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In this article, we propose a constrained queueing model to investigate the performance of multihop
wireless sensor networks. Specifically, the cross-layer interactions of rate admission control, traffic
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queueing model. In addition, the stochastic network utility maximization problem in wireless sen-
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1. INTRODUCTION

Wireless sensor networks have attracted significant attention in both industrial
and academic communities in the past few years, especially with the advances
in low-power circuit design and small-size energy supplies which significantly
reduce the cost of deploying large-scale wireless sensor networks. The sen-
sor networks can sense and measure the physical environment, for example,
temperature, speed, sound, radiation, and the movement of the object, etc.
In addition, wireless sensor networks have become an important solution for
military applications such as information gathering and intrusion detections.
Other implementations of the wireless sensor networks include the healthcare
body sensor networks, vehicular-to-roadside communication networks, multi-
media sensor networks, and underwater communication networks. For more
discussions on the wireless sensor networks, refer to the survey papers such as
Akyildiz and Kasimoglu [2004] and Yick et al. [2007].

Since the sensor nodes in the network are usually deployed in places where
traditional wired networking solutions are not feasbile, wireless transmissions
among sensor nodes are strongly preferred. In addition, due to the restrained
size of wireless sensor nodes, the computational capability of a single node is
limited. Therefore, the measured information is usually transmitted to a remote
Data Processing Center (DPC) for further data analysis. Furthermore, due to
the unreliable wireless links, multiple data sinks may exist in the network
which collect the measured data and transmit the packets to the DPC node
securely and reliably, possibly through the Internet.

Before the wide deployment of wireless sensor networks, a systematic un-
derstanding on the performance of the multihop wireless sensor networks is
desired. However, finding a suitable and accurate analytical model for wireless
sensor networks is particularly challenging. First, the time-varying channel
conditions among wireless links significantly complicate the analysis for the
network performance in terms of throughput and experienced delay, even in an
average sense [Stolyar 2006; Lin 2006; Gupta and Shroff 2009]. Secondly, due
to the unpredictability of the behavior of the monitored object, the exogenous
traffic arrival to the network, that is, the number of newly generated pack-
ets, is a stochastic process. Therefore, to ensure the stability of the network,
that is, to keep the queues in the network constantly finite, the analytical
model of wireless sensor networks should comprise a rate admission control
mechanism which can dynamically adjust the number of admitted packets into
the network. Thirdly, due to the hostile wireless communication links, a dy-
namic routing scheme should be included in the analytical model. Moreover,
the model should capture the complex issue of wireless link scheduling which
is significantly challenging due to the mutual interference of wireless trans-
missions. Lastly, in order to fully explore the network resource and to mitigate
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the network congestion, an appropriate analytical network model should be
able to dynamically deliver packets through multiple data sinks and thus an
automatic load balancing solution can be achieved.

In the existing literature, most of the proposed models for wireless sensor
networks rely on the fluid model [Kelly et al. 1998], where a flow is character-
ized by a source node and a specific destination node, for example, Kelly et al.
[1998], Chiang [2005], Chiang et al. [2007], Low and Lapsley [1999]. However,
this model is not applicable to the cases where the generated packets can be
delivered to any of the sink nodes, that is, the destination node is one of the
sinks and is selected dynamically. Moreover, this fluid model neglects the ac-
tual queue interactions within the wireless sensor network. In this article, to
study the cross-layer interactions of the multihop wireless sensor networks, we
propose a constrained queueing model where a packet needs to wait for service
in a data queue. More specifically, we investigate the joint rate admission con-
trol, dynamic routing, adaptive link scheduling, and automatic load balancing
solution to the wireless sensor network through a set of interconnected queues.
Due to the wireless interference and the underlying scheduling constraints, at a
particular time slot, only a subset of queues can be scheduled for transmissions
simultaneously. To demonstrate the effectiveness of the proposed constrained
queueing model, we investigate the Stochastic Network Utility Maximization
(SNUM) problem in multihop wireless sensor networks. Based on the proposed
queueing model, we develop an Adaptive Network Resource Allocation (ANRA)
scheme which is a cross-layer solution to the SNUM problem and yields a (1−ε)
near-optimal solution to the global optimum network utility where ε > 0 can be
arbitrarily small. The proposed ANRA scheme consists of multiple-layer compo-
nents such as joint rate admission control, traffic splitting, dynamic routing, as
well as adaptive link scheduling. In addition, the ANRA scheme is essentially
an online algorithm which only requires the instantaneous information of the
current time slot and hence significantly reduces the computational complexity.

The rest of the article is organized as follows. Section 2 briefly summarizes
the related work in the literature. The constrained queueing model for the
cross-layer interactions of wireless sensor networks is proposed in Section 3.
The stochastic network utility maximization problem of the wireless sensor
network is investigated in Section 4, where a cross-layer solution, called the
ANRA scheme, is developed. The performance analysis of the ANRA scheme is
provided in Section 5. An example which demonstrates the effectiveness of the
ANRA scheme is given in Section 6 and Section 7 concludes this article.

2. RELATED WORK

To capture the cross-layer interactions of multihop wireless sensor networks,
several analytical models have been proposed in the literature. For example,
in Chiang [2005], Chiang et al. [2007], Eryilmaz and Srikant [2005], Kelly
et al. [1998], Low and Lapsley [1999], Song and Fang [2007], the multihop
network resource allocation problem has been studied through a fluid model.
Each flow, or session, is characterized by a source and a destination node where
single path routing or multipath routing schemes are implemented. Most of the
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work rely on the dual optimization framework which decomposes the complex
cross-layer interactions into separate sublayer problems by introducing dual
variables. For example, the flow injection rate, controlled by the source node of
the flow, is calculated by solving an optimization problem with the knowledge
of the dual variables, called shadow prices [Kelly et al. 1998; Low and Lapsley
1999], of all the links that are utilized. However, there are several drawbacks
for the fluid-based model. First, to calculate the optimum flow injection rate,
the information along all paths should be collected in order to implement the
rate admission control mechanism. In a dynamic environment such as wireless
sensor networks, this process of information collection may take a significant
amount of time which inevitably prolongs the network delay. Secondly, the
optimization-based solutions usually pursue fixed operating points which are
hardly optimal in dynamic wireless settings with stochastic traffic arrivals and
time-varying channel conditions. Thirdly, the fluid model usually assumes that
the changes of the flow injection rates are “perceived" by all the nodes along
its paths instantaneously. The actual queue dynamics and interactions are
neglected.

In contrast, following the seminal paper of Tassiulas and Ephremides [1992],
many solutions have been focused on the queueing model for studying the com-
plex interactions of communication networks. Neely et al. extend the results
of Tassiulas and Ephremides [1992] into wireless networks with time-varying
channel conditions [Neely 2003]. For a more complete survey of this area,
refer to Georgiadis et al. [2006]. The key component of the queue-based solu-
tions in these papers is the MaxWeight scheduling algorithm [Tassiulas and
Ephremides 1992; Neely 2003]. Intuitively, at a time slot, the network picks the
set of queues which: (1) can be active simultaneously and (2) have the maximum
overall weight. It is well-known that the MaxWeight algorithm is throughput-
optimal in the sense that any arrival rate vector that can be supported by the
network can be stabilized under the MaxWeight scheduling algorithm. In ad-
dition, the MaxWeight algorithm is an online policy which requires only the
information about current queue sizes and channel conditions. However, one
notorious drawback of the MaxWeight algorithm is the delay performance. The
reason is that in order to achieve the throughput-optimality, the MaxWeight al-
gorithm explores a dynamic routing solution where long paths are utilized even
under a light traffic load. This phenomenon is substantiated via simulations
by a recent work of Ying et al. [2009]. In Ying et al. [2009], the authors propose
a variant of the MaxWeight algorithm where the average number of hops of
transmissions is minimized. Therefore, when the traffic is light, the proposed
solution provides a much lower delay than the traditional MaxWeight algo-
rithm. However, as a trade-off, the induced network capacity region in Ying et
al. [2009] is noticeably smaller than that of the original MaxWeight algorithm.
Consequently, it is difficult to provide a minimum rate guarantee on all the ses-
sions in the network. Our work is inspired by Ying et al. [2009]. With respect to
Ying et al. [2009], however, our article innovates in the following ways. First,
we focus on a heavy-loaded wireless sensor network. Therefore, our solution in-
corporates a rate admission control mechanism which is not considered in Ying
et al. [2009]. Secondly, rather than minimizing the overall number of hops, we
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maximize the overall network utility which can also ensure the fairness among
competitive traffic sessions. Thirdly, we specifically provide a minimum aver-
age rate guarantee for every session to ensure the QoS requirement. Fourthly,
instead of a single destination scenario as considered in Ying et al. [2009], we
extend the model to cases where multiple data sink nodes are available. Each
source node can deliver the packets to any of the sinks. Moreover, the dynamic
routing and the issue of automatic load balancing is realized by the network on-
the-fly. Finally, while Ying et al. [2009] treats different sessions equally when
minimizing the overall number of hops, our model prioritizes all the sessions
with different QoS requirements. Therefore, a more flexible solution with ser-
vice differentiations can be achieved. We will present the constrained queueing
model in the next section.

3. A CONSTRAINED QUEUEING MODEL FOR WIRELESS SENSOR
NETWORKS

3.1 Network Model

We consider a multihop wireless sensor network represented by a directed
graph G = {N, L} where N and L denote the set of vertices and the set of
links, respectively. We will use the notation of |A| to represent the cardinality
of set A, for example, the number of nodes in the network is |N| and |L| is the
number of links. Time is slotted as t = 0, 1, . . . and at a particular time slot
t, the instantaneous channel data rate of link (m, n) ∈ L is denoted by μm,n(t).
In other words, link (m, n) can transmit a number of μm,n(t) packets during
time slot t. We assume that during one time slot, the channel conditions of
links will remain constant. However, the value of μm,n(t) is subject to changes
at the boundaries of time slots. Denote μμμ(t) as the network link rate vector at
time slot t. In this article, we assume that μμμ(t) remains constant within one
time slot but is subject to changes at time slot boundaries. The value of μμμ(t) is
assumed to be evolving following an irreducible and aperiodic Markovian chain
with arbitrarily large yet finite number of states.1 However, the steady state
distributions are unknown to the network.

At time slot t, the network selects a feasible link schedule, denoted by I(t) =
{I1(t), I2(t), · · · , I|L|(t)} where Il(t) = 1 if link l is selected to be active and Il(t) =
0 otherwise. The set of all feasible link schedules is denoted by �(t) which
is determined by the underlying scheduling constraints such as interference
models and duplex constraints. Therefore, selecting an interference-free link
schedule in the network graph G is equivalent to the process of attaining an
independent set in the associated conflict graph G̃, where the vertices are the
links in G and a link exists in G̃ if the two original links in G cannot transmit
simultaneously.

1It should be noted that the Markovian assumption is for the ease of analysis. Our proposed model
can be extended to more general scenarios where the time average of an arbitrary link rate state
is well defined, as in Neely et al. [2005].
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Fig. 1. Topology of wireless sensor networks.

3.2 Traffic Model

There are a number of |S| source nodes in the wireless sensor network which
consistently monitor the surroundings and inject exogenous traffic to the net-
work. For example, in a wildlife monitoring scenario, the sensors, usually
placed with cameras, need to measure the animals’ movements and behav-
iors and transmit the generated packets to the remote Data Processing Center
(DPC) in a multihop fashion. To simplify analysis, we assume that each source
node is associated uniquely with a session. The set of source nodes is denoted
by S = {n0

1, n0
2, . . . , n0

|S|} where n0
s , s = 1, . . . , |S| is the source node of session

s. It is worth noting that the following analysis can be extended straight-
forwardly to the scenarios where each source node may generate multiple
sessions.

There are |D| number of sinks in the network which are connected to the
remote data processing center via the Internet. In other words, the sink nodes
can be viewed as the gateways of the wireless sensor network. Denote the set
of sinks as D = {d1, d2, . . . , d|D|}. In this article, we consider a general scenario
where the data packets from a source node can be delivered to the DPC via
any of the sink node in D. Therefore, different from the existing literature such
as Chiang [2005], Song and Fang [2007], and Ying et al. [2009], the source
nodes do not specify the particular destination node for the generated packets.
The selection of the destination node is achieved by the network via dynamic
routing schemes. The network topology considered in this article is illustrated
in Figure 1.
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For a particular node in the network, say node n, we denote φd
n as the number

of minimum hops from node n to the dth data sink in set D. Define

φ̃n = min
d

(φd
n), d = 1, . . . , |D| (1)

as the minimum value of φd
n for node n, that is, the minimum number of hops

from node n to a sink node in set D. We assume that node n is aware of the
value of φ̃n as well as those values of the neighboring nodes, which are attain-
able via precalculations by traditional routing mechanisms such as Dijkstra’s
algorithm.

At time slot t, the exogenous arrival of session s, that is, the number of new
packets2 generated by the source node of session s, is denoted by As(t). We
assume that there is an upper bound for the number of new packets within
one time slot, that is, As(t) ≤ Amax,∀s, t. For ease of exposition, we assume
that As(t) is independently and identically distributed over time slots with an
average rate of λs. However, the data rates from multiple source nodes can be
arbitrarily correlated. For example, if the wireless sensor network is deployed
for monitoring purposes, it is very likely that a movement of the object will
trigger several concurrent updates of the nearby sensors.

Denote the vector λλλ = {λ1, . . . , λ|S|} as the network arrival rate vector. The
network capacity region � is thus defined as all the feasible3 network arrival
vectors that can be supported by the network via certain policies, including
those with the knowledge of futuristic traffic arrivals and channel rate con-
ditions. In this article, we consider a heavy-loaded traffic scenario where the
network arrival vector λλλ is outside of the network capacity region. Therefore, in
order to achieve the network stability, a rate admission control mechanism is
implemented at the source nodes. More specifically, at time slot t, we only admit
a number of Xs(t) packets into the network from the source node of session s,
that is, n0

s . Apparently, we have

Xs(t) ≤ As(t),∀s, t. (2)

In addition, we assume that each session has a continuous, concave, and dif-
ferentiable utility function, denoted by Us(Xs(t)), which reflects the degree of
satisfaction by transmitting Xs(t) number of packets. It is worth noting that
by selecting proper utility functions, the fairness among competitive sessions
can be achieved. For example, if Us(Xs(t)) = log(Xs(t)), a proportional fairness
among multiple sessions can be enforced [Chiang et al. 2007; Srikant 2003;
Shakkottai and Srikant 2008].

3.3 Queue Management

For each node n in the network, there are |N| − φ̃n number of queues
that are maintained and updated. The queues are denoted by Qn,h, where

2We assume that the packets have a fixed length. For scenarios with variable packet lengths, the
unit of data transmissions can be changed to bits per slot and the following analysis still holds.
3Note that additional constraints may be imposed. For example, the constraints on the minimum
average rate and the maximum average power expenditure can be enforced. For more discussions,
please refer to Georgiadis et al. [2006].
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h = φ̃n, . . . , |N| − 1. Note that |N| − 1 is the maximum number of hops for a
loop-free routing path in the network. The packets in the queue of Qn,h are guar-
anteed to reach one of the sink nodes in set D within h hops, as will be shown
in Section 4. It is interesting to observe that for a newly generated packet by
session s, the source node, that is, n0

s , can place it in any of the queues of Qn0
s ,h,

where h = φ̃n0
s
, . . . , |N| − 1, for further transmission. That is to say, consecu-

tive packets from the source node n0
s may traverse through different number of

hops before reaching a destination sink node in set D. Therefore, when a new
packet is generated, the source node needs to make a decision on which queue
the packet should be placed, namely, traffic splitting decision. In addition, the
decision should be made promptly on an online basis with low computational
complexity.

With a slight abuse of notation, we use Qn,h to denote the queue itself and
Qn,h(t) to represent the number of queue backlogs4 in time slot t. For a single
queue, say Qn,h, it is stable if [Neely et al. 2005; Neely 2003]

lim
B→∞

g(B) → 0, (3)

where

g(B) = lim sup
T →∞

1
T

T −1∑
t=0

Pr(Qn,h(t) > B),

where B is a positive number. The network is stable if all the individual queues
in the network are stable.

For a link (n, j) ∈ L, we require that the packets from Qn,h can be only
transmitted to Qj,h−1, if exists. Therefore, the queue updating dynamic for Qn,h

is given by

Qn,h(t + 1) ≤
[

Qn,h(t) −
∑

(n, j)∈L

un,h
n, j (t)

]+
+

∑
(m,n)∈L

um,h+1
m,n (t) +

∑
s

Xh
s (t)δn=n0

s
, (4)

where [A]+ denotes max(A, 0) and un,h
n, j (t) represents the allocated data rate for

the transmissions of Qn,h → Qj,h−1 on link (n, j), at time slot t, and

N−1∑
h=φ̃n

un,h
n, j (t) = un, j(t),

where un, j(t) = μn, j(t) if In, j(t) = 1, that is, link (n, j) is scheduled to be active
during time slot t, and un, j(t) = 0 otherwise. The notation of Xh

s (t) denotes the
number of packets that are admitted to the network for session s and are stored
in queue Qn,h for future transmissions. The indicator function δA = 1 if event
A is true and δA = 0 otherwise. Note that the inequality in (4) incorporates
the scenarios where the transmitter of a particular link has less packets in the
queue than the allocated data rate. We assume that during one time slot, the
numbers of packets that a single queue can transmit and receive are upper

4In the unit of packets.
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bounded. Mathematically speaking, we have∑
(m,n)∈L

um,h+1
m,n (t) ≤ uin,∀n, h, t, (5)

and ∑
(n, j)∈L

un,h
n, j (t) ≤ uout,∀n, h, t. (6)

3.4 Session-Specific Requirements

In this article, we consider a scenario where each session has a specific rate
requirement αs. Therefore, to ensure the minimum average rate, we need to
find a policy that

lim
T →∞

1
T

T −1∑
t=0

Xs(t) ≥ αs,∀s. (7)

In addition, we assume that each session in the network has an average hop
requirement βs. More specifically, define

Ms(t) =
|N|−1∑
h=φ̃n0

s

hXh
s (t), (8)

where
|N|−1∑
h=φ̃n0

s

Xh
s (t) = Xs(t),∀s, t.

We require that for each session s,

lim
T →∞

1
T

T −1∑
t=0

Ms(t) ≤ βs,∀s. (9)

Note that the average hop for a particular session s is related to the average de-
lay experienced and the average energy consumed for the packet transmissions
of session s. Therefore, by assigning different values of αs and βs, a prioritized
solution among multiple competitive sessions can be achieved for the network
resource allocation problem.

4. STOCHASTIC NETWORK UTILITY MAXIMIZATION IN WIRELESS SENSOR
NETWORKS

In the previous section, we propose a constrained queueing model to investi-
gate the performance of multihop wireless sensor networks. The model consists
of several important issues from different layers, including the rate admission
control problem, the dynamic routing problem, as well as the challenge of adap-
tive link scheduling. To better understand the proposed constrained queueing
model, in this section, we will examine the Stochastic Network Utility Maxi-
mization Problem (SNUM) in multihop wireless sensor networks. As a cross-
layer solution, an Adaptive Network Resource Allocation (ANRA) scheme is
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proposed to solve the SNUM problem jointly. The proposed ANRA scheme is an
online algorithm in nature which provably achieves an asymptotically optimal
average overall network utility. In other words, the average network utility
induced by the ANRA scheme is (1 − ε) of the optimum solution, where ε > 0
is a positive number that can be arbitrarily small, with a trade-off with the
average delay experienced in the network.

4.1 Problem Formulation

Recall that every session s possesses a utility function Us(Xs(t)) which is
continuous, concave, and differentiable. Without loss of generality, in the rest
of this article, we will assume that Us(Xs(t)) = log(Xs(t)). Therefore, in light of
the stochastic traffic arrival as well as the time-varying channel conditions,
our objective is to develop a policy which maximizes

Stochastic Network Utility Maximization (SNUM) Problem

∑
s

E(Us(Xs(t))) (10)

such that:

— The network remains stable.
— The average rate requirements of all |S| sessions, denoted by ααα =

{α1, . . . , α|S|}, are satisfied.
— The average hop requirements of all |S| sessions, denoted by

βββ = {β1, . . . , β|S|}, are satisfied.

Note that if the underlying statistical characteristics of the stochastic traffic
arrivals and the time-varying channel conditions are known, the SNUM prob-
lem is inherently a standard optimization problem and thus is easy to solve.
However, due to the unawareness of the steady state distributions, the SNUM
problem is remarkably challenging. In addition, in wireless sensor networks,
dynamic algorithmic solutions with low computational complexity are strongly
desired. In the following, we propose an ANRA scheme to solve the SNUM
problem asymptotically. The ANRA scheme is a cross-layer solution which con-
sists of joint rate admission control, traffic splitting, dynamic routing, as well
as adaptive link scheduling components. Moreover, the ANRA algorithm can
achieve an automatic load balancing solution by utilizing different sink nodes
corresponding to the variations of the network conditions. The ANRA algorithm
is an online algorithm in nature which requires only the state information of
the current time slot. We show that the ANRA algorithm achieves a (1 − ε) op-
timal solution where ε can be arbitrarily small. Therefore, the proposed ANRA
algorithm is of particular interest for dynamic wireless sensor networks with
time-varying environments.
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4.2 The ANRA Cross-Layer Algorithm

Before presenting the proposed ANRA scheme, we introduce the concept of
virtual queues [Neely 2006; Georgiadis et al. 2006; Stolyar 2005] to facilitate
our analysis. Specifically, for each session s, we maintain a virtual queue Ys,
which is initially empty, and the queue updating dynamic is defined as

Ys(t + 1) = [Ys(t) − Xs(t)]+ + αs,∀s, t. (11)

Similarly, we define another virtual queue for every session s, denoted by Zs,
and the queue dynamic is given by

Zs(t + 1) = [Zs(t) − βs]+ + Ms(t),∀s, t, (12)

where Ms(t) is defined in (8). Note that the virtual queues are software-based
counters which are easy to maintain. For example, the source node of each
session can calculate the values of virtual queues Ys(t) and Zs(t) and update
the values accordingly following (11) and (12). In addition, we introduce a
positive parameter J which is tunable as a system parameter. The impact of J
on the algorithm performance will be discussed shortly. The proposed ANRA
cross-layer algorithm is given as follows.

Adaptive Network Resource Allocation (ANRA) Scheme:

— Joint Rate Admission Control and Traffic Splitting (at time t):
For each source node, say n0

s , there are a number of queues, that is, Qn0
s ,h,

h = φ̃n0
s
, . . . , |N| − 1. Find the value of h which minimizes

Zs(t)h + Qn0
s ,h(t), (13)

where ties are broken arbitrarily. Denote the optimum value of h as h∗. The
source node n0

s admits a number of new packets as

Xs(t) = min
(

˜Xs(t), As(t)
)

, (14)

where

˜Xs(t) =
[

J
2(Zs(t)h∗ + Qn0

s ,h∗ (t)) − 2Ys(t)

]+
. (15)

For traffic splitting, the source node n0
s will deposit all Xs(t) packets in Qn0

s ,h∗ .

— Joint Dynamic Routing and Link Scheduling (at time t):
For each link (m, n) ∈ L, define a link weight denoted by Wm,n(t), which is
calculated as

Wm,n(t) =
[

max
h=φ̃m,...,|N|−1

(
Qm,h(t) − Qn,h−1(t)

)]+
. (16)

Note that if Qn,h−1 does not exist, the transmissions from queue Qm,h to Qn,h−1

are prohibited. At time slot t, the network selects an interference-free link
schedule I(t) which solves

max
I(t)∈�(t)

μm,n(t)Wm,n(t). (17)
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If link (m, n) is active, that is, Im,n(t) = 1, the queue of Qm,h̄ is selected for
transmissions where

h̄ = argmaxh=φ̃m,...,|N|−1
(
Qm,h(t) − Qn,h−1(t)

)
. (18)

End

Note that (17) is similar to the original MaxWeight algorithm introduced
in Tassiulas and Ephremides [1992] and generalized in Neely et al. [2005],
Neely [2003], and Stolyar [2005]. The dynamic routing and link scheduling
are addressed jointly by solving (17), which requires centralized computation.
However, following Tassiulas and Ephremides [1992], many works have been
focused on the distributed solutions of (17). Although the distributed computa-
tion issue is not the focus of this article, we emphasize that our proposed ANRA
scheme can be approximated well by existing distributed solutions such as Joo
[2008], Akyol et al. [2008], Radunovic et al. [2008], Modiano et al. [2006], Jiang
and Walrand [2008], Gupta et al. [2007], Stolyar [2008], and Wu et al. [2007].
For example, in Akyol et al. [2008], each node in the network utilizes an IEEE
802.11 MAC protocol where the contention window size, or equivalently, the
channel access probability in Stolyar [2008], is adjusted consistently to approx-
imate the link weight. The accuracy of such random-access-based distributed
approximations are studied and evaluated extensively in Akyol et al. [2008].
The scheduling component, that is, (17), of our proposed ANRA scheme can be
approximated well by the solutions suggested in the aforesaid papers.

For the packets placed at queue Qn0
s ,h, at most h hops of transmissions are

needed in order to reach one of the sink nodes in set D. This can be veri-
fied straightforwardly due to the requirement that a transmission from Qm,h

to Qn,h−1 can occur if and only if h − 1 ≥ φ̃n. Moreover, the joint rate admis-
sion control and the optimum traffic splitting components of ANRA can be
implemented by the source node in a distributed fashion. Note that in order to
calculate the instantaneous admitted rate, the source node of session s needs
only to know the local queue backlog information. Moreover, the decision of
traffic splitting requires only local queue information as well. Therefore, at ev-
ery time slot, the joint rate admission control and traffic splitting decision can
be made on an online basis in accordance to the time-varying conditions of local
queues. Furthermore, we will show that this simple adaptive strategy does not
incur any loss of optimality. The achieved network utility induced by the ANRA
scheme can be pushed arbitrarily close to the optimum solution. Next, we will
characterize the global optimum utility in the network and provide the main
performance results of the proposed ANRA scheme.

4.3 Performance of the ANRA Scheme

In this section, we first characterize the global optimum solution of the SNUM
problem in (10). Define U ∗ as the global maximum network utility that any
scheme can achieve, that is, the optimum solution of (10). In order to achieve
U ∗, it is naturally to consider more complicated policies such as those with
the knowledge of futuristic arrivals and channel conditions. However, in the
following theorem, we show that, somewhat surprisingly, the global optimum
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solution of the SNUM problem can be achieved by certain stationary policies,
that is, the responsive action is chosen regardless of the current queue sizes in
the network and the time slot that the decision is made. Recall that we have
assumed that for each session, As(t) is independently and identially distributed
over time slots. Denote A(t) as the vector of instantaneous arrival rates of all
sessions, at time slot t. Let A be the set of all possible value of A(t). Note that for
every element in A, that is, Aa, a = 1, . . . , |A|, we have 0 
 Aa 
 Amax where 

denotes the element-wise comparison. We use πa to represent the steady state
distribution of Aa.

THEOREM 1. If the constraints in the SNUM problem are satisfied, the max-
imum network utility, denoted by U ∗, can be achieved by a class of stationary
randomized policies. Mathematically, the value of U ∗ is the solution of the fol-
lowing optimization problem, with the auxiliary variables pk

a and Rk
a, as

max
∑

a

πa

∑
s

Us

( |S|+1∑
k=1

pk
aRk

a

)
(19)

such that:

— The constraints in (10) are satisfied.
— 0 
 Rk

a 
 Aa.

— pk
a ≥ 0,∀a, k.

—
∑|S|+1

k=1 pk
a = 1,∀a.

PROOF. We prove Theorem 1 by showing that for arbitrary policy which
satisfies the constraints in the SNUM problem, the overall network utility is
at most U ∗, which is the optimum utility attained by a class of stationary
randomized policies. In other words, we need to show that

U P = lim sup
T →∞

1
T

T −1∑
t=0

(∑
s

Us(Xs(t))

)
≤ U ∗, (20)

where U P is the average network utility under a policy P.
For each state in A, say Aa, define Ra as the set of nonnegative rate vectors

that are element-wise smaller than Aa. Define CRa as the convex hull of set Ra.
Therefore, any point in CRa can be considered as a feasible network admitted
rate vector given that the current arrival rate vector is Aa. Note that every
point in CRa is a vector with a dimension of |S|-by-1. Therefore, it can be
represented by a convex combination of at most |S| + 1 points, denoted by
Rk

a, k = 1, . . . , |S| + 1, according to Caratheodory’s theorem. In light of this, we
first consider a time interval from 0 to T − 1. Denote Na(T ) as the set of time
slots that A(t) = Aa. Therefore, we can rewrite (20) as

U P = lim sup
T →∞

∑
a

|Na(T )|
T

∑
s

Us

( |S|+1∑
k=1

pk
aRk

a

)
.
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Due to the stationary assumption, we have

U P =
∑

a

πa

∑
s

lim sup
T →∞

Us

( |S|+1∑
k=1

pk
aRk

a

)
.

Note that we also assume that the utility function is continuous and bounded.
Therefore, the compactness of the utility functions is assured. Next, we focus
on a subsequence of time durations, denoted by Ti, i = 1, . . . ,∞. Denote

U P
net(Ti) =

∑
a

πa

∑
s

Us

( |S|+1∑
k=1

pk
a(Ti)Rk

a

)
.

It is straightforward to verify that

U P = lim sup
i→∞

U P
net(Ti).

Due to the compactness of the utility functions, following Bolzano-Weierstrass
theorem [Trench 2003], we claim that there exists a subsequence of Ti, i =
1, · · · ,∞, such that

lim
i→∞

Us

( |S|+1∑
k=1

pk
a(Ti)Rk

a

)
→ Ũ a

s .

Denote p̃k
a as the values which generate Ũ a

s , that is,

Ũ a
s = Us

( |S|+1∑
k=1

p̃k
aRk

a

)
.

We have

U P = lim sup
i→∞

Unet(Ti) =
∑

a

πa

∑
s

Us

( |S|+1∑
k=1

p̃k
aRk

a

)
.

According to the definition of U ∗ in (19), we conclude that U P ≤ U ∗.

Intuitively, Theorem 1 indicates that the global maximum network utility
can be achieved by certain randomized stationary policies. However, to cal-
culate U ∗, the stationary policy needs to know the steady state distributions
which are difficult to obtain in practice. In light of this, we propose an adaptive
network resource allocation scheme, namely, ANRA, which is an online solu-
tion and does not require such statistical information as a priori. For notation
succinctness, denote

U A(t) =
∑

s

E
(
Us(Xs(t))

)
as the expected network utility induced by the ANRA scheme. The performance
of the ANRA algorithm, with a parameter J, is given as the following theorem.

THEOREM 2. For a given system parameter J, we have

lim inf
T →∞

1
T

T −1∑
t=0

U A(t) ≥ U ∗ − B̄
J

, (21)
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where B̄ is a constant and is given by

B̄ = |N|(|N| − 1)((uout)2 + (uin + Amax)2)

+
∑

s

((αs)2 + (βs)2) + |S|(Amax)2((|N| − 1)4 + 1).

In addition, the constraints in the SNUM problem, that is, (10), are satisfied
simultaneously.

PROOF. The proof of Theorem 2 is deferred to Section 5.

The value of constant B̄ is determined by the number of nodes in the network,
the number of sessions, and the values of session requirements, etc. It is worth
noting that if we let J → ∞, the performance induced by the ANRA algorithm
can be arbitrarily close to the global optimum solution U ∗. However, as a
trade-off, a larger value of J also yields a longer average queue size in the
network. According to Little’s Law, a larger queue size corresponds to a longer
average delay experienced in the network. Therefore, by selecting the value of
J properly, a trade-off between the network optimality and the average delay
in the network can be achieved. We will discuss more about this issue in the
next section.

5. PERFORMANCE ANALYSIS

In this section, we provide a proof to Theorem 2 in the previous section. Recall
that in (11) and (12), we introduce two virtual queues, that is, Ys(t) and Zs(t) for
each session s. Therefore, the average rate and the average hop requirements
from all sessions are converted into the stability requirements for the virtual
queues. For example, the virtual queue update of Ys(t) is given by (11). If the
virtual queue Ys is stable, the average arrival rate should be less than the
average departure rate of the queue, that is,

αs ≤ lim
T →∞

1
T

T −1∑
t=0

Xs(t),

which is exactly the minimum average rate requirement imposed by session
s. By the same token, the average hop requirement of session s is converted
to the stability problem of the virtual queue Zs. Define QQQ(t) = (

QQQ(t),YYY (t), ZZZ(t)
)
,

namely, all the data queues and the virtual queues in the network. Our ob-
jective is to find a policy which stabilizes the network with respect to QQQ while
maximizing the overall network utility.

We first take the square of (4) and have

(Qn,h(t + 1))2 ≤ (Qn,h(t))2

+
( ∑

(n, j)∈L

un,h
n, j (t)

)2

+
( ∑

(m,n)∈L

um,h+1
m,n (t) +

∑
s

Xh
s (t)δn=n0

s

)2

−2Qn,h(t)
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t) −

∑
s

Xh
s (t)δn=n0

s

)
.
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Since we assume that each node generates at most one session, we have∑
s

Xh
s (t)δn=n0

s
≤ Amax,∀t, n.

Note that if we allow that a node can initiate multiple sessions, we have∑
s

Xh
s (t)δn=n0

s
≤ |S|Amax,∀t, n,

where |S| is the number of sessions in the network.
In light of (5) and (6), we have

(Qn,h(t + 1))2 − (Qn,h(t))2 ≤ (uout)2 + (uin + Amax)2

− 2Qn,h(t)
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t) −

∑
s

Xh
s (t)δn=n0

s

)
. (22)

We next sum (22) over all the data queues in the network, that is, Qn,h, and
have ∑

n,h

(Qn,h(t + 1))2 −
∑
n,h

(Qn,h(t))2 ≤ B1

− 2Qn,h(t)

⎛⎝ ∑
(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t) −

∑
s

Xh
s (t)δn=n0

s

⎞⎠ , (23)

where

B1 = |N|(|N| − 1)((uout)2 + (uin + Amax)2).

Note that Ms(t), defined in (8), satisfies

Ms(t) ≤ (|N| − 1)2 Amax.

Next, we take the square of (11) and (12) and thus have

(Ys(t + 1))2 ≤ (Ys(t))2 + (Xs(t))2 + (αs)2 − 2Ys(t)(Xs(t) − αs)

and

(Zs(t + 1))2 ≤ (Zs(t))2 + (Ms(t))2 + (βs)2 − 2Zs(t)(βs − Ms(t)).

Similarly, we sum over all the sessions and have∑
s

(Ys(t + 1))2 −
∑

s

(Ys(t))2 ≤ B2 − 2
∑

s

Ys(t)(Xs(t) − αs)

where

B2 = |S|(Amax)2 +
∑

s

(αs)2.

Also, we obtain∑
s

(Zs(t + 1))2 −
∑

s

(Zs(t))2 ≤ B3 − 2
∑

s

Zs(t)(βs − Ms(t)),
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where

B3 =
∑

s

(βs)2 + |S| (|N| − 1)4 (Amax)2.

Define the system-wide Lyapunov function as

L(QQQ(t)) =
∑
n,h

(Qn,h(t))2 +
∑

s

(Ys(t))2 +
∑

s

(Zs(t))2.

Next, we define the Lyapunov drift [Neely 2003] of the system as

� = E
(
L(Q(t + 1)) − L(Q(t)) | Q(t)

)
. (24)

Define

B̄ = B1 + B2 + B3,

we have

� ≤ B̄− 2
∑
n,h

Qn,h(t)E
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h
m,n(t) −

∑
s

Xh
s (t)δn=n0

S

∣∣∣Q(t)
)

− 2E
( ∑

s

Ys(t)(Xs(t) − αs)
∣∣∣Q(t)

)
− 2E

( ∑
s

Zs(t)(βs − Ms(t))
∣∣∣Q(t)

)
.

Next, we subtract both sides by JE(
∑

s Us(Xs(t))|Q(t)) and have

� − JE
( ∑

s

Us(Xs(t))
∣∣∣Q(t)

)
≤ B̄

− 2
∑
n,h

Qn,h(t)E
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t)

∣∣∣Q(t)
)

+ 2E
( ∑

s

∑
h

Qn0
s ,h(t)Xh

s (t)
∣∣∣Q(t)

)
− 2E

( ∑
s

Ys(t)Xs(t)
∣∣∣Q(t)

)
+ 2

∑
s

Ys(t)αs

+ 2E
( ∑

s

Zs(t)Ms(t)
∣∣∣Q(t)

)
− 2

∑
s

Zs(t)βs − JE
( ∑

s

Us(Xs(t))
∣∣∣Q(t)

)
. (25)

We rewrite the R.H.S. of (25) as

R.H.S. = B̄+ 2
∑

s

Ys(t)αs − 2
∑

s

Zs(t)βs

− 2
∑
n,h

Qn,h(t)E
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t)

∣∣∣Q(t)
)

− E
( ∑

s

2Ys(t)Xs(t) −
∑

s

2Zs(t)Ms(t) −
∑

s

∑
h

2Qn0
s ,h(t)Xh

s (t)

+ J
∑

s

Us(Xs(t))
∣∣∣∣Q(t)

)
.
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We observe that the dynamic routing and scheduling component of the ANRA
scheme is actually maximizing∑

n,h

Qn,h(t)E
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t)

∣∣∣Q(t)
)

. (26)

In addition, the joint rate admission control and traffic splitting component of
the ANRA scheme is essentially maximizing

E
( ∑

s

2Ys(t)Xs(t)−
∑

s

2Zs(t)Ms(t)−
∑

s

∑
h

2Qn0
s ,h(t)Xh

s (t)+ J
∑

s

Us(Xs(t))
∣∣∣Q(t)

)
(27)

with the constraints of ∑
h

Xh
s (t) = Xs(t),∀s, t. (28)

To see this, we can decompose (27) to show that each session s only maximizes

JUs
(
Xs(t)

) + 2Ys(t)Xs(t) − 2Zs(t)
∑

h

hXh
s (t) −

∑
h

2Qn0
s ,h(t)Xh

s (t). (29)

Therefore, the proposed ANRA algorithm indeed minimizes the R.H.S. of (25)
over all policies.

Consider a reduced network capacity region, denoted by �ε , parameterized
by ε > 0, as

{λλλ|λn,h + ε ∈ �}, (30)

where � is the original network capacity region and

λn,h = lim
T →∞

1
T

T −1∑
t=0

∑
s

Xh
s (t)δn=n0

s
. (31)

Define U ∗
ε as the global optimum network utility achieved in the reduced ca-

pacity region. Apparently, we have limε→0 U ∗
ε → U ∗. In addition, denote Xh∗

s,ε(0),
Xh∗

s,ε(1), . . . , Xh∗
s,ε(t), . . . as the optimum rate sequence which yields U ∗

ε . Define
X̄ε

s as the average of the optimum rate sequence of session s, in the reduced
capacity region. It is straightforward to verify that X̄ε

s + ε is in the original
network capacity region �. Therefore, following a similar analysis as in Neely
[2003], Neely et al. [2005], Neely et al. [2008], and Sharma et al. [2009], we
claim that there exists a randomized policy, denoted by R, which generates

E
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t)

)
≥ Xh∗

s,ε + ε (32)

if n is one of the source nodes and

E
( ∑

(n, j)∈L

un,h
n, j (t) −

∑
(m,n)∈L

um,h+1
m,n (t)

)
≥ ε (33)
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for other nodes. Furthermore, policy R ensures

E
( ∑

h

Xh∗
s,ε(t) ≥ αc + ε

)
and

E(M∗
s,ε(t) + ε ≤ βs),

where M∗
s,ε(t) is generated by Xh∗

s,ε(t). Due to the fact that the proposed ANRA
scheme minimizes the R.H.S. of (25) overall all policies, including R, we have

� − JE
( ∑

s

Us(Xs(t))
∣∣∣Q(t)

)
≤ B̄− 2ε

( ∑
n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)
)

− JE
( ∑

s

Us(
∑

h

Xh∗
s,ε(t) + ε)

∣∣∣Q(t)
)

.

We next take the expectation with respect to Q(t) and obtain

L(Q(t + 1)) − L(Q(t)) − JE
( ∑

s

Us(Xs(t))
)

≤ B̄− 2εE
( ∑

n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)
)

−JE
( ∑

s

Us(
∑

h

Xh∗
s,ε(t) + ε)

)
. (34)

We sum over time slots 0, . . . , T − 1 and have

L(Q(T )) − L(Q(0)) −
T −1∑
t=0

JE
( ∑

s

Us(Xs(t))
)

≤ T B̄−
T −1∑
t=0

JE
( ∑

s

Us

( ∑
h

Xh∗
s,ε(t) + ε

))
(35)

since

E

(∑
n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)

)
is always nonnegative. Next, we divide the both sides of (35) by T and rearrange
terms to have

1
T

T −1∑
t=0

JE
( ∑

s

Us(Xs(t))
)

≥ 1
T

T −1∑
t=0

JE
( ∑

s

Us

(∑
h

Xh∗
s,ε(t) + ε

))
− B̄− L(Q(0))

T
,

where the nonnegativity of the Lyapunov function is utilized. Since we assume
that the initial queue backlogs in the system are finite and the virtual queues
are initially empty, taking ε → 0 and lim inf T →∞ yields the performance result
of the ANRA algorithm stated in Theorem 2.
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We next show that the constraints of the SNUM problem are also satisfied.
To illustrate this, we show that the queues in the network, including real data
queues and virtual queues, are stable. Based on (34), we sum over time slots
0, . . . , T − 1 and have

T −1∑
t=0

2εE
( ∑

n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)
)

≤ L(Q(0)) +
T −1∑
t=0

JE
( ∑

s

Us(Xs(t))
)

+ T B̄. (36)

Due to Xs(t) ≤ Amax and the assumptions on the utility function, we claim that
Us(t) is upper bounded and denote the maximum utility within one time slot
as Umax, that is,

Us(t) ≤ Umax,∀s, t. (37)

Divide the both sides of (36) by T and we have

1
T

T −1∑
t=0

2εE
( ∑

n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)
)

≤ L(Q(0))
T

+ J|S|Umax + B̄.

By taking lim supT →∞, we have

lim sup
T →∞

1
T

T −1∑
t=0

E
( ∑

n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)
)

≤ J|S|Umax + B̄
2ε

. (38)

Note that the preceding analysis holds for any feasible value of ε. Denote ϕ as
the maximum value of ε such that �ϕ is not empty. Finally, we conclude that

lim sup
T →∞

1
T

T −1∑
t=0

E
( ∑

n,h

Qn,h(t) +
∑

s

Ys(t) +
∑

s

Zs(t)
)

≤ J|S|Umax + B̄
2ϕ

< ∞. (39)

The stability of the network follows immediately from Markov’s Inequality and
thus completes the proof.

It is worth noting that as shown in (39), a large value of J induces a longer
average queue size in the network. Therefore, a trade-off between the algorithm
performance of the ANRA scheme and the average delay experienced in the
network can be controlled effectively by tuning the value of J.

6. CASE STUDY

In this section, we demonstrate the effectiveness of the ANRA algorithm nu-
merically through a simple network shown in Figure 2. We stress that, however,
this exemplifying study case reproduces all the challenging problems involved
in the complex cross-layer interactions in time-varying environments, such as
stochastic traffic arrivals, random channel conditions, and dynamic routing
and scheduling, etc. As shown in Figure 2, the source nodes in the network are
node A and B whereas the destination sink nodes are denoted by E and F.
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Fig. 2. Example network.

There are six nodes and twelve links in the network. Therefore, node A and
B each maintains four queues, from hop 2 to hop 5, and node C and D each
maintains five queues, from hop 1 to hop 5, in the buffer. At each time slot, a
wireless link is assumed to have three equally possible data rates5, 2, 8 and 16.
The traffic arrivals are independently and identically distributed with three
equally possible states, that is, 0, 10, and 20. The minimum rate requirements
of the two sessions are 5 and 8 and the average hop requirements of the sessions
are 30 and 10. Without loss of generality, we assume that at a given time slot,
two links with a common node cannot be active simultaneously. For example,
if link A → B is active, link B → A, A → C, C → A, B → D and D → B cannot
be selected.

Figure 3 depicts the average network utility achieved by the ANRA scheme
for different values of J where each experiment is executed for 50000 time
slots. We can observe from Figure 3 that the overall network utility rises as
the value of J increases. However, the speed of utility improvement decreases
and the achieved network utility converges to the global optimum utility U ∗

gradually. It is worth noting that in practice, the value of U ∗ cannot be attained
efficiently without knowing the underlying statistical characteristics. However,
the proposed ANRA scheme can achieve a solution which is arbitrarily close to
the global optimum solution with no such information required. To demonstrate
the trade-off of different values of J, in Figure 4, we show the average queue
size in the network for J = 20, 50, 200, 500, 1000, 2000, 5000, 10000, and 20000.
We can see that, as expected, the average queue size increases as the value of
J gets larger. Note that the average queue size is related to the average delay
in the network. Therefore, a trade-off between the network optimality and the
average experienced delay can be achieved by tuning the value of J.

In Figure 5, we illustrate the sample trajectories of the admitted rates of
two sessions with J = 5000, for the first 50 time slots. We can observe that
each session admits different amount of packets into the network adaptively

5Note that the unit of data transmissions is packet per slot.
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Fig. 3. Average network utility achieved by ANRA for different values of J.

Fig. 4. Average network queue size by ANRA for different values of J.

following the time-varying conditions of the network. In addition, we depict
the trajectories of the four virtual queues with the same settings, in Figure
6, for the first 100 time slots. By comparing Figure 5 and Figure 6 jointly,
we can observe that for the minimum rate virtual queue, say Y1, whenever
there is the tendency that the virtual queue is accumulating, as depicted in
Figure 6, the corresponding admitted rate by session 1 increases in Figure 5.
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Fig. 5. Sample trajectories of the admitted rates of two sessions for J = 5000.

Fig. 6. Sample trajectories of the virtual queues for J = 5000.

By the definition of the virtual queue, a larger backlog of Y1 indicates that the
average departure rate of the virtual queue, that is, the average admitted rate,
is insufficient. Therefore, the source node of session 1 will attempt to increase
the admitted rate and thus the backlog of the virtual queue will decrease
accordingly where the stability of the virtual queue can be assured.

In Figure 7, the traffic splitting decisions of the two source nodes, that is,
the hop selections of the source nodes, are illustrated. We can observe that both
source nodes incline to utilize the queues with the smaller number of hops. The
queues with longer hops, for example, h = 3 or 4, are used only when the queue
backlogs in the queues with smaller hops are overwhelmed. In addition, we
can see that on average, session 2 utilizes a smaller number of average hops
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Fig. 7. Sample trajectories of the hop selections for J = 5000.

than session 1. Recall that session 2 has a much more stringent constraint on
the average number of hops than session 1, that is, 10 versus 30. Therefore,
the source node of session 2, that is, n0

2, inclines to deposit more packets on the
queues with smaller hop counts. As a consequence, by assigning different values
of rate and hop requirements, a service differentiation solution can be achieved
by the ANRA scheme among multiple competitive sessions in the network. In
addition, a near-optimal network utility can be attained simultaneously.

7. CONCLUSIONS AND FUTURE WORK

In this article, we propose a constrained queueing model to capture the cross-
layer interactions in multihop wireless sensor networks. Our model consists
of components from multiple layers such as rate admission control, dynamic
routing, and wireless link scheduling. Based on the proposed model, we inves-
tigate the stochastic network utility maximization problem in wireless sensor
networks. As a cross-layer solution, an adaptive network resource allocation
scheme, called the ANRA algorithm, is proposed. The ANRA algorithm is an
online mechanism which yields an overall network utility that can be pushed
arbitrarily close to the global optimum solution.

As a future work, energy-aware distributed scheduling algorithms are to
be studied and evaluated. In addition, the extension of our model to wireless
sensor networks with network coding seems interesting and needs further
investigation.
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