence time. The analytical results presented in this work
provide a general framework for further study of teletraffi€’]
aspects in PCS networks in which classical assumptions ge

not hold.
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