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Dynamic Analysis of a General Class of
Winner-Take-All Competitive Neural Networks
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Abstract—This paper studies a general class of dynamical neural
networks with lateral inhibition, exhibiting winner-take-all (WTA)
behavior. These networks are motivated by a metal–oxide–semi-
conductor field effect transistor (MOSFET) implementation of
neural networks, in which mutual competition plays a very im-
portant role. We show that for a fairly general class of competitive
neural networks, WTA behavior exists. Sufficient conditions for
the network to have a WTA equilibrium are obtained, and rigorous
convergence analysis is carried out. The conditions for the network
to have the WTA behavior obtained in this paper provide design
guidelines for the network implementation and fabrication. We
also demonstrate that whenever the network gets into the WTA
region, it will stay in that region and settle down exponentially
fast to the WTA point. This provides a speeding procedure for the
decision making: as soon as it gets into the region, the winner can
be declared. Finally, we show that this WTA neural network has a
self-resetting property, and a resetting principle is proposed.

Index Terms—Competition, convergence analysis, lateral inhibi-
tion, neural networks, neurodynamics, shunting and additive, very
large scale integration (VLSI) neural networks, winner-take-all
(WTA).

I. INTRODUCTION

N EURAL networks which pick the maximum from a col-
lection of inputs are known as the winner-take-all (WTA)

networks [1]. The operation of this network is a mode of ex-
treme contrast enhancement where only the maximally stimu-
lated neuron responds and all other neurons in the network are
inhibited. Such networks have been used extensively in decision
making, pattern recognition, and competitive-learning networks
(see [2]–[5], [27], and references therein).

The current literature frequently describes WTA networks
that are constructed using lateral inhibition among the neurons
so that the system is a competitive neural network. Intuitively,
if the competitive system is initiated from a fair start with
sufficiently strong inhibition, the players in this competition
will go to two extremes: win or lose, so that WTA behavior
can be expected [6]. However, if the lateral inhibition is weak
or lateral excitation is involved in the competition, the dy-
namics of the system can be very complex as illustrated by
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Ermentrout [7] and Lemmon and Kumar [8]. Thus, conditions
for WTA behavior are desirable for the practical design of
such neural networks. There are many strategies for WTA
network design. MAXNET [9] is an architecture of mutual
inhibition to select a maximum, though its efficiency and
implementation are a problem. Motivated by self-organizing
algorithms, some iterative neural networks are designed to pick
the largest number in a data set (see [10], [11], and references
therein). Although these networks are convenient for computer
computation, they may be very hard to implement in analog
hardware. Lazzaro et al. [12] designed, fabricated, and tested a
series of compact complementary metal–oxide–semiconductor
(CMOS) integrated circuits that realize the WTA function.
Wawryn and Strzeszewski [29] designed a programmable WTA
neural network using current mode circuit and demonstrated
its effectiveness. However, both of these works only analyzed
the circuits at steady state and did not provide the transient
dynamics, which is obviously a very important issue for WTA
network design. Majani and Abu-Mostafa [13] generalized
the WTA analog networks to the -WTA networks, but only
gave conditions for local stability of the network. Calvert and
Marinov [30] studied an analog Hopfield-type neural network
[20], which can identify the largest components of a list of

numbers with rigorous stability analysis, which follows our
prior work [28].

All the WTA neural networks except [12] discussed above as-
sumed that the external inputs are the initial conditions, i.e., the
network in operation has to be initialized by the input vectors.
Following Lazzaro et al. [12], Kane and Kincaid [14] proposed
an analog implementation of WTA neural networks in which
the external inputs are kept on during the operation. The WTA
neural circuit is implemented with the metal–oxide–semicon-
ductor field effect transistors (MOSFETs), some preliminary
steady-state analysis, and experimental results have been pre-
sented, where the triode region of the MOSFETs have been
used. A four-neuron neural network implemented by MOS-
FETs is shown in Fig. 1. Each neuron consists of one capacitor
with capacitance , one resistor with conductance , and three
MOSFETs. Let us consider the first neuron. is the external
current, the current flowing into the MOSFET with inhibition
from th neuron is , which is given by
what we call the MOSFET function in series with the voltage
source [23]

otherwise
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Fig. 1. Four-neuron MOSFET implemented neural network.

where is the voltage threshold and is the constant de-
termined by the physical characteristics of the MOSFET. From
circuit theory, we easily obtain

i.e.,

where the overdot denotes the time derivative. Similarly, for the
th neuron, we have

Motivated by this model, but allowing to be a general
function, we arrive at the following general class of -neuron
dynamical neural networks:

(1)

where is the activation of the th neuron, is the de-
caying factor, is the external input of the th neuron, and

is the inhibition on the th neuron from the th neuron,
which shows the dependency on the th neuron.

This class of neural networks turns out to be very general
and includes two well-known intensively studied models—the
additive and shunting neural networks for the purpose of WTA
behavior [13], [16], [17]. If we choose and

where is a nondecreasing nonnegative
function, we obtain the additive model [13]

(2)

If we choose and , then we
obtain the shunting neural network [17]

(3)

where is a threshold constant. When is allowed to be time
varying, model (1) also contains the model studied by Tonkin
et al. [27].

By specifying the function , we can obtain a specific
neural network. This is very important for practical design from
a very rich class of models which share similar properties, yet
possess different implementations. Moreover, this model has
two advantages. The first is the choice of circuit elements. Ad-
ditive models and shunting models may be hard to implement,
while our general models can be easily implemented via the
well-known MOSFET circuits. The second is the generality of
our models, which offers us more choices to select the appro-
priate models for better implementation.

This paper is devoted to the study of the WTA behavior of
neural networks which belong to the general type (1). It is orga-
nized as follows. In Section II, we present notation and defini-
tions. A general set of sufficient conditions for the WTA point to
exist for the neural network (1) is given in Section III. In Section
IV, we show that neural networks with a few specified functions

will settle down to the WTA point and the winner can
be declared by observing the outputs of the network. We show
that if the neural network gets into the WTA region, it will stay
there, never get out of that region, and it will settle down at the
WTA point. This suggests a quick decision making procedure.
We do not need to wait for the system to settle down; as long as it
gets into the WTA region, a decision can be made immediately.
We also present a resetting procedure for new inputs. If we do
not need the system, we simply switch off the inputs, then the
neural network will return to the fair starting point, and wait for
new inputs to be tested. In consecutive input testing, we should
reset the system to the fair starting point. This can be easily done
by switching off the inputs for a while between these tests. For
a few special cases, we also give the conditions under which the
resetting of the neural networks to the fair starting conditions is
not necessary. Some illustrative numerical results are presented
in Section V and conclusions are drawn in Section VI.

II. NOTATION, DEFINITIONS, AND PRELIMINARIES

Before we study the properties of the neural network (1), we
first introduce some notation and definitions. Let
denote the external inputs, and and be the largest
and the second largest external inputs. Without loss of gener-
ality for analysis, we assume throughout this paper that
and . (If some values are
equal, we can randomly add small numbers to the input, with
high probability to make all inputs distinct, i.e., a randomiza-
tion technique.) We use to denote the time derivative of . A
point (where the superscript denotes
the transpose of a vector or a matrix) is called a WTA point if
it is an equilibrium point of (1) and only the component cor-
responding to the largest input is positive while other compo-
nents are nonpositive. Let denote the state variable corre-
sponding to the largest input . Then, is the WTA point
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if it is such an equilibrium point of (1) satisfying
and . This definition is really motivated by
our intuition: when the external inputs stimulate the neural net-
work, at the very end, the strongest will win the competition
while the weakest will lose everything. For convenience, let the
set
be called the WTA region. Let .

A function is called a Lipschitz function (or satisfies
the Lipschitz condition) in the domain of interest if there exists
a constant such that
and in the domain of interest.
Define the function class to be the following:

is continuous, nondecreasing

in and for

The function in this class has the following interpretation:
when the activation in one neuron is negative, i.e., inactive, then
it does not inhibit other neurons. However, when it is active,
it will inhibit other neurons. The stronger the activation, the
stronger the inhibition. This can be easily observed from (1).
Therefore, this function class is a reasonable characterization
for the inhibition process in the WTA networks.

Definition: We say that the neural network (1) is conver-
gent if the trajectory of (1) converges to an equilibrium point
as time goes to infinity. We say (1) is exponentially conver-
gent to if there exist an and a such that

for any where is the Eu-
clidean norm [19]; we call the convergence rate. We say that
neural network (1) is (exponentially, asymptotically) stable if
system (1) is (exponentially, asymptotically) stable in the sense
of Lyapunov [22].

It is known [22] that asymptotic (exponential) stability is
equivalent to stability in the Lyapunov sense and convergence
(exponential convergence) as time goes to infinity. For most
cases we consider, stability is easy to verify, and we will only
concentrate on the convergence property in this paper.

The following lemma will be needed in the subsequent
development.

Lemma 2.1:
a) (Comparison Principle) Let be a scalar continuous

function, let be the solution of the scalar differential
equation: with . Then,
for any continuous function satisfying the differential
inequality: with , we have

for any . Similarly, for any continuous
function satisfying the differential inequality:

with , we also have for
any .

b) If the continuous function satisfying
where and exponentially con-

verges to zero, i.e., there exist positive numbers
and such that , then also ex-
ponentially converges to zero. In fact, there exists posi-
tive number such that , where

.

Proof: The rigorous version of a) and its proof can be found
in [21]. We only need to prove b). From , there
exists a small positive number such that .
Then, from the comparison principle, we have

(4)

However, is bounded. Therefore, there exists
a positive number such that .
Taking this into the above inequality, we can complete the proof
of b).

III. SUFFICIENT CONDITIONS FOR WTA POINT TO EXIST

In order to make the system (1) be a WTA network, we must
guarantee that the WTA point exists for system (1) so that a deci-
sion can be made when the system settles down. In this section,
we present some sufficient conditions for the existence of the
WTA point for system (1).

Theorem 3.1: Suppose that the function belongs to
the class . Then, system (1) has a WTA point if and only if

(5)
where the subscript denotes the index such that is the
largest input.

Proof: Without loss of generality, we assume that
. In this case, and

. Sufficiency: Suppose that (5) is true, we want to show
that system (1) has an equilibrium point such that and

. We only need to show that there is a WTA point
in the WTA region . In fact, in
this region, because belongs to the class ,

for , we have , i.e., and
; we only need to show that for any

, the equation has nonpositive
solution. Let . Then is
a continuous function, , and for

, we have
for sufficiently large . From the intermediate

theorem for continuous functions, we conclude that there exists
a point such that . This proves the
existence of a WTA point.

Necessity: We need to show that if the system (1) has a WTA
point, then (5) must be true. In fact, suppose that (5) is not true,
then there is such that . Let be the
WTA point, i.e., and . We know that

and . In particular,
. From this and the monotonic

property for in , we have
, which contradicts the fact that .

Therefore, (5) must be true.
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Fig. 2. Graphic proof of Corollary 3.2.

Theorem 3.1 is for the fixed set of inputs. If the maximal input
can be actuated at any neuron (this is usually true in practice
because we do not know which input will be the largest), the
following result should be used for fabrication.

Corollary 3.1: Suppose that the function belongs to
the class . Then, system (1) has a WTA point if

Proof: This is straightforward from Theorem 3.1.
If all neurons are identical, then the inhibition function

will be the same for any . Let
, then we have the following.

Corollary 3.2: If the function belongs to class , then
the neural network

(6)

has a WTA point if and only if

Proof: The proof in Theorem 3.1 for this case is best illus-
trated graphically in Fig. 2.

For the additive neural networks, we have the following.
Corollary 3.3: Suppose that is a nondecreasing function

with for , then the system (2) has a WTA point
if and only if for . In particular, if

, and or , system (2) has a
WTA point.

For the shunting neural networks, if we use function
, we have the following.

Corollary 3.4: Suppose that is a nondecreasing function
with for , then system (3) has a WTA point if
and only if for . In particular, let

, if , or ,
then system (3) has a WTA point.

For the MOSFET implemented neural networks, we have the
following.

Corollary 3.5: The MOSFET implemented neural network
(1) with MOSFET function has a WTA point if and
only if either

or

for all .

IV. WTA BEHAVIOR AND CONVERGENCE ANALYSIS

Our purpose in this paper is to study the WTA behavior of
the neural network (1). In the last section, we provided a set
of conditions for system (1) to have a WTA equilibrium point.
However, the existence of a WTA point alone is not enough to
say that network (1) is a WTA network. We still need to show
that network (1) will eventually settle down to the WTA point
so that the largest input can be picked. For this reason, we have
to perform the convergence analysis for network (1). It seems
impossible to design a network (1) that will always converge to
the WTA point for any external inputs no matter where it starts
because of the nonlinearity in the function . In order
to get the natural winner from a closed competitive system, a
fair start should be expected. A natural fair starting point is the
origin, i.e., each competitor has no activity at the very beginning.
In this paper, we will always start system (1) from the origin, and
a resetting procedure will be needed whenever necessary. For a
limited input space, global convergence is possible without any
resetting. This issue will be discussed at the end of this section.

There has been intensive research on stability (including
convergence) of dynamical neural networks (see [15],
[16], [18]–[20], [24]–[28], and references therein). The
Cohen–Grossberg theorem [15] provided the most general
convergence theorem in neural networks, and a general Lya-
punov function construction guideline was proposed. It has
been shown that the additive and shunting neural networks
with symmetric interconnections between neurons own global
Lyapunov functions, so the convergence of the networks can
be concluded. Hirsch [18] has written a series of papers on
competitive or cooperative systems, and has established a set
of remarkable results on the characterization of the limit set
structures for such systems. Recently, Michel et al. [24]–[26],
Tonkin et al. [27], and Fang and Kincaid [28] have used various
techniques to study the stability and convergence property of
Hopfield-type dynamical neural networks.

System (1) may not be converted into the Cohen–Grossberg
model. Furthermore, although system (1) is competitive, the
limiting theorems by Hirsch [18] cannot be applied for the WTA
purpose. It seems that there is no direct available technique to
study the convergence or stability for system (1) in its general
form. In this section, we present some convergence results for
system (1) for a few special cases.

We first want to show the boundedness of the trajectory of
neural network (1).

Theorem 4.1: If the functions be-
long to the class , the trajectory of a neural network (1) is
bounded.

Proof: We only need to show that the trajectory of system
(1) will eventually stay in a bounded set. If , then,
from the nonnegativity of , we have

hence will decrease and finally , so there is a
positive constant such that .
If , then we have
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where we use the fact that is nondecreasing in both
and ; therefore, if , then

, and will increase, so there exists a constant
such that . This completes the proof.

The trajectory of (1) has the so-called order-preserving prop-
erty which we formalize as follows.

Theorem 4.2: Suppose that functions
are continuous functions satisfying

for any , then neural network (1)
is order preserving: if and , then for any

, .
Proof: Let , then is a continuous

function and . Suppose that the claim in the theorem
is not true, then there exists a such that and

for . At , we have .
Thus, subtracting the th equation from the th equation in (1),
we obtain

Since is also a continuous function, from the above in-
equality, there exists a small such that

in the interval , i.e., is strictly
increasing in this interval, hence , this
contradicts the choice of .

Remark: Condition
is reasonable because is the inhibition between neu-
rons. If both neurons have the same activity, they should have
the same inhibition on each other. We will call this the equal mu-
tual inhibition condition. It is easy to verify that this condition
holds for the additive neural network (2), the shunting neural
network (3), and the MOSFET implemented neural network.
We also notice from the proof that when the above equalities
only approximately hold, Theorem 4.2 is still valid.

From system (1), it is easy to see that when the system starts
from the resting state, i.e., the fair starting condition, all state
variables will increase and get into the positive orthants. As we
expect, the state variable corresponding to the largest input will
stay positive while the other state variables will gradually de-
crease. From the order-preserving property and the system equa-
tions, at least one of the state variables will always be positive.
If network (1) has a fair start, then it is the winning variable
that will always be positive. Therefore, it suffices to study the
conditions under which the system will enter the WTA region.
The following result guarantees that whenever the network en-
ters the WTA region, the network will stay in that region and
converge to the WTA point. Hence, the system at least locally
has WTA behavior. In fact, if the inhibition functions

are smooth, we can show that the WTA point
is (locally) exponentially stable (i.e., asymptotically stable in
Lyapunov sense with convergence exponentially fast).

Theorem 4.3: Let denote the WTA region. Suppose
that functions belong to the class

and satisfy the equal mutual inhibition (EMI) condition:
for any . Then,

whenever the trajectory of (1) starting from the origin enters

the WTA region , it will stay there forever. Moreover,
if functions satisfy the Lipschitz
condition, it will converge exponentially to the WTA point
with convergence rate at least for any . Furthermore,
if are differentiable, then the WTA
point is (locally) exponentially stable.

Proof: Proof is given in the Appendix.
This theorem also suggests a speeding procedure for decision

making. If network (1) has a fair start, i.e., initiates near the
origin, then whenever the network enters the WTA region, we
can stop. The winner can be declared because the corresponding
WTA region has the same property as the WTA point for the
purpose of maximum selection. This will reduce the processing
time significantly.

Remark: As we observe from the definition of the exponen-
tial convergence, the time taken for network (1) to converge to
the neighborhood of the WTA point depends not only on the
convergence rate, but also on the constant . Exponential con-
vergence does not mean that the transient time is short. As we
can observe from the proof, the exponential convergence takes
significant effect only when the network gets into the WTA re-
gion. Hence, we have to design the neural network in such a
way that the transient time is as short as possible. It will be very
difficult to characterize the transient response as we observe in
control literature.

Now, in order to prove the global convergence, we only need
to show that the trajectory of (1) starting from the origin cannot
stay in the region where at least two components are positive.
However, for the general functions ,
the convergence of network (1) is unknown. The Cohen–Gross-
berg theorem is difficult to apply to general model (1) because
of the inseparability of the function . It is obvious that
system (1) is a competitive system. However, Hirsch’s results
[18] on the characterization of limit sets cannot be used to prove
the WTA convergence. Though the general convergence anal-
ysis is still under investigation, we will in this paper show that
for a few subclasses of system (1) the trajectory starting from
the origin will not forever stay in the region where at least two
components are positive. It will enter the WTA region and con-
verges to the WTA point. In this way, we have completed the
convergence analysis for these few subclasses of WTA neural
networks. More importantly, the convergence analysis presented
may provide a possible approach for the analysis of general
neural system (1).

Consider the following three classes of neural networks:

(7)

(8)

(9)

Obviously, the last two neural networks belong to the additive
models and the first neural network belongs to the shunting
models, which are the special cases of neural network (1). The
interconnections among neurons are the same, i.e., the synaptic
connections have the same strength and the decay factors are the
same. Therefore, these three classes of neural networks are very
easy to implement. We will show that these neural networks,
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though simple, possess WTA behavior and can be used as a max-
imum decoder.

Assume that , , and are all positive numbers.
Theorem 4.4: Under the following conditions, respectively,

1) for system (7);
2) and

for system (8);
3) for system (9);

the trajectories of neural networks (7)–(9) starting from the fair
condition, i.e., the origin, will always converge to the WTA
point, and hence they are the WTA networks.

Proof: The proof is given in the Appendix.
Remark: The condition for boundedness of the inputs will be

called the boundedness condition while the lower boundedness
of the difference between the largest input and second largest
input will be called the resolution condition.

From the proof, we observe that in order to complete the con-
vergence analysis for general system (1), it suffices to show ei-
ther there are no limiting equilibrium points in the region where
at least two components are positive or system (1) does not stay
forever in the region. The readers may want to convince them-
selves by studying the simple 2-D additive neural network (9).
In this case, although there are other stable equilibrium points
in non-WTA regions, under certain conditions, the fair starting
point (or its small neighborhood) is not in their domains of at-
traction, and if the network starts from the domain of attraction
of a non-WTA equilibrium, the network will converge to the
non-WTA equilibrium point, which leads to a wrong decision.

As we see from the proof of 2) and 3) above, it is enough to
show that a certain error function is unbounded. In the proof of
the next theorem, we provide another approach for convergence
analysis of the neural network of type (1).

Theorem 4.5: Consider the neural network

(10)
where function belongs to the class and satisfies the
following conditions: there exist positive numbers , , ,
and such that if

and if and ,
and there exists a continuous function such that

for , i.e., the inhibition function has
a saturation property. If the following resolution condition and
the boundedness condition hold:

where

then neural network (10) starting from the origin will always
converge to the WTA equilibrium point, so system (10) is a
WTA network.

Proof: Without loss of generality, we assume that
. If system (10) starts from the origin, then

from the order-preserving property, we must have
. From the assumption, we have .

From Corollary 3.2, a WTA point of (10) exists. From Theorem
4.3, it suffices to show that the trajectory of (10) starting from
the origin does not stay forever in the region where at least two
components are positive. Suppose that this is not true, then we
must have for all . The first two
equations of (10) become

(11)

(12)

If , then . If , then from
, we have . So for

, we always have . Letting
, subtracting (12) from (11) and noticing

that , we obtain

(13)

System (10) starts from the origin, and hence initially
. From the property of the function , we have

for , we have
. From (13), we obtain

where we have used the resolution condition and the fact that
the function is minimized at on

for , , , and . Thus, will
eventually exceed and never go below . Let denote the
instant such that for . Then, from (13), we
have

From the comparison principle, we obtain for

i.e.,

(14)

Let . From the
assumption

there exists a small positive number such that
. Also, there exists a such that for ,

from (14) and , we have . From
(12), we obtain for
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Let be the solution of

Because , this system has a negative stable equi-
librium point and for sufficiently large , we will have .
However, from the comparison principle, we have
for , and so for sufficiently large , we have .
This contradicts the assumption that . This shows that
the trajectory must get out of that region and enter the WTA re-
gion in the future time. From Theorem 4.3, the trajectory will
exponentially converge to the WTA point. This completes the
proof.

It can be easily verified that the MOSFET function satisfies
all the conditions of Theorem 4.5 with , , and

, and so for the MOSFET implemented network, we
have the following.

Corollary 4.6: Consider neural network (1) with de-
fined as the MOSFET function. Under the resolution condition

and the upper boundedness condition

the MOSFET implemented network starting from the origin will
exponentially converge to the WTA point.

The proof may provide an approach to the convergence anal-
ysis of (1). It may be possible to obtain a good lower bound for
the trajectory of the winner and get upper bounds for the losers
so that imposed conditions on the inputs may lead to a contra-
diction. This issue will be studied in the future.

As we have mentioned, in order to effectively use this kind
of WTA network (1), we have to start from the origin, i.e., the
fair starting point. One way is to use switching circuits to reset
the network to the origin whenever a new input vector is about
to be tested. However, this needs some additional circuits to
implement. Fortunately, network (1) has an intrinsic resetting
procedure, which will be discussed next. The result shows that
we only need to switch off the inputs for some time and network
(1) will accomplish the resetting task.

Theorem 4.7 (Self-Resetting Theorem): If functions
belong to class and satisfy Lipschitz condi-

tion, then when the external inputs are switched off, i.e.,
, neural network (1) will globally exponen-

tially converge to the origin, the fair starting point, with the con-
vergence rate where , hence the network has an in-
trinsic resetting property.

Proof: When the external inputs are switched off, the net-
work reduces to the system

(15)

First, we want to show that (15) has a unique equilibrium
point. Obviously, the origin is one equilibrium point of
(15). Let be any equilibrium point.
Then, , and so
for any . Since belongs to class

, we have for . Therefore, we have

, so , i.e., the
origin is the unique equilibrium point of (15).

Next, we want to show that if there exists a such that
, then for all , . This is almost ob-

vious, because if there exists another such that ,
we have

so cannot cross the boundary.
From this argument, we observe that there exists a and
such that for all , we have (without loss of generality,

we can still use such indexing)

Then, system (15) is reduced to the following system:

(16)

(17)

From (16), we have , hence we have
. Thus, there exists a such that

, i.e., (16) globally exponentially
converges to its origin.

Because satisfies the Lipschitz condition, there
exists a constant such that . Also,
since for , we
have . Thus, from (17), for and

, we have

Applying the same procedure as in the proof of Lemma
2.1(b) and noticing that

, we can conclude that will globally ex-
ponentially converge to zero with convergence rate .
This completes the proof.

For a very large scale integration (VLSI) circuit designer in-
terested in the MOSFET implemented neural networks, we sum-
marize our results for this particular case for convenience.

Theorem 4.8: For the MOSFET implemented neural network
(1) with MOSFET function , under

1) the gain condition

2) the resolution condition and lower bound condition

the trajectory of the MOSFET implemented neural network
starting from the fair condition (i.e., the origin) will exponen-
tially converge to the WTA point, hence the network has WTA
behavior. Furthermore, the network has intrinsic self-resetting
property: the network will exponentially converge to the fair
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condition when the external inputs are switched off. The time
constant for the network is approximately equal to the time
constant of the RC circuit, i.e., , and hence the convergence
rate of the network is approximately equal to .

Proof: The gain condition and the lower bound condition
guarantee the existence of a WTA point from Corollary 3.6. We
will use the procedure in the proof of Theorem 4.5 to show the
convergence of the equilibrium point. It suffices to show that
under the gain condition in (13) diverges to infinity, which
leads to the contradiction. Following the similar argument, we
obtain that there exists such that for all

. Taking the MOSFET function in (13), we obtain

where and . From the gain
condition, we know that . From the comparison principle,
we obtain for

From and the resolution condition, we obtain

Hence, , and so is unbounded; this
contradicts the fact that the trajectory is bounded. Therefore, the
network starting from the fair condition will exponentially con-
verge to the WTA point. The resetting property can be obtained
from Theorem 4.7 (noticing that we absorb the capacitance
in ). This completes the proof.

In the above, we assume that the network starts from the
origin, the fair starting condition. Intuitively, this is reasonable,
because for a fair competition you have to allow each player
a fair start. However, in certain cases, if some inputs are strong
enough, they can overcome the initial bias and still win the com-
petition. In terms of the dynamical neural networks, it means
that for certain input range, network (1) may always converge
to the WTA point no matter where it starts. Therefore, the reset
is not necessary. This will require that: 1) the network should
have only one equilibrium point, i.e., the WTA point; and 2) the
network should globally exponentially converge. We only give
a result for systems (7) and (9) in this paper. Further research
on this issue will be investigated in the future.

Theorem 4.9:
1) Neural network (7) has only one asymptotically stable

equilibrium point, which is the WTA equilibrium point
if the following three conditions hold: ,

and the resolution condition
. Therefore, network (7) will al-

ways converge to the WTA point for any inputs satisfying
the given conditions no matter where it starts.

2) If and the resolution condition
, then network (9) has only one asymptotically stable

equilibrium point, which is the WTA point. This implies
that network (9) will always converge to the WTA point for

any external inputs satisfying the resolution conditions
no matter where the network starts.
Proof:

1) The first condition guarantees that the WTA point exists.
The second condition implies that there are no equilibrium
points having at least two positive components. Without
loss of generality, we assume that

. We want to show that there is no other equilibrium point
other than the WTA point. Suppose that this is not true, then
there is an equilibrium point such that and

. So from (7), we have and

Since , we must have , i.e.,
. This contradicts the resolution condi-

tion. So network (7) has only one equilibrium point. Using
the same Lyapunov function and applying Cohen–Gross-
berg theorem, we know that system (7) will converge to the
equilibrium point, therefore, it will converge to the WTA
point no matter where it starts. This completes the proof of
1).

2) We still assume that . Similar to
the proof of Theorem 4.4 (3), condition guarantees
that the trajectory of (9) starting from any initial condition
cannot stay forever in the region which has at least two
components are positive. (Otherwise, will
become unbounded.) Thus, there is no equilibrium point in
the region where at least two components are positive. The
resolution condition implies that there are no equilibrium
points in the other regions except the WTA region, and
hence the WTA point is the only equilibrium point. Next,
we want to show the global convergence. We know that
there exists an instant such that the trajectory enters the
region after . Next, we
want to show that the trajectory either cannot get out of this
region or gets into the region

where . In fact, in order for the trajectory to get
out of this region into , must decrease while
must increase, so must decrease. There must
be an instant such that .
Suppose that , then since

around , i.e., is increasing around the in-
stant , which contradicts the fact that is de-
creasing. Hence, we must have . Thus, there exists
an such that the trajectory will stay in the region for-
ever. Next, we want to show that . Suppose not, then
there exists a such that for any , we have

. In this case, we have ,
and the first equation of (9) becomes for

Therefore, we have
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For sufficiently large , we have , which contra-
dicts the fact that . So the trajectory will stay in
the region , hence exponentially converge to the WTA
point. This completes the proof.

Remark: Theorem 4.9(2) can also be proved by the
Cohen–Grossberg theorem. The proof presented here may
provide better understanding of the system behavior.

As a final thought, we remark that in this paper we assume that
the resistances and capacitances in all neurons are identical. In
practice, inaccuracies for capacitors and resistors are unavoid-
able. This issue can be addressed by the robust stability analysis:
the exponential convergence (stability) has intrinsic robustness
property [22]. Fang and Kincaid [28] used the matrix measure
to obtain some sufficient conditions for exponential stability.
Wang and Michel [24] and Ye et al. [26] have studied the robust
stability of the Hopfield-type neural networks. Their techniques
may be helpful for the robust convergence analysis for network
(1). The stability of differential inclusions [25] may also shed
light on the robustness issue. The rigorous analysis of the ro-
bustness problem for (1) has not been carried out, which forms
a very challenging future research direction.

V. ILLUSTRATIVE EXAMPLES

In this section, we present illustrative examples to demon-
strate our results obtained in this paper and further confirm the
consistency between the theoretical results and the numerical
results.

Example 5.1: We first give an example for the MOSFET
neural network, which has been presented by Kane and Kin-
caid [14]. For a three-neuron network, we use capacitors of 100
picofarads, with resistors of 113 k and with MOSFETs with
physical parameters 30 A/V and threshold 1 V.
The current inputs are 20 A, 17 A, and
3.2 A. Since 3 A, and 0.66 A,
hence the resolution condition in Corollary 4.6 is satisfied. Also,

173.4 A, and the boundedness condi-
tion in Corollary 4.6 is also valid. Notice that the first condition
in Theorem 3.1 is also easily established. Therefore, the net-
work with these inputs will converge to the WTA point. The
first graph in Fig. 3 is the trajectories of the state variables, and
it can be easily seen that this simulation is consistent with the
experimental results in [14]. The second graph in Fig. 3 shows
the WTA behavior with self-resetting. We first test the WTA be-
havior with above input currents, then switch off the input for
some time, then swap the input values between and . The
simulation shows that at beginning, the network picks up the
winner . After we switch off the currents, the network set-
tles down automatically to the fair starting condition. When the
values of and are swapped, the network then picks up the
new winner . This simulation confirms our theoretical results
for the MOSFET WTA networks.

Example 5.2: We continue to study the system in Example
5.1. However, we increase the number of neurons in the system
to demonstrate how input currents affect the transient response
of neural network (1). All parameters , , and remain
the same as in Example 5.1. From Figs. 4–6, we observe that
the difference between the largest input and the second largest
input affects the transient response significantly; the smaller the

Fig. 3. WTA behavior for the MOSFET neural network.

Fig. 4. Five-neuron network with WTA behavior.

difference, the slower the convergence, which is consistent with
our intuition.

VI. CONCLUSION

In this paper, we have studied a new class of dynamical WTA
neural networks. We have obtained a set of sufficient conditions
for the existence of a WTA point, then carried out the conver-
gence analysis of the networks for a few subclasses. Some suf-
ficient conditions are obtained to guarantee that the systems be-
longing to a few subclasses of type (1) starting from the fair
start will converge to WTA points. A self-resetting procedure
is also proposed to effectively apply such WTA networks. We
also obtain a few conditions for networks to have WTA behavior
which do not need resetting. The convergence analysis of gen-
eral system (1) is still under investigation. We conjecture that
as long as system (1) has a WTA point, it will converge to the
WTA equilibrium point if the system starts from the origin.
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Fig. 5. Five-neuron network with WTA behavior.

Fig. 6. Five-neuron network with WTA behavior.

APPENDIX

Proof of Theorem 4.3: Since and , ini-
tially, system (1) will get into the positive orthant. Without loss
of generality in the proof, we assume that

. Then, and
. From (1) and the nonnegativeness of ,

we have , so

Suppose the first claim in Theorem 4.3 is not true, i.e., net-
work (1) enters the WTA region and then gets out of the re-
gion later on. Then, there exist and such that

[notice that we have used the order-pre-
serving property of the trajectory of (1)], i.e., gets into

the region at and gets out of the region at . In
this case, we must have and (other-
wise, if , then for the time
sufficiently close to from the right, hence the network does
not enter the WTA region at , which contradicts the defini-
tion of ; a similar argument applies to the other case). On the
other hand, in , we have , therefore,

, so we have
. Moreover, from (1), we have (using the fact

that is nondecreasing in )

This contradicts the fact that , and this completes the
proof of the first part.

Next, we want to show the exponential convergence. Let
be the instant the trajectory enters the WTA region . Then,
from the first part of the theorem, for any , we have

(18)

Solving the first equation, we obtain

where

Since function is a Lipschitz function, there is a posi-
tive constant such that

and . For any , we
have . Let be the WTA point,
then . Let ,
then from the above two equations, we obtain

(19)

For simplicity, we let

From (19), we obtain (noticing that )

from the comparison principle and noticing that , we
can easily obtain that

(20)
On the other hand, from (19), we have
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Following the same procedure as in the proof of Lemma 2.1(b)
and the fact that , we can easily obtain that there
exists a positive number such that
for any . Combining this and (20), we can obtain
that there exists a positive number such that

for any . This completes the proof of the
second claim in the theorem.

If functions are differentiable,
around the WTA point , the linearized system is a triangular
system with negative diagonal entries, hence a stable matrix,
thus the WTA point is exponentially stable. This completes the
proof.

Proof of Theorem 4.4: Because these three systems are spe-
cial systems of type (1) whose inhibition functions belong to
class and satisfy the EMI condition, as we discussed before,
we only need to show that the WTA points exist and the tra-
jectories do not stay forever in the regions where at least two
components are positive.

1) If (1) is true, from the positivity, then we have
. From Corollary 3.5, we know that system (7) has a WTA

point. We first want to apply the Cohen–Grossberg theorem to
show that trajectory (7) converges to an invariant set. Making
the following variable substitution , then system
(7) becomes

This has the form of the Cohen–Grossberg theorem equation

where

if and otherwise

These functions meet the requirements of the Cohen–Gross-
berg theorem. Therefore, the trajectory approaches the largest
bounded invariant set contained in the region where the time
derivative of the corresponding Lyapunov function vanishes.
According to Cohen–Grossberg [15], the Lyapunov function for
system (7) is given by

where . From this, the Lyapunov func-
tion can be easily obtained in the original variable in an ex-
plicit form

where is the unit step function.

The time derivative of the Lyapunov function is given by

According to the Cohen–Grossberg theorem [15], the trajec-
tory of system (7) will converge to the invariant set contained in
the set , i.e., the set

(21)

Next, we want to show that system (7) will enter the WTA
region. Suppose that this is not true, then there are two positive
components in the trajectory for all . Without loss of gen-
erality, assume that . Then, when
system (7) starts from the origin, the trajectory will enter the
positive orthant initially. So, from the order-preserving property
and the above assumption, we must have
for all . The trajectory will converge to the invariant set

, so there exists a point such
that the trajectory will converge to this point . Moreover,

. It is easy to show that . We first want to
show that . In fact, if , i.e., ,
therefore, we can easily show that , so

. However, it is also easy to show that

This implies that , and must become
negative, which is contradicting the assumption that
for all . Thus, we must have . Since , we
can also easy to deduce that . Since , we have

Let , then we have

(22)

Subtracting the second equation from the first equation, we
obtain
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From , we must have , i.e.,

(23)

Solving the two equations in (22) for in an explicit form,
we have

We want to show that the in the second equation must be a
minus sign. In fact, suppose that it is a plus sign. If in the first
equation is minus, obviously, , which is a contradiction.
If in the first equation is a plus sign, then since ,
we also have , which contradicts the assumption. So
in the second equation must be a minus. However, in this case,
from the positivity of , we must have , or

. Combining this with (23), we have
, i.e., , which contradicts the

condition in (1).
Therefore, we have proved that the trajectory of (7) starting

from the origin cannot stay forever in the region where at least
two components are positive, thus the trajectory will enter the
WTA region at a certain instant. From Theorem 4.3, the trajec-
tory will exponentially converge to the WTA point. This proves
the first part of the theorem.

2) The first condition in (2) guarantees that system (8) has a
WTA point from Corollary 3.4. We only need to show that the
trajectory of (8) cannot stay forever in the region which has at
least two positive components. Suppose that this is not true, then
we must have for all time (without loss
of generality, we assume that ). The
first two equations of (8) become

Let . Subtracting the second equation from
the first equation, we obtain

From the comparison principle, . This con-
tradicts the fact that the trajectory of (8) is bounded, so are
and . This completes the proof of the second part.

3) There is a simple proof for this part without using the
Cohen–Grossberg theorem. We only need to show that the tra-

jectory of (9) starting from the origin does not stay forever in
the region where at least two components are positive. Suppose
that this is not true, then noticing fact and the
order-preserving property, we must have for
all . Let , then we have

Since , this 1-D system diverges to infinity. On the other
hand, the trajectory of system (9) is bounded (Theorem 4.1),
so is . This is a contradiction. Therefore,
the trajectory of (9) starting from the origin will enter the WTA
region. From Theorem 4.3, we conclude that system (9) starting
from the origin will exponentially converge to the WTA point.
This completes the proof.
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