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Analytical Generalized Results for Handoff Probability in Wireless Networks
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Abstract—In this letter we present analytical results for handoff ~ putation of the handoff rate and handoff traffic rate [5], [11].
probability for wireless networks under assumption that the \We derive formulas for handoff probability for the cases where
ﬁilmmgggg;?y 2221;E?alslilIfc)rfnill:jlggc;r?rg:o%rt; r?e” dgfgrni;i'éy the call holding time and cell residence time are distributed with
when the call holding time and cell residence time have rational general distributions. We then derive easily computable results
Laplace transforms. for the cases where the call holding time and cell residence time

Index Terms—Call holding time, cell residence time, handoff have rational Laplace transforms.

probability, wireless networks.
Il. HANDOFF PROBABILITY

Handoff probability is defined as the probability that a call
needs at least one more handoff during its remaining life time.
T ELETRAFFIC analysis for wireless networks, in particit characterizes whether an on-going call completes its session

ular, for Personal Communications Services (PCS), playfthe current cell or not. Obviously, this probability is useful
very important role in the network dimensioning and resourgg dimensioning resources in the neighboring cell. Depending
provisioning (see [4], [5], [10], and references therein). FQyn whether a call is a new call or a handoff call, we call the
these systems, contrary to the classical modeling assumptigpghability thehandoff probability for a new calfNHOP) or
of telephony systems, field trials show that call holding timehe handoff probability for a handoff calHHOP).
cell residence time and channel h0|d|ng time are no IongerLet the call ho|d|ng t|met(1 (i_e_, the unencumbered call
exponentially distributed [1], [7], [10]. We observe that th@yolding time of requested connection to a wireless network for
channel holding time depends on the users’ mobility, which new call, as in wireline telephony) be generally distributed
in turn can be characterized by the cell residence time (dwglith meant /. Lett,, be the cell residence time in theth cell
time), the time that a mobile user stays in a cell. Differen§ yser transverses during its call life, be the time between
services provided by the wireless networks are changing #p instant a new call is initiated and the instant the new call
calling habits of users, hence the call holding time (i.e., thfioves out of the cell if the new call is not completed, and let
time for a user connection requested by the user) is no longer (,; > 1) be the residual life time distribution of call holding
exponentially distributed. In order to appropriately characteriggne when the call finishes thauth handoff successfully. Let
performance metrics such as handoff probability, it is therefoge ¢ and+; have density functiong.(t), f(¢), and f,.(¢)
necessary to have an appropriate distribution model for the G@uh thelr corresponding Laplace transforfig(s), f*(s), and
residence time and call holding time to reflect the mobility of+ (s
the users and the calling habits of users in a way consistent Wltl’\/\/e first study the handoff probability for a new call. Let
field data. The distribution models with rational Laplace trangtenote the set of poles ¢f (—s) in the right half of the com-
forms, such as hyper-Erlang distribution [4] and the SOHYRex plane. Let?, denote the handoff probability for a new call
distribution [10], can be used due to their generality of fittingNHOP). Since a new call needs at least another handoff if and
field data. Moreover, such distribution models preserve ﬂaﬁ”y if the call holding timet, is larger than the residual cell

Markovian property of queueing network models desirable fegsidence time., hence we have (using inverse Laplace trans-
obtaining analytical results for call blocking performance [4].form and the Residue Theorem [8])

In this paper, we use general distribution models for the mo-
bility and call holding time in order to obtain analytical charac- P, =Pi(r; <t.) / fo(w / £o(y) dy da
terization of several performance parameters. We concentrate on

. INTRODUCTION

the handoff probability in this paper. The handoff probability is atjoo o
the probability that a call in a cell needs at least another handoff 27” ; A fc dy| dx ds
. . . . . T— ]
before its completion. It is an important quantity useful for the 1 ,,JUOO
design of predictive handoff schemes [2], [3] and for the com- = _—_ fc e dr ds
271'] g—joo
g4jo0
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Fig. 1. The time diagram for call holding time and cell residence time.

Next we derive the handoff call handoff probability. This 3" Res OO Fr(=s)
guantity is important as it allows us to monitor a call in progress ¢
and plan ahead for the next handoff of the call. I&tk) = e " .
denote the probability that a handoff call aftér— 1)th handoff Res M fx(=s)
needs at least one more handoff in its remaining life time, hence peo. P

k2 2. From the time diagram in Fig. 1, we obtain In summary, we obtain the following theorem.

_ . Theorem: Assume that the call holding time and cell resi-
Pi(k) =Pr(ri+ta -ttt dence time are generally distributed with Laplace transforms
Stelri+ta+-+t <) (1) () andf*(s). Suppose that*(s) has only finite number of
] = isolated singular points in the left half complex plane (which is
We first compute the probabilityr(ry +#5+- - +tx +tx11 < the case when itis rational function), then the handoff probabil-
te). Let&=r1+ty+ -+t +trq1. Let fe(t) and fZ(s) be  ities are given by
the density function and the Laplace transforn¢ofrom the

independency of4, ¢, ts, ..., we have P, =— Z Res %(3) fH(=s),
kb1 pco.
(o) = Bl = Bl [T Bl = 1) 60 > Res OO 4o
= PL k _ pEo, 2
So the density function is given by wk) Z Res f’f(s)[f;(s)]k_l FH(=s) @
1 THiee * * k st peoe ’
fe(t) = ﬁj/o_joo Fr(s)(f7(s)) e ds. whereo. is the set of poles of *(—s) in the right half complex

plane. In particular, when the call holding time is exponentially
Also, the Laplace transform @fr(§ < ¢) is f(s)/s. From (1) distributed with parameter, we have
and the Residue Theorem, we obtain

Py=frG),  Puk) = (). ®3)
Pr(ry Flrd Al < te) When the call holding time is Erlang distributed with parameter
= / Pr(¢ < t)f.(t) dt (m, w), which has the following probability density function
0 - and Laplace transform:
otioo f* *(S)]k + myam—1 m
= e’ dec(t) dt — (mu) t —mut * — mpy
/0 27TJ+/U joo fc(t) (m_ 1)' € ’ fc (3) S—i—mu (4)
g+joo * *
= / M [ (=s)ds then, we have (*)(z) denotes theth derivative of function
25 Jo—joo g(x) at pointz)
OO -
=— Res HOINO) fi(—=s)ds. m f:(l) mp ‘
p%; =r s P = Z L(' ) (o
From this and (1), applying the conditional probability argu- m—1 {f:(s)[f*(s)]k}(i)| ‘
ment, we obtain Z Al =R (—mp)
Pr(Tl +i2+-- '+tk+tk+l Stca (e a2 sE o 7 Stc) Ph(k) = m——l {f*( )[f*( )]k—l}(l)| ’ (5)
.Ph(/%): S S =mpu .
Pr(ri +ta+ - +tr < t.) Z i (—mp)?
_Pr(m4tot+- Attt SEe) =0 '

Pr(ri +to+ -+t < to) 0
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Fig. 2. New call handoff probability versus call-to-mobility factor. Fig. 3. Handoff call handoff probability versus call-to-mobility.

S ) o Fig. 2 shows the handoff probability for new calls vs. call-to-

When call holding time is not exponentially distributed, théhobility factor (o). It shows that there is a significant differ-
handoff probability for a handoff call has not even been defingghce between the handoff probabilities for the case when the
in the past. When the call holding time is exponentially digal| holding time is exponentially distributed and for the case
tributed while the cell residence time is distributed with certaignen the call holding time is Erlang distributed, in particular
distributions (such as generalized Gamma distributed), similghen the mobility is higher (corresponding to the lowrit is
results for handoff probability have been obtained [2], [9], [11hjso shown that handoff probability is decreasing as the mobility
Itis important to observe that as long as the Laplace transfoigiower (j.e., when the call-to-mobility factor is higher). Fig. 3
of the call holding time is rational, this theorem can be easibhows the handoff call handoff probability. As for the new call
used to compute the handoff probability. Explicit results can bgyndoff probability, the handoff call handoff probability is also
obtained for the case when the call holding time is hyper-Erlag@creasing as the call-to-mobility factor is increasing. As the
distributed, the details are omitted due to the space limitatiohymper of handoffs increases, the difference between the cases

Next, we briefly study how the mobility and traffic paramefor exponential call holding time and Erlang call holding time
ters affect the handoff probability. When the call holding timgecomes more significant.
is exponentially distributed with parameterand the cell res-
idence time is also exponentially distributed with parameter
we haveP,, = Py(k) = 1/(1+ p), wherep = p/nis called the
call-to-mobility factor It can be observed that asdecreases, Handoff probability for wireless networks is an important pa-
the handoff probability increases. rameter for predictive handoff design and general handoff traffic

Assume now that the cell residence time is exponentially distudy. In this paper, we introduced generalized analytical results
tributed with parameten and the call holding time is Erlang for handoff probability, to reflect the realistic cases of emerging
distributed with parametem, 1). From the residual life the- wireless systems in which the call holding time is not exponen-
orem, we know that the residual cell residence times also tially distributed. Analytical results for handoff probability were
exponentially distributed withy*(s) = f*(s) = n/(s + n). derived under general call holding time and cell residence time.
From the Theorem, we obtaiR, = 1 — [1 — 1/(1 + mp)]™.
The handoff call handoff probability is given by REFERENCES
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