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Abstract—Due to the emerging various data services, current cellular networks have been experiencing a surge of data traffic and are

already overloaded; thus, they are not able to meet the ever exploding traffic demand. In this study, we first introduce a multi-radio
multi-channel multi-hop cognitive cellular network (M3C2N) architecture to enhance network throughput. Under the proposed

architecture, we then investigate the minimum length scheduling problem by exploring joint frequency allocation, link scheduling, and
routing. In particular, we first formulate a maximal independent set based joint scheduling and routing optimization problem called

original optimization problem (OOP). It is a mixed integer non-linear programming (MINLP) and generally NP-hard problem. Then,
employing a column generation based approach, we develop an !-bounded approximation algorithm which can obtain an !-bounded

approximate result of OOP. Noticeably, in fact we do not need to find the maximal independent sets in the proposed algorithm, which
are usually assumed to be given in previous works although finding all of them is NP-complete. We also revisit the minimum length

scheduling problem by considering uncertain channel availability. Simulation results show that we can efficiently find the !-bounded
approximate results and the optimal result as well, i.e., when ! ¼ 0% in the algorithm.

Index Terms—Cognitive cellular networks, multi-radio multi-channel multi-hop, cross-layer optimization, minimum length scheduling

Ç

1 INTRODUCTION

DUE to the emerging various data services, current cellu-
lar networks have been experiencing a surge of data

traffic and already overloaded, thus not able to meet the
ever exploding traffic demand. Even the new generation
LTE or WiMAX cellular networks may still suffer from low
per-user throughput because of a large number of network
users sharing limited frequency bandwidth as well as poor
cellular signals in certain areas like obstructed or suburban
areas. Although Wi-Fi networks may provide high data
rates, they have serious shortcomings as well. First, wireless
local area networks (WLANs) or hot spots have poor
coverage and can easily get overcrowded. Second, citywide
Wi-Fi networks like mesh networks have not been widely
deployed yet, thus requiring additional deployment cost,
and may interfere with existing WLANs, hot spots,
and other Industrial, Scientific and Medical (ISM) band

users (e.g., cordless phones, RFID systems, wireless telemet-
ric systems like smart meter networks).

In this paper, we first introduce a multi-radio multi-
channel multi-hop cognitive cellular network (M3C2N)
architecture to meet the fast-growing traffic demand in cel-
lular networks. In particular, both cellular base stations
(BSs) and network users are equipped with multiple cogni-
tive radios. Thus, we can exploit the greatly under-utilized
licensed spectrums, i.e., white spaces/spectrum holes, for
communications, and hence enhance network throughput.
Moreover, instead of delivering all the traffic between base
stations and users in one hop like that in traditional cellular
networks, we propose to carry such traffic in hybrid mode,
i.e., either in one-hop or via multiple hops depending on
the local available frequency channels and the correspond-
ing channel conditions. In so doing, we can further take
advantage of local available channels, frequency reuse, and
link rate adaptivity to provide higher network throughput.
Note that a couple of works such as [1], [2] investigate the
capacity of such multihop cellular networks and have
shown that such hybrid mode communications can
improve the network capacity a lot compared to one-hop
communications. However, these works only consider the
case where nodes share the cellular frequency channels
and have not exploited the local available channels or
multi-radio as we propose in this study. Besides, although
asymptotic capacity bounds have been studied, the exact
optimal throughput value remains unknown. Generally,
the proposed M3C2N architecture can enhance network
performance and adapt to dynamic traffic distribution, yet
relieving service providers from any significant additional
infrastructure costs.
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Under the M3C2N architecture, we investigate the mini-
mum length scheduling problem by exploring joint fre-
quency channel allocation, link scheduling, and routing.
Specifically, by constructing a conflict graph, we first formu-
late a maximal independent set based joint scheduling and
routing optimization problem called original optimization
problem (OOP). It is a mixed integer non-linear program-
ming (MINLP) and generally NP-hard problem. We notice
that finding all the maximal independent sets in a conflict
graph is NP-complete, and most previous research just
assumes that they are given [3]–[5]. In this study, we do not
make such assumptions. Instead, we decompose OOP into a
sequence of linear programming (LP) problems, which we
name master problems (MPs). After that, employing a col-
umn generation (CG) based approach, we further decom-
pose each MP into a restricted master problem (RMP) and a
pricing problem (PP), which are a small-scale LP problem
and a binary integer programming (BIP) problem, respec-
tively. The basic idea is that RMP starts with some initial
independent sets, while PP updates the set of independent
sets in each iteration. Notice that RMP can be solved in poly-
nomial time, but PP is still a problem with high complexity.
Therefore, we design a sequential-fix (SF) algorithm which
can find a suboptimal solution to PP in polynomial time.
Although SF is suboptimal, we can still find the optimal solu-
tion to MPs and hence OOP due to the intrinsic iterative
nature of column generation. Besides, it has been observed
in the context of column generation algorithms [6], [7] that
one can usually determine solutions that are at least 95-99
percent of the global optimality fairly quickly. Subsequently,
we develop an !-bounded approximation algorithm, which
can obtain upper and lower bounds that are less than ð1þ !Þ
and larger than ð1& !Þ of the optimal result of each MP,
respectively, and an !-bounded approximate result of the
OOP. Simulation results show that upper and lower bounds
converge quickly and thuswe can efficiently find the optimal
result as well, i.e., when ! ¼ 0% in the algorithm. In other
words, we are able to solve OOP very efficiently without
having to find the maximal independent sets. Furthermore,
although most previous research on network optimization
assumes constant channel bandwidth, in practice, the
vacancy/occupancy of licensed channels can be uncertain
and dynamic at different times, due to the unpredictable
activities of the primary users. In this study, we also revisit
the minimum length scheduling problem by taking uncer-
tain channel availability into consideration.

Our main contributions can be summarized as follows:

" We introduce a multi-radio multi-channel multi-hop
cognitive cellular network architecture and a new
hybrid mode communication scheme to enhance net-
work throughput.

" We explore the minimum length scheduling problem
by joint frequency channel allocation, link schedul-
ing, and routing. Most previous works only obtain
suboptimal results that are either unbounded or still
far from the optimal results, and many works based
on conflict graphs also assume that all the maximal
independent sets are given. In this paper, we develop
a column generation based !-bounded approximation
algorithm, which relaxes this assumption and is able

to find tight !-bounded approximate solutions and
the optimal solutions as well. The computational
complexity of the proposed algorithm is analyzed.
The developed algorithm can also be applied to
cross-layer optimization problems in other networks.

" We consider heterogeneous networks and take
uncertain channel availability into account when
studying the minimum length scheduling problem,
which is an intrinsic feature of cognitive radio net-
works but has rarely been studied before.

" We conduct extensive simulations to validate the
efficiency of the proposed algorithms.

The rest of this paper is organized as follows. We briefly
introduce our system models in Section 2. We then formu-
late a minimum length scheduling problem for M3C2Ns in
Section 3. After that, we propose in Section 4 a column gener-
ation based !-bounded approximation algorithm which can
efficiently find !-bounded approximate solutions and the
optimal solution when ! ¼ 0. Subsequently, we revisit the
minimum length scheduling problem by considering uncer-
tain channel availability in Section 5. Simulations results are
presented in Section 6 to evaluate the performance of the pro-
posed algorithm. Section 7 discusses the most related works.
We finally conclude this paper in Section 8.

2 SYSTEM MODELS

2.1 Network Architecture
As shown in Fig. 1, we propose a novel multi-radio multi-
channel multi-hop cognitive cellular network architecture.
Specifically, an M3C2N is a cellular network in which both
the service provider and network users can access multiple
channels with multiple cognitive radios. For example, base
stations and more powerful terminals (e.g., laptops and tab-
lets) can have higher cognitive capabilities and span a larger
range of frequency spectrum (e.g., from MHz spectrum to
GHz spectrum), while less powerful devices (e.g., smart
phones and cellular phones) may just access only several
typical frequency spectrum, such as the cellular spectrum,
the 2.4 GHz ISM spectrum, and the TV spectrum which has
large bandwidth and good penetration and propagation
performances. We call cellular spectrum “the basic
channel”, and other spectrums “the secondary channels”.
The service provider uses the basic channel for signaling,
controlling, handling handoffs, accommodating users’ voice
traffic, etc., and uses all the available channels to support
users’ data traffic. As a central coordinator, the service pro-
vider performs network optimization to find out the

Fig. 1. The architecture of a multi-radio multi-channel multi-hop cognitive
cellular network.
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optimal radio and frequency allocation, link scheduling,
and routing schemes for satisfying users’ traffic demand
based on the observed, collected, and predicted channel
information [8]–[10] in the coverage area.

Besides, instead of delivering all data traffic in one hop
like that in traditional cellular networks, we propose to
carry such traffic either in one-hop or via multiple hops,
depending on the available channels and the corresponding
channel conditions. In addition, since downlink transmis-
sions from base stations to users will likely outweigh uplink
transmissions, we focus on downlink transmissions in this
study. The analysis for uplink transmissions simply follows
the same process presented herein.

2.2 Network Model
Consider a cell in an M3C2N consisting of N ¼ f1; 2; . . . ;
i; . . . ; Ng users and a set of available secondary channels
M ¼ f1; 2; . . . ; b . . . ;Mg with different bandwidths.1 We
denote the base station by B and the basic channel by 0, and
consequently let N ¼ N [ fBg and M ¼ M[ f0g. The
bandwidth of channel b is denoted by Wb. Moreover, we
denote the set of radios at node i 2 N by Ri ¼ f1; 2; . . . ; Rig
where Ri is the number of radios that node i has. Suppose
there are a set of L ¼ f1; 2; . . . ; l; . . . ; Lg downlink sessions
from the base station to network users. We let sðlÞ and dðlÞ
denote the source node and the destination node of session
l 2 L, respectively. Thus, sðlÞ ¼ B and dðl1Þ 6¼ dðl2Þ for any
l; l1; l2 2 L. We also denote by rðlÞ the throughput demand of
session l. Besides, due to their different geographical loca-
tions, users in the network may have different available
channels. LetMi ' M represent the set of available channels
at node i 2 N . ThenMi might be different fromMj, where j
is not equal to i, i.e., possibly Mi 6¼ Mj. Note that the local
available channels can be determined by spectrum sensing,
which can be performed in several different ways, such as
centralized sensing, distributed sensing, and external sens-
ing [16], [17]. There has been a lot of work in the literature
studying this problem and is out of the scope of this paper.

Some important notations are summarized in Table 1.

2.3 Transmission/Interference Range and Link
Capacity

Suppose the power spectral density of node i on channel b
is Pb

i . A widely used model [18], [19] for power propaga-
tion gain between node i and node j, denoted by gij, is
gij ¼ C ( ½dði; jÞ*&g , where i and j also denote the positions
of node i and node j, respectively, dði; jÞ refers to the
euclidean distance between i and j, g is the path loss factor,
and C is a constant related to the antenna profiles of the
transmitter and the receiver, wavelength, and so on. We
assume that the data transmission is successful only if the
received power spectral density at the receiver exceeds a
threshold Pb

T . Meanwhile, we assume interference becomes

non-negligible only if it produces a power spectral density
over a threshold of Pb

I at the receiver.2 Thus, the transmis-
sion range for a node i on channel b is Ri;b

T ¼ ðCPb
i =P

b
T Þ

1=g ,
which comes from CðRi;b

T Þ&g ( Pb
i ¼ Pb

T . Similarly, based on
the interference threshold Pb

I ðPb
I < Pb

T Þ, the interference
range for a node is Ri;b

I ¼ ðCPb
i =P

b
I Þ

1=g , which is larger than
Ri;b

T . Thus, different nodes may have different transmission
ranges/interference ranges on different channels with dif-
ferent transmission power.

In addition, according to the Shannon-Hartley theorem,
if node i sends data to node j on link ði; jÞ using channel b,
the capacity of link ði; jÞ on channel b is3

cbij ¼ Wblog2 1þ gijP b
i

h

! "
; (1)

where h is the thermal noise at the receiver. Note that the
denominator inside the log function only contains h. This is
because of one of our interference constraints, i.e., when
node i is transmitting to node j on channel b, all the other
neighbors of node jwithin its interference range are prohib-
ited from using this channel. We will address the interfer-
ence constraints in detail in the following section.

3 MINIMUM LENGTH SCHEDULING FOR M3C2NS

In this section, we investigate the minimum length schedul-
ing problem for M3C2Ns by joint frequency allocation, link
scheduling, and routing. Traditional cellular networks
employ one-hop transmissions to support the traffic
between base stations and network users, which we call the
“infrastructure mode” communications. This design results in
very poor throughput performance due to limited fre-
quency channel bandwidth. In this study, we propose a

TABLE 1
Important Notations

1. Note that in this study we only consider the minimum length
scheduling in one cell to focus on the optimization problem and make
it easier to understand. The interference from other cells can be
addressed by frequency planning and our interference model that will
be introduced later. Many related works on cross-layer optimization
for cognitive cellular networks also focus on one cell only [11]–[15].
Besides, the presented study here can be easily extended to multi-cell
scenarios with minor changes.

2. Note that the interference model we adopt in this study is the
Protocol Model introduced in [20], which considers one interfering link
at a time. Gupta and Kumar [20] also introduces the Physical Model,
according to which a transmission is successful if its signal-to-interfer-
ence plus noise ratio (SINR) is above a threshold. It has been shown in
[20] that these two interference models can be equivalent in terms of
network capacity by setting the interference range in Protocol Model
appropriately. Shi et al. [21] also study how to set the optimal interfer-
ence range in Protocol Model to bridge the gap between it and Physical
Model in analyzing throughput of multi-hop wireless networks. Proto-
col Model has been widely adopted in cross-layer wireless network
optimization and design [3], [22], [23].

3. Note that this link capacity is the same no matter which radios the
transmitter and the receiver use.

LI ET AL.: OPTIMAL SCHEDULING FOR MULTI-RADIO MULTI-CHANNEL MULTI-HOP COGNITIVE CELLULAR NETWORKS 3
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“hybrid mode” communication paradigm to enhance the per-
formance of M3C2Ns by taking advantage of local available
channels and link rate adaptivity.

3.1 Hybrid Mode Communications
In hybrid mode communications, we only let a fraction of
nodes close to a base station communicate with the base sta-
tion directly in one hop. The other nodes farther away need
communicate via multiple hops, i.e., in ad hoc mode, with
some of the above nodes in order to communicate with the
base station.

We further illustrate the hybrid mode communication
paradigm in Fig. 2. Consider a regular cell C, at the center of
which there is a base station denoted by B. We denote the
minimum transmission range of all the users on all the
channels by Rmin

T , i.e., Rmin
T ¼ mini2N ;b2MfRi;b

T g, and define
an area Sp (1 + p + P ) as follows:

Sp ¼
#
r j ðp& 1Þ (Rmin

T + dðr; BÞ < p (Rmin
T

$
;

where r denotes a point in the network and its position as
well, and B denotes the position of the base station. Letting
the largest distance between the BS and a point in the cell be
D, we can have P ¼ D=Rmin

T

% &
. Then, we choose one of the

above areas, say Sg (1 + g + P ), as the proxy region. In partic-
ular, define by dðpÞ ð1 + p + P Þ a binary function, which is
equal to 1 when area Sp is selected as the proxy region and 0
otherwise. Consequently, we have

XP

p¼1

dðpÞ ¼ 1; and g ¼ d&1ð1Þ:

Let A2 ¼ Sg. Then, the nodes in A1 ¼
S g

p¼1Sp, which we call
the infrastructure region, communicate with the base station
directly in one hop. The nodes in A3 ¼ CnA1, which we call
the ad hoc region, communicate via multiple hops with the
nodes inA2 in order to communicate with the base station.

Note that the hybrid mode communication paradigm
changes into the traditional infrastructure mode when
g ¼ P , and becomes the pure ad hoc mode when g ¼ 1.
Although ad hoc mode transmissions lead to higher fre-
quency reuse, more ad hoc mode transmissions in the net-
work, i.e., lower g, do not necessarily lead to higher

performance. For instance, when g ¼ 1, all the traffic burden
will be put on the nodes in S1, which may not be the optimal
strategy resulting in the best performance when all the net-
work users have the same available channels, not to men-
tion the fact that the users in S1 may even have fewer
available channels with lower bandwidths. Therefore, we
need to find out an optimal proxy region in the network.

In addition, although only the nodes in the infrastructure
region communicate with the base station in one hop, the
base station still needs to maintain the transmission power
level to cover the whole cell in order to guarantee voice
services, and controlling and signalling. So we assume the
base station’s transmission range is the same on all the chan-
nels, i.e., to cover the whole cell.

3.2 Construction of Conflict Graph and
Independent Sets

Taking into account the local channel availability and the
existence of a powerful base station, we construct a conflict
graph as follows to characterize the interference among the
communication links in a cell.

In particular, we denote the conflict graph by GðV;EÞ,
where V is the vertex set and E is the edge set. Each vertex
corresponds to a link-radio-channel (LRC) tuple defined as
ðði; jÞ; ðm;nÞ; bÞ, where i; j 2 N , j 2 T b

i , m 2 Ri, n 2 Rj, and
b 2 Mi

T
Mj. Here, T b

i is the set of nodes within node i’s
transmission range on channel b. The LRC tuple indicates
that node i transmits to node j on channel b with i and j
using radio m and radio n, respectively. We say that two
LRC tuples interfere with each other if 1) the receiving node
in one tuple is within the interference range of the transmit-
ting node in the other tuple given that the two tuples are
using the same channel, or 2) the two tuples use the same
radio at one or two nodes. We connect two vertices in V
with an undirected edge if the corresponding LRC tuples
interfere with each other.

In the conflict graph GðV;EÞ, we define a variable wxy,
where x; y 2 V , as follows:

wxy ¼
1; if there is an edge between vertex x and y
0; otherwise:

'

Thus, if there is a vertex (i.e., LRC tuple) set I ' V and a
vertex x 2 I satisfying

P
y2I ;x6¼y wxy < 1, the transmission

on the LRC tuple x can be carried out successfully even if
all the other LRC tuples belonging to the set I transmit at
the same time. If every x 2 I satisfies the above condition,
we can schedule the transmissions over all these LRC tuples
in I to be active simultaneously. Such a vertex set I is called
an independent set. If adding any more LRC tuples into an
independent set I results in a non-independent one, I is
defined as a maximal independent set.

3.3 Link Scheduling and Routing Constraints

3.3.1 Link Scheduling Constraints

Given the constructed conflict graph G ¼ ðV;EÞ, suppose
we can list all the maximal independent sets4 as
K ¼ fI1; I 2; . . . ; IQg, where Q ¼ jKj, and I q ' V for

Fig. 2. Hybrid mode communications.

4. We will show in the next section that we do not really need to find
all the maximal independent sets.

4 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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1 + q + Q. Then, in the conflict graph G, at any time
instance, there should be only one active maximal indepen-
dent set to ensure the success of all the transmissions. We
denote the maximal independent set I q’s time share (out of
unit time 1) to be active by wq. Therefore, we have

X

1+q+Q

wq + 1; wq , 0 ð1 + q + QÞ:

Let cbij;mnðI qÞ be the data rate on the LRC tuple ðði; jÞ;
ðm;nÞ; bÞ when the maximal independent set I q is active.
Then, cbij;mnðI qÞ is equal to 0 if the LRC tuple ðði; jÞ; ðm;nÞ; bÞ
is not in I q, and equal to the link capacity calculated accord-
ing to (1) otherwise. Thus, letting fijðlÞ denote the flow rate
of session l over link ði; jÞ (over all the channels), where
i 2 N , l 2 L, and j 2

S
b2Mi

T b
i , the traffic rate on link ði; jÞ,

i.e.,
P

l2L fijðlÞ, should not exceed the capacity of the link.
Consequently, the schedule of the maximal independent
sets should satisfy the following constraint:

X

l2L
fijðlÞ +

XQ

q¼1

wq

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mnðI qÞ: (2)

3.3.2 Routing Constraints

Recall that we consider downlinks in this study, which
means that the base station is the source node for all the
flows. In our hybrid mode communication paradigm pre-
sented in Section 3.1, we have defined the infrastructure
region A1, the proxy region A2, and the ad hoc region A3.
The destinations in the infrastructure region receive packets
from the base station in one hop and hence on a single path,
while packets intended for the destinations in the ad hoc
region reach the proxy region first, which may go through
multiple paths.

Thus, at the base station, we have the following con-
straints:

X

j2N
fjBðlÞ ¼ 0; (3)

fBdðlÞðlÞ ¼ rðlÞ 8dðlÞ 2 A1; (4)

X

j2A2

fBjðlÞ ¼ rðlÞ 8dðlÞ 2 A3: (5)

The first constraint means that the incoming data rate at the
base station is 0. The second constraint indicates that the
traffic intended for any destination in the infrastructure
region is delivered in one hop on a single path. The third
constraint means that the traffic for any destination in the
ad hoc region goes through the proxy region and may be
delivered on multiple paths.

Remember that we define by dðlÞ ðl 2 LÞ the destination
node of session l. We then define by d&1ðjÞ the session
whose destination is j. We further let DðLÞ be the set of all
the destination nodes in the network, i.e., DðLÞ ¼
fdðlÞjl 2 Lg, and T i ¼

S
b2Mi

T b
i . Then, we can have the

constraints below:

" For any j 2 A1 and j 2 DðLÞ, we have

fBjðlÞ ¼ rðlÞ; (6)

i.e., the destination nodes in the infrastructure region
A1 receive their packets from the base station directly
in one hop on a single path. Note that this constraint
holds whenever the constraint (4) holds.

" For any j 2 A2
S

A3, dðlÞ 2 A3, and j 6¼ dðlÞ, we have

X

fpjj2T pg
fpjðlÞ ¼

X

i2T j

fjiðlÞ; (7)

which indicates that each node in the proxy region
A2 and in the ad hoc region A3 can act as a relay
node for the destination nodes in the ad hoc region,
and hence its total incoming data rate is equal to its
total outgoing data rate.

" For any j 2 A3 and j 2 DðLÞ, we have
P

fijj2T ig fijðlÞ ¼
rðlÞ, which means that the total incoming data rate to
each destination node in the ad hoc region is equal to
its throughput demand.Note that this constraint holds
whenever the constraints (5) and (7) hold.

3.4 Scheduling Length Optimization for M3C2Ns
The objective of this study is to exploit both the cellular and the
local available channels to minimize the scheduling length, i.e.,
C ¼

P
1+q+Q wq, required to support certain traffic demands in

M3C2Ns. Gathering information about channel availability in
the network, the service provider can achieve this goal by opti-
mally selecting proxy region, determining end-to-end paths,
and scheduling the transmissions. Note that a minimum value
of C greater than 1 indicates that the current traffic demands
exceed the system capacity and cannot be satisfied.

Considering the hybrid communication paradigm, the
scheduling length optimization problem under the afore-
mentioned link scheduling and routing constraints can be
formulated as follows:

OOP : Minimize C ¼
X

1+q+Q

wq

s:t: Equations ð2Þ and ð3Þ
XP

p¼1

dðpÞ ¼ 1; dðpÞ 2 f0; 1gð1 + p + P Þ; g ¼ d&1ð1Þ (8)

A1ðgÞ ¼
[g

p¼1

Sp;A2ðgÞ ¼ Sg;A3ðgÞ ¼ CnA1ðgÞ (9)

fBdðlÞðlÞ1fdðlÞ 2 A1ðgÞg ¼ rðlÞ ðl 2 LÞ (10)

X

j2A2

fBjðlÞ1fdðlÞ 2 A3ðgÞg ¼ rðlÞ ðl 2 LÞ (11)

X

fpjj2T pg
fpjðlÞ1fdðlÞ 2 A3ðgÞ; j 2 A2ðgÞ [ A3ðgÞ; j 6¼ dðlÞg

¼
X

i2T j

fjiðlÞ1fdðlÞ 2 A3; j 2 A2ðgÞ [A3ðgÞ; j 6¼ dðlÞgðl 2 LÞ
(12)

wq , 0 ð1 + q + QÞ (13)

fijðlÞ , 0 ðl 2 L; i 2 N ; j 2 T iÞ; (14)

LI ET AL.: OPTIMAL SCHEDULING FOR MULTI-RADIO MULTI-CHANNEL MULTI-HOP COGNITIVE CELLULAR NETWORKS 5
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where (2) indicate that the flow rate over link ði; jÞ cannot
exceed the link capacity, (8)–(9) characterize the hybrid
communication paradigm and define the infrastructure
region, the proxy region, and the ad hoc region, and (3),
(10)-(12) are the routing constraints. Here, we define an
indicator function 1fAg which is equal to 1 if the event A is
true, and 0 otherwise.5

Given all themaximal independent sets in the network,we
can find that the formulated optimization problem above is a
mixed integer non-linear programming problem, which is in
general NP-hard to solve [24], [25]. In the rest of this paper,
we call this optimization problem the original optimization
problem, and denote theminimum scheduling length byC-.

Note that the solution to the OOP consists of the follow-
ing four parts: dðpÞ’s, fijðlÞ’s, sbij;mn’s and wq’s, which deter-
mine the proxy region, routing, frequency-domain
scheduling, and time-domain scheduling, respectively. Par-
ticularly, wq’s represent the time share (out of unit time 1)
for the maximal independent set Iq to be active. The service
provider can pre-assign an index number to each of the
maximal independent sets, and schedule all the maximal
independent sets (i.e., the link-radio-channel tuples) to be
active following a certain order in each time slot, e.g., from
the lowest index number to the highest. In so doing, a
detailed time-domain schedule can be obtained and each
LRC tuple knows when and how long it needs to be active
in each time slot. Besides, if the traffic demand changes or
some users join/leave the network, the OOP problem will
be computed again to find a new solution. Otherwise, the
same solution will be adopted.

4 A COLUMN GENERATION BASED EFFICIENT

!-BOUNDED APPROXIMATION ALGORITHM

In this section, we propose a column generation based
!-bounded approximation algorithm, which can efficiently
find the !-bounded approximate results and the optimal
result as well, i.e., when ! ¼ 0 in the algorithm, without
finding the maximal independent sets. The definition of
!-bounded approximate solution will be given later.

4.1 Decomposition of the Original Optimization
Problem

The OOP is a mixed integer non-linear programming prob-
lem because of dðpÞ’s in constraint (8) and the non-linear
constraints (10)-(12). Notice that when the proxy region A2,
i.e., dðpÞ’s, is fixed, the infrastructure region A1 and the
ad hoc region A3 will both be determined, which can turn
the OOP into a linear programming problem. Therefore, we
can solve the OOP as follows: we first solve the P schedul-
ing length optimization problems separately considering
that one of the P subareas (as shown in Fig. 2) is selected as
the proxy region, and then compare the P results and find
the minimum scheduling length among them as the global
optimization result for the OOP. Notice that when the user
density is sparse, it is possible that there are no users in one
or some (but obviously not all) of the P subareas. Thus,

when an empty subarea is selected as the proxy region, the
traffic for destinations in the ad hoc region cannot be sup-
ported, and hence we set the minimum scheduling length
in that case to be infinity.

Specifically, we decompose the OOP into P linear pro-
gramming problems, each of whichwe call amaster problem
(MP).Notice that the optimal result of OOP remains the same
when we consider all the independent sets K which include
all the maximal independent sets K. Thus, when the proxy
region is Sg (1 + g + P ), theMP is formulated as follows:

MP : Minimize cg ¼
X

1+q+jKj

wq

s:t: Equations ð2Þ; ð3Þ; ð13Þ; and ð14Þ
fBdðlÞðlÞ ¼ rðlÞ ðl 2 L; dðlÞ 2 A1ðgÞÞ; (15)

X

j2A2ðgÞ
fBjðlÞ ¼ rðlÞ ðl 2 L; dðlÞ 2 A3ðgÞÞ; (16)

X

fpjj2T pg
fpjðlÞ ¼

X

i2T j

fjiðlÞ

ðl 2 L; j 2 A2ðgÞ [A3ðgÞ; dðlÞ 2 A3ðgÞ; j 6¼ dðlÞÞ: (17)

However, after the decomposition, there are still two dif-
ficulties in solving this linear programming problem. First,
each MP is a linear programming problem if we can find all
the independent sets, which is nonetheless an NP-complete
problem itself [26], [27]. Second, even if we can find all the
independent sets, the number of such sets increases expo-
nentially as the number of LRC tuples and hence can be
huge. In the following, we propose a column generation
based approach to circumvent these difficulties and effi-
ciently solve each MP.

4.2 Column Generation
Column generation is an iterative approach for solving huge
linear or nonlinear programming problems, in which the
number of variables (columns) is too large to be considered
completely [6]. Generally, only a small subset of these varia-
bles are non-zero values in an optimization solution, while
the rest of the variables (called nonbasis) are zeros. Therefore,
CG leverages this idea by generating only those critical varia-
bles that have the potential to improve the objective function.
In our case, each MP is further decomposed into a restricted
master problem and a pricing problem. The strategy of this
further decomposition procedure is to operate iteratively on
two separate, but easier, problems. During each iteration, PP
tries to determine whether any columns (i.e., independent
sets) uninvolved in RMP exist that have a negative reduced
cost,6 and adds the column with the most negative reduced
cost to the corresponding RMP, until the algorithm termi-
nates at, or satisfyingly close to, the optimal solution.

5. Note that each maximal independent set’s time share to be active
is a real number. OOP is formulated based on the maximal independent
sets as in [3]–[5].

6. Reduced cost [6] refers to the amount by which the objective func-
tion would have to improve before the corresponding column is
assumed to be part of optimal solution. In the case of a minimization
problem like in this paper, improvement in the objective function
means a decrease of its value, i.e., a negative reduced cost. In finding
the column with the most negative reduced cost, the objective is to find
the column that has the best chance to improve the objective function.

6 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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Notice that the formulation of MP considers the entire set
of independent sets K, while RMP only starts with a set of
initial feasible independent sets, say K0, which can be easily
formed by placing just one LRC tuple in each of them. Thus,
an RMP can be formulated as follows:

RMP : Minimize cg ¼
X

1+q+jK0j

wq

s:t: Equations ð3Þ; ð13Þ; ð14Þ; and ð15Þ-ð17Þ

X

l2L
fijðlÞ +

XjK0j

q¼1

wq

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mnðI qÞ

ði 2 N ; j 2 T i; and I q 2 K0Þ: (18)

RMP is a small-scale linear programming problem that
can be easily solved in polynomial time by the polynomial
interior algorithm introduced in [31]. We can thus obtain its
primal optimal solution and a Lagrangian dual optimal
solution. Since RMP uses only a subset of all the indepen-
dent sets (i.e., columns) used by MP, i.e., K0 ' K, the opti-
mal result for RMP serves as an upper bound on the
optimal result for MP. By introducing more independent
sets to the RMP, column generation may be able to decrease
the upper bound. Therefore, we need to determine which
column can potentially improve the optimization result the
most and when the optimal result of RMP is exactly the
same as or satisfyingly close to the optimal result of MP.

4.3 Introducing More Columns to RMP
During every iteration, when RMP is solved, we need to
verify whether any new independent set can improve the
current solution. In particular, for each independent set
I q 2 K n K0, we need to examine if any of them has a nega-
tive reduced cost. The reduced cost ugðI qÞ for a column
I q 2 K n K0 can be calculated as [28]:

ugðI qÞ ¼ 1&
X

i2N ;j2T i

"ij

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mnðI qÞ; (19)

where "ij’s are the Lagrangian dual optimal solution corre-
sponding to (18). Since there are totally jN j. ðjN j& 1Þ con-
straints generated from (18), the total number of "ij’s is also
jN j. ðjN j& 1Þ.

Notice that we need to find the column which can pro-
duce the most negative reduced cost. Consequently, this col-
umn to be added to RMP can be obtained by solving

Minimize
Iq2K=K0

ug ¼ ugðI qÞ; (20)

or equivalently

Maximize
Iq2KnK0

vg ¼
X

i2N ;j2T i

"ij

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mnðI qÞ; (21)

which is called a pricing problem. Denote by u-
g and v-g the

optimal solutions to the above two problems, respectively.
Then, if u-

g , 0 or v-g + 1, it means that there is no negative
reduced cost and hence the current solution to RMP opti-
mally solves MP as well. Otherwise, we add to RMP the col-
umn derived from (21), and repeat re-optimizing RMP. We
leave how to solve PP in Section 4.4.

4.4 Solving PP
Next, we study how to solve PP, i.e., the optimization prob-
lem formulated in (21). Our objective is to find out the inde-
pendent set, i.e., all the LRC tuples that can be active at the
same time, which can maximize vg.

We define a variable sbij;mn as follows: sbij;mn is equal to 1 if
node i, using radio m, transmits to node j, using radio n, on
channel b, and equal to 0 otherwise. Then, the independent
set we need to find out is fðði; jÞ; ðm;nÞ; bÞjsbij;mn ¼ 1g that
can maximize vg in (21).

Recall that we let T b
i denote the set of nodes that can

access channel b and are within the transmission range of
node i, and Ri the set of radios at node i. We can prove that
a node cannot transmit to or receive from multiple nodes on
the same channel due to interference, even if it has multiple
radios with different transmission power. Thus, we have

X

j2T b
i

X

m2Ri

X

n2Rj

sbij;mn + 1;
X

fijj2T b
i g

X

m2Ri

X

n2Rj

sbij;mn + 1: (22)

Besides, a node j cannot use the same channel or radio
for transmission and reception at the same time. There-
fore, we get

X

fijj2T b
ig

X

m2Ri

X

n2Rj

sbij;mn þ
X

q2T b
j

X

y2Rj

X

z2Rq

sbjq;yz + 1; (23)

X

b2Mj

X

fijj2T b
i g

X

m2Ri

sbij;mn þ
X

p2Mj

X

q2T p
j

X

z2Rq

spjq;nz + 1: (24)

Moreover, the total number of communication links, trans-
mitting or receiving, at any node j should be no larger than
the number of radios node j has, which means

X

b2Mj

X

fijj2T b
ig

X

m2Ri

X

n2Rj

sbij;mn þ
X

b2Mj

X

q2T b
j

X

y2Rj

X

z2Rq

sbjq;yz + jRjj ¼ Rj:

(25)

In addition to the above constraints at the same node, there
are also scheduling constraints due to potential interference
among the nodes in the network. In particular, if node i uses
channel b to transmit data to node j 2 T b

i , then any other
node that may interfere with the reception at node j should
not use this channel. To model this constraint, we let I b

j rep-
resent the set of nodes that can produce interference at node
j on channel b, i.e., I b

j ¼ fp j dpj + Rp;b
I ; p 6¼ j; T b

p 6¼ ;g. The
interpretation of T b

p 6¼ ; in the above definition is that node p
may interference with the reception at node j only if there
are some nodes within p’s transmission range on channel b
which p can transmit to. Based on the definition of I b

j,
we have

X

fijj2T b
ig

X

m2Ri

X

n2Rj

sbij;mn þ
X

q2T b
p

X

y2Rp

X

z2Rq

sbpq;yz + 1: (26)

Consequently, considering the above constraints, the
PP (21) of finding the optimal column can be formulated
as follows:

LI ET AL.: OPTIMAL SCHEDULING FOR MULTI-RADIO MULTI-CHANNEL MULTI-HOP COGNITIVE CELLULAR NETWORKS 7
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PP : Maximize
X

i2N ;j2T i

"ij

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mns
b
ij;mn

s:t: Equations ð22Þ&ð26Þ
X

ðði;jÞ;ðm;nÞ;bÞ2Iq

sbij;mn < jI qj; for any I q 2 K0

sbij;mn ¼ 0 or 1;

where sbij;mn are the optimization variables. Recall that "ij’s
are the Lagrangian dual optimal solutions to RMP, and
cbij;mn’s are calculated according to (1). Note that the
inequation above indicates the obtained independent set is
a new one, i.e., not in K0. Since sbij;mn can only take value
of 0 or 1, PP is a binary integer programming problem
and thus NP-complete [25]. Instead of using the traditional
branch-and-bound or branch-and-cut [24] approach, we fol-
low a similar idea to that in [5], [29] to develop a greedy
algorithm to find a suboptimal solution to PP, which is
called the sequential-fix algorithm.

The main idea of SF is to fix the values of sbij;mn’s sequen-
tially through a series of relaxed linear programming prob-
lems. Specifically, in each iteration, we first relax all the 0-1
integer constraints on sbij;mn’s to 0 + sbij;mn + 1 to transform
the problem to a linear programming problem. Then, we
solve this LP to obtain an optimal solution with each sbij;mn

being between 0 and 1. Among all the values, we
set the largest sbij;mn to 1. After that, by (25), among all the
scpj;hk and sdjq;yz for any c; d 2 Mj, fp j j 2 T c

p; p 6¼ ig, q 2 T d
j ,

h 2 Rp, k; y 2 Rj, z 2 Rq, we randomly choose Rj & 1 of
them and set them to 1, while having the rest set to 0. Then,
by (26), we can fix sbpj;hk ¼ 0 and sbtq;yz ¼ 0 for any
fp j j 2 T b

p; p 6¼ ig, t 2 Pb
j, q 2 T b

t , h 2 Rp, k 2 Rj, y 2 Rt,
z 2 Rq.

Having fixed some sbij;mn’s in the first iteration, we remove
all the terms associated with those already fixed sbij;mn’s,
eliminate the related constraints in (25) and (26), and update
the problem to a new one for the second iteration. Similarly,
in the second iteration, we solve an LP with reduced number
of variables, and then determine the values of some other
unfixed sbij;mn’s based on the same process. The iteration con-
tinues until we fix all sbij;mn’s to be either 0 and 1.

Recall that when the optimal result of PP is less than 1, i.e.,
v-g + 1, it means that there is no negative reduced cost and
RMP can be optimally solved. Unfortunately, the SF algo-
rithm developed above does not find the optimal solution to
PP. Nevertheless, when the optimal result of the relaxed PP
(formulated by relaxing binary variables in PP to variables
between 0 and 1), denoted by v-g, is less than 1, we have
v-g + v-g + 1 and hence RMP can still be optimally solved.

4.5 !-Bounded Approximate Solutions
Since the number of independent sets in K increases expo-
nentially as the number of links in the network, the number
of iterations (of PP) needed to find all the independent sets
producing negative reduced cost might be very large, espe-
cially in large-size networks. However, it has been observed
in the context of column generation algorithms [6], [7] that
one can usually determine solutions that are at least 95-99
percent of the global optimality fairly quickly, although the
tail-end convergence rate in obtaining the optimal solution
can be slow in some classes of problems. Here, we propose

an !-bounded approximation algorithm to find !-bounded
approximate solutions more efficiently.

We first give the definition of !-bounded solutions as
follows.

Definition 1. Let 0 + ! < 1 be a predefined parameter and c-
g be

the optimal result of the MP when the proxy region is Sg

(1 + g + P ). Then, a solution is called an !-bounded approxi-
mate solution if its corresponding result cg satisfies correctly
throughout the paper.

ð1& !Þc-
g + cg + ð1þ !Þc-

g:

Then, we can have the following lemma.

Lemma 1. Denote by cu
g and cl

g the upper bound and lower
bound on the optimal result c-

g of the MP when the proxy
region is Sg (1 + g + P ). Then, !-bounded approximate solu-
tions (0 + ! < 1) can be obtained when there is no new inde-
pendent set found by PP, or the iteration stops at v-g + 1, or

cl
g

cu
g

, 1

1þ !
: (27)

Proof. When
cl
g

cu
g
, 1

1þ!, we can get that cu
g + ð1þ !Þcl

g +
ð1þ !Þc-

g and cl
g , cu

g=ð1þ !Þ , ð1& !Þcu
g , ð1& !Þc-

g.

Thus, any obtained result between the upper and lower

bounds, i.e., cl
g + cg + cu

g , satisfies cg + cu
g + ð1þ !Þc-

g

and cg , cl
g , ð1& !Þc-

g, and hence is an !-bounded

approximate solution by definition. Besides, when there
is no new independent set found by PP or v-g + 1, as
mentioned before, the obtained solution is the optimal
solution and hence an !-bounded approximate solution
as well. tu

Notice that in (27), ! is predetermined, e.g., 3 percent. As
mentioned before, the optimal result of RMP in each itera-
tion is an upper bound on the optimal result of MP, i.e., cu

g .
A lower bound can be obtained by[28]

cl
g ¼ cu

g þ Yu-
g + c-

g; (28)

where u-
g is obtained by solving (20) optimally, and

Y ,
P

1+q+jKj wq holds for the optimal solution to RMP [28].
We set Y ¼ 1. Then, if a traffic demand can be supported,
the optimal solution must satisfy

P
1+q+jKj wq + Y ¼ 1.

Thus, if an optimal solution leads to
P

1+q+jKj wq > 1, then
the corresponding traffic demand cannot be supported.
However, since we actually do not obtain u-

g with the SF
algorithm, the lower bound can be set to cl

g ¼ cu
g þ Yu-

g,
which is less than cu

g þ Yu-
g and hence c-

g. Here, u-g is
obtained by the optimal result of the relaxed PP, i.e.,
u-g ¼ 1& v-g. In addition, since u-

g is negative, c
l
g may be neg-

ative as well. Therefore, we finally calculate cl
g by

cl
g ¼ max

#
cu

g þ Yu-
g; 0

$
: (29)

We finally detail an !-bounded approximation algo-
rithm for the scheduling length optimization problem in
Algorithm 1. Note that in the algorithm we choose the solu-
tion of an RMP, whose result, cu

g , serves as an upper bound
on the optimal result of the corresponding MP, as the
!-bounded approximate solution of the MP since we have

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. X, XXXXX 2014
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found the corresponding scheduling and routing solutions.
It is easy to prove that min1+g+Pfcu

gg among all the MPs is
an !-bounded approximate solution to the OOP.7

4.6 Computational Complexity Analysis
As we mentioned before, although each MP is an LP prob-
lem, solving it directly still requires a high computational
complexity since finding all the independent sets is an NP-
complete problem. Note that each node needs to have
QðlognÞ neighbors on average in order to achieve asymp-
totic connectivity in wireless networks as proved in [30].
Considering a connected network, the number of LRC
tuples in it, denoted by G, will be OðjN jðlogjN jÞjRj2jMjÞ
where jRj denotes the maximum number of radios a node
can have. Thus, the number of independent sets is at most
2G, i.e., Oð2jN jðlogjN jÞÞ. Since usually only a small number of
independent sets would be useful in a scheduling problem,
the developed column generation based algorithm finds the
useful ones one-by-one iteratively. We analyze the compu-
tation complexity of our algorithm as follows.

Theorem 1. The computational complexity of our proposed col-
umn generation based algorithm for MP is OðK4 þ jN j8Þ
when there are K iterations in the algorithm, and
Oð24jN jlogjN jÞ in the worst case.

Proof. In our proposed column generation based algorithm,
one RMP and one PP are solved in each iteration. In
RMP, the variables include wq’s and fijðlÞ’s. Note that the
initial independent sets are formed by placing one LRC
in each of them. Thus, in the kth iteration, the numbers of
wq’s and fijðlÞ’s are Gþ k and jN jðlogjN jÞL, respectively.
Since RMP is an LP problem, it can be solved by the poly-
nomial interior algorithm introduced in [31], whose com-
putation complexity is Oðn3Þ where n is the number of
the variables in a problem. Therefore, the computation
complexity of RMP in the kth iteration is
OððGþ kþ jN jðlogjN jÞLÞ3Þ. In PP, we develop an SF
algorithm that consists of multiple rounds of computa-
tion for relaxed LP problems with a decreasing number
of variables, i.e., sbij;mn’s, in each round. Note that the
number of variables is clearly upper bounded by G.
Thus, the computation complexity in each round is no
larger than OðG3Þ. Besides, notice that in each round, SF
fixes one of sbij;mn’s to 1 and other interfering variables to
0 according to constraints (22)-(26). Particularly, from the
first inequality in (22), we can know that if sbij;mn ¼ 1,
then sbik;yz ¼ 0 (k 6¼ j or y 6¼ m or z 6¼ n). Therefore, all the
variables sbij;mn’s in PP can be determined in at most
jN kMj rounds. Consequently, the computation com-
plexity of PP in the kth iteration is upper bounded by
OðG3jN kMjÞ. We can see that the computational com-
plexity in the kth iteration of our algorithm is
O
(
ðGþ kþ jN j2LÞ3 þG3jN kMj

)
.

Thus, the computational complexity of our column
generation algorithm when there areK iterations is

O

!XK

k¼1

*
ðGþ kþ jN j2LÞ3 þG3jN kMj

+"

¼ O
(
ðGþK þ jN j2LÞ4 þKG3jN kMj

)

¼ OðK4 þ jN j8Þ:

The first step is due to
PK

k¼1 k
3 ¼ K2ðK þ 1Þ2=2. In the

worst case that all the independent sets need to be found,

7. Denote the optimal result of the OOP by C-. Define
cu

g- ¼ min1+g+P fcu
gg. Then we have cu

g- + cu
g + c-

gð1þ !Þ for any
g 6¼ g-, where c-

g is the optimal result of the MP corresponding to cu
g .

Since C- is equal to either one of the c-
g ’s or c-

g- , we have
cu

g- + ð1þ !ÞC-. Besides, since cu
g- , cl

g- , c-
g- ð1& !Þ and c-

g- , C-,
we can get cu

g- , ð1& !ÞC-. In fact, we also have cu
g- , C- since

cu
g- , c-

g- , C-.

LI ET AL.: OPTIMAL SCHEDULING FOR MULTI-RADIO MULTI-CHANNEL MULTI-HOP COGNITIVE CELLULAR NETWORKS 9
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our algorithm needs to have at most 2G &G iterations
and hence its computational complexity is
Oðð2jN jlogjN jÞ4 þ jN j8Þ, i.e., Oð24jN jlogjN jÞ. tu
Note that our later simulations show that usually only a

small number of iterations are needed, i.e., our algorithm
has only a worst-case exponential complexity. In contrast, if
we solve MP directly, the computational complexity is
O
(
ð2G þ jN jðlogjN jÞLÞ3

)
, i.e., Oð23jN jlogjN jÞ, and hence

always exponential. Thus, our algorithm’s computational
performance can be much better.

5 UNCERTAIN CHANNEL AVAILABILITY

So far we have assumed that frequency channels in M3C2Ns
have constant bandwidths. However, in practice, the
vacancy/occupancy of the secondary channels (or licensed
channels) is uncertain and dynamic at different times, due
to the unpredictable activities of the primary users. To
model this unique feature of M3C2Ns, we consider that the
bandwidths of secondary channels, i.e., Wb’s ð1 + b + MÞ,
are independent random variables, which is inspired by the
statistical results of frequency channels obtained by experi-
ments in [8]–[10]. Thus, from (1), we can know that link
capacities cbij’s are random variables as well.

Taking uncertain frequency channel availability into
consideration, we can reformulate constraint (2) in OOP as
follows:

Pr
XQ

q¼1

wq

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mnðI qÞ ,
X

l2L
fijðlÞ

0

@

1

A , b (30)

where b is a control parameter describing network oper-
ator’s requirements on link quality. In so doing, the original
MINLP becomes a stochastic optimization problem (SOP),
with random variables involved in its constraints. Obvi-
ously, we cannot directly apply our previously proposed
method to solve this problem.

On the other hand, according to Markov inequality, we
have

Pr
XQ

q¼1

wq

X

b2Mi\Mj

X

m2Ri

X

n2Rj

cbij;mnðI qÞ ,
X

l2L
fijðlÞ

0

@

1

A

+
E

PQ
q¼1 wq

P
b2Mi\Mj

P
m2Ri

P
n2Rj

cbij;mnðI qÞ
h i

P
l2L fijðlÞ

¼

PQ
q¼1 wq

P
b2Mi\Mj

E
P

m2Ri

P
n2Rj

cbij;mnðI qÞ
h i

P
l2L fijðlÞ

;

which can give us a relaxed linear constraint as follows:

b
X

l2L
fijðlÞ +

XQ

q¼1

wq

X

b2Mi\Mj

X

m2Ri

X

n2Rj

E
*
cbij;mnðI qÞ

+
: (31)

As a result, the SOP can be transformed back to an MINLP,
which can be efficiently solved using our proposed
!-bounded approximation algorithm.Notice that since (31) is
a relaxed constraint compared to (30), the obtained optimal
results serve as lower bounds on the optimal results of SOP.

6 SIMULATION RESULTS

In this section, we carry out extensive simulations to evalu-
ate the performance of the proposed algorithm. Simulations
are conducted under CPLEX 12.4 on a computer with a
2.8 GHz CPU and 24 GB RAM. Notice that previous works
obtain suboptimal results that are either unbounded or far
away from the optimal results, and many works based on
conflict graphs assume all the maximal independent sets
are given. Since our developed !-bounded approximation
algorithm relaxes this assumption and is able to find tight
!-bounded approximate solutions and the optimal solution
as well, we focus on the performance evaluation of the pro-
posed algorithm and do not compare it with other schemes.

Specifically, we consider a square network of area
1;000 m. 1;000 m. A base station is located at the center,
while 30 nodes are uniformly and randomly distributed in
the area. Assume that each node has a downlink session
from the BS and has a traffic demand of 100 Kbps. The num-
ber of radio interfaces at the BS and at each user are 5 and 2,
respectively. Some important simulation parameters are
listed as follows. The path loss exponent is 4 and C ¼ 62:5.
The transmission power spectral density of nodes is
8:1. 107h, and the reception threshold and interference
threshold are both 10h. Thus, the transmission range and
the interference range on all channels are all equal to 150 m.
Besides, we set the reception power density of nodes to be
4:5. 107h based on the fact that the ratio of transmission
power to reception power of wireless adaptors is usually 1:1
to 2:1 [32]. The transmission power spectral density of the
BS is 5:06. 1010h, and hence the BS’s transmission range is
750 m on all channels, i.e., covering the whole network area.
Note that since the location of the BS is (500 m, 500 m) and
RT ¼ 150 m, there are P ¼ d500

ffiffi
2

p

150 e ¼ 5 proxy region candi-
dates. Moreover, we assume the basic channel, i.e., the cellu-
lar channel available at the nodes and the BS, has
bandwidth of 1 MHz. The available secondary channels at
each user are 4 randomly chosen channels from the channel
set ½10; 20; . . . ; 100* KHz, all of which are available at the BS.
In addition, in the case of uncertain channel availability, we
consider all the secondary channels’ bandwidths follow the
same normal distributionN (50 KHz, (5 KHz)2).

In the following, we evaluate the cost of solving RMP in
Section 6.1. We evaluate the cost of solving PP, and compare
the performance of the proposed SF algorithm with that of
one traditional algorithm in Section 6.2. Then, we show the
minimum scheduling length and the maximum network
throughput, and compare the performance of our proposed
architecture with that of pure ad hoc mode and that of tradi-
tional cellular networks in Section 6.3. Section 6.4 compares
the energy consumption in our proposed hybrid mode with
that in pure ad hoc mode and that in pure one-hop mode.
We finally demonstrate the results under uncertain channel
availability in Section 6.5.

6.1 Cost of Solving RMP
We first study the cost of solving RMP under different net-
work settings. Note that in order to well investigate the
cost of solving RMP, we apply a traditional algorithm (pro-
vided by CPLEX), which can solve BIPs, to solve PP in
inner iterations. Table 2 shows the iteration numbers and
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!-bounded approximate solutions when g ¼ 3. We can see
that when N ¼ 30, it takes 102 iterations and 16.51 seconds
to obtain 5 percent-bounded results, and 151 iterations and
24.41 seconds to get the optimal result, i.e., when ! ¼ 0%.
Table 3 gives the cost of solving RMP when ! ¼ 0% in net-
works of different sizes. We can observe that it only takes a
few iterations and very little time to obtain the results.

Besides, Fig. 3 illustrates the convergence property of
upper and lower bounds on optimal scheduling lengthwhen
we use traditional algorithms to solve PP in inner iterations,
given that ! ¼ 0% and there are 30 nodes in the network. Spe-
cifically, we assume the proxy region is at g ¼ d&1ð1Þ ¼ 3. At
each iteration, we compute the lower and upper bounds on
the minimum scheduling length of MP and track their pro-
gresses. Recall that in each iteration the upper bound,
denoted by cu for simplicity, is the optimal result for RMP,
while the lower bound, denoted bycl for simplicity, is calcu-
lated according to (29). We can find that, even though the
gap between the lower and upper bounds is initially high,
the gap narrows down quickly in the first 100 iterations. In
addition, note that there is a sharp decrease of cu at the
beginning. This is because the initial set of independent sets
K0 used for solving RMP is very small, and can be easily well
improved. Thus, it demonstrates that the choice of initial
independent sets does not have much impact on the conver-
gence performance. Moreover, we find that the minimum
scheduling length achieved is 0.78, which is smaller than 1.
This means that with current proxy region plan, we can find
a valid optimal solution to support users’ traffic demands.

6.2 Cost of Solving PP
We then evaluate the cost of solving PP by the proposed SF
algorithm under different network settings. Particularly,
Table 4 compares the iteration numbers (for solving RMP)
and the total running time of SF with those of a traditional
algorithm provided by CPLEX when g ¼ 3. We notice that
although using SF leads to a few more iterations than using
the traditional algorithm, the running time when using SF is
much less due to much lower complexity. We then evaluate
in Table 5 the cost of solving PP in networks of different
sizes when ! ¼ 0% and g ¼ 3. Obviously, the proposed SF
outperforms (in terms of running time) traditional algo-
rithms more as network size gets larger.

Moreover, from Tables 2 and 4, we can see that when
N ¼ 30 and ! ¼ 0%, the running time for RMP and PP are
24.41 and 7.34 seconds, respectively, resulting in total
running time of 31.75 seconds. When N ¼ 30 and ! ¼ 5%,
the running time for RMP and PP are 16.51 and 4.81
seconds, respectively, resulting in total running time of
21.32 seconds. Note that the number of iterations for solv-
ing RMP is 151 when ! ¼ 0% and 102 when ! ¼ 5%. Thus,
we can see that given the same network size, the total run-
ning time is approximately proportional to the number of
iterations for solving RMP (151 : 102 / 31:75 : 21:32 /
1:48).

In order to further illustrate the iteration number (and
hence running time as well) with regard to ! of our pro-
posed !-bounded approximation approach, we show in
Fig. 4 the iteration ratio under different !’s. Here, the itera-
tion ratio is defined as the ratio of the iteration number

TABLE 2
Solving RMP with Different !’s

TABLE 3
Solving RMP with Different Network Sizes

Fig. 3. Convergence property when using the traditional algorithm to
solve PP.

TABLE 4
Solving PP Using SF with Different !’s

TABLE 5
Solving PP Using SF with Different Network Sizes

Fig. 4. The relationship between ! and iteration ratio.
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under certain ! to that to achieve optimality, i.e., ! ¼ 0. We
can see that the iteration ratio decreases very fast as !
increases. In particular, even when ! is very tight, say 0.01,
the iteration ratio is only about 0.87. When ! is larger than
0.1, the iteration ratio drops below 0.62. This reveals similar
results observed by [6], [7] that column generation
approaches can determine solutions that are at least 95-99
percent of the global optimality fairly quickly.

In addition, Fig. 5 shows the convergence property of
upper and lower bounds on optimal scheduling length
when we use SF to solve PP in inner iterations, given that
! ¼ 0%, g ¼ 3, and there are 30 nodes in the network. We
can see that the minimum scheduling length is also 0.78,
which is the same result as that in Fig. 3.

6.3 Minimum Scheduling Length and End-to-End
Throughput

Next, we study the minimum scheduling length and the
maximum end-to-end throughput with different proxy
region allocation plans.

Fig. 6a depicts the minimum scheduling length c-
g when

g ranges from 1 to 5. We can see that the minimum schedul-
ing length c- is equal to 0.61 when g ¼ 2, which means that
the second proxy region candidate S2 is the optimal proxy
region. Besides, when g ¼ 1, i.e., in the case of pure ad hoc
mode transmissions, c-

g is 0.97. When g ¼ 5, the M3C2N
becomes a one-hop cognitive cellular network (one-hop mode
communications with both cellular and secondary channels
available). Obviously, this structure cannot exploit spec-
trum spatial reuse among nodes and results in c-

g ¼ 1:05,
which is larger than 1. It indicates that we cannot support
users’ traffic demands with this proxy region plan. Accord-
ingly, we can derive the maximum end-to-end throughput

r-gðlÞ, i.e., saturated throughput when the minimum sched-
uling length is 1, for each node under each region allocation
plan g, assuming that all nodes still have equal traffic
demands, which is r-gðlÞ ¼ rðlÞ=c-

g.
To more clearly compare the performance of our pro-

posed hybrid mode communications with that of pure ad
hoc mode transmissions (g ¼ 1) and that of pure one-hop
mode transmissions (g ¼ 5), we show the scheduling length
and maximum throughput of these three architectures with
different number of users in Fig. 7. We can easily see that
the hybrid mode architecture has the best performance.

We further demonstrate the minimum scheduling length
as well as the maximum end-to-end throughput in Fig. 8
under four different network architectures, i.e., single-radio
single-channel single-hop traditional cellular network (Type
A), single-radio single-channel multi-hop cellular network
(Type B), single-radio single-channel multi-hop cognitive
cellular network, (Type C) and multi-radio multi-channel
multi-hop cognitive cellular network (Type D). Note that we
still consider that each node has a downlink traffic demand
of 100 Kbps. In particular, Type A architecture represents the
current typical cellular network. Its scheduling lengths are
all larger than 1 when N ranges from 5 to 30, indicating that
it cannot fully support all the data traffic demands. Besides,
the scheduling length keeps on increasing as N grows. For
Type B architecture, it allowsmulti-hop transmissions in cel-
lular networks and hence can support more traffic than Type
Adue to increased spectrum spatial reuse and link rate adap-
tivity. Type C architecture can further enhance network
throughput because of more available channel resources
brought by cognitive radio. Type D architecture, i.e., the pro-
posed one in this paper, has the best performance.

6.4 Energy Consumption
We also compare the energy consumption, including trans-
mission energy and reception energy, per bit of traffic in our

Fig. 5. Convergence property when using SF to solve PP.

Fig. 6. Performance results with different proxy region plans. (a) Mini-
mum scheduling length. (b) Maximum end-to-end throughput.

Fig. 7. Performance results in different transmission modes. (a) Mini-
mum scheduling length. (b) Maximum end-to-end throughput.

Fig. 8. Performance results under different architectures. (a) Minimum
scheduling length. (b) Maximum end-to-end throughput.
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proposed hybrid mode with that in pure ad hoc mode and
that in pure one-hop mode. Specifically, it is calculated by
dividing the total power consumption by the maximum end-
to-end throughput achieved. Since energy consumption at
mobile users is more critical in wireless networks, Fig. 9
shows the energy consumption per bit of traffic at all mobile
users, when N ranges from 5 to 30. The energy per bit con-
sumed in pure 1-hop mode is the lowest since the mobile
users’ transmission energy is 0. Besides, we find that given
the sameN , themobile users consumemuchmore energy per
bit in pure ad hoc mode than in hybrid mode. This is because
first, more nodes may be involved in the data transmissions
in pure ad hoc mode, and second, hybrid mode can support
higher end-to-end throughput as illustrated in Fig. 7b.

6.5 Minimum Scheduling Length under Uncertain
Channel Availability

We first illustrate the results of minimum scheduling length
under uncertain channel availability with different b’s in
Fig. 10. Note that we consider a network of 30 nodes, and
set g ¼ 3 as the proxy region. We can see that the minimum
scheduling length (when the results are stable) when
b ¼ 0:9 is shorter than that when b ¼ 0:95. This is intuitively
true because a smaller b indicates a lower requirement on
service quality, and hence the minimum scheduling length
can be lower. Interestingly, we also notice that it takes more
iterations for the result to become stable when b is smaller.
We also show in Fig. 11 the minimum scheduling length

under different b’s. Note that we have assumed that all
secondary channels have the same expected bandwidths of
50 KHz. For each b, we conduct 50 simulations, each with a
newly generated topology and bandwidths for all the sec-
ondary channels according to their distributions. We find
that the minimum scheduling length achieved when
b ¼ 0:85 is the lowest among the three, due to the same rea-
son as that for Fig. 10. In addition, we show in Fig. 11 the
minimum scheduling length under secondary channels of
different expected bandwidths E½Wb*’s, which indicates dif-
ferent levels of secondary channel availability. We assume
that all secondary channels have the same standard vari-
ance of 5 KHz. For each E½Wb*, we conduct 50 simulations,
each of which uses a newly generated topology. We set
b ¼ 0:9. As shown in Fig. 12, we find that the minimum
scheduling length achieved when E½Wb* ¼ 60 KHz is the
lowest since it has the highest level of channel availability.

7 RELATED WORK

In this section, we discuss related work on multihop cellular
networks and cross-layer throughput optimization for wire-
less networks.

7.1 Multihop Cellular Network Architecture
In traditional cellular networks [1], [33]–[35], ad hoc commu-
nications are introduced to deliver information between
users, but every user still communicates with base stations
directly in one hop, which leads to low frequency spatial

Fig. 9. Energy consumption at mobile users under different transmission
mode.

Fig. 10. Performance comparison under different b’s for uncertain chan-
nel availability.

Fig. 11. Minimum scheduling length under different b’s for uncertain
channel availability.

Fig. 12. Minimum scheduling length under different E½Wb*’s for uncertain
channel availability.
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reuse and hence low throughput. Considering multi-hop
communications between nodes and base stations, some
works such as [1], [2] investigate the capacity ofmultihop cel-
lular networks, which has been shown to be much higher
than that of traditional cellular networks. However, these
works only consider the case where nodes share the cellular
channels and have not exploited the local available channels
or multi-radio as we propose in this study. Besides, although
asymptotic capacity bounds have been studied, the exact
optimal throughput value remains unknown.

7.2 Cross-Layer Optimization for Wireless Networks
There has been some work on joint link scheduling and
routing for throughput optimization in traditional ad hoc
networks [4], [36]–[38], multi-radio multi-channel mesh net-
works [26], [39]–[43], and cognitive ad hoc networks [3],
[18], [19], [29], [44].

Traditional ad hoc networks. Jain et al. [36] study the
throughput bounds of one source-destination pair consider-
ing both routing and interference. Zhai and Fang [4] study
the impact of routing metrics on path capacity by formulat-
ing a joint link scheduling and routing optimization prob-
lem. A single traffic flow is considered in the paper. Lin and
Shroff [37] employ a joint rate control and scheduling
approach to maximize the utility of the network subject to
the constraint that the network is stable. The same authors
[38] then design a distributed algorithm to solve the prob-
lem, which is shown to achieve a constant factor of the
capacity region. Routing is not considered in their optimiza-
tion problem. In these works, they study single-radio sin-
gle-channel networks.

Multi-radio multi-channel networks. Alicherry et al. [39],
[40] investigate the throughput optimization problem by
joint channel assignment and routing, assuming a CSMA/
CA medium access control protocol, and find a suboptimal
result that is withinK ( cðqÞ=I of the optimal result, whereK
is the number of channels, cðqÞ is a constant greater than 4,
and I is the number of radios at each node. Kodialam and
Nandagopal [41] study the throughput bounds of multi-
radio multi-channel mesh networks following a similar
approach. Li et al. [26] explore the capacity region by formu-
lating a joint scheduling, channel assignment, and routing
optimization problem, and develop a heuristic algorithm to
obtain capacity upper bounds. Zhou [42] studies the video
streaming problem to minimize the video distortion by
jointly considering channel assignment, rate allocation, and
routing. Link scheduling is not considered. Lin and Rasool
[43] design distributed algorithms that jointly solve the chan-
nel assignment, scheduling, and routing problem, and show
that the algorithms can achieve an efficiency ratio of
1=ðK þ 2Þ or 1=K, where K is the interference degree of the
network.

Cognitive ad hoc networks. Tang et al. [3] try to maximize
network throughput considering frequency channel alloca-
tion and scheduling but not routing, and find suboptimal
results. Feng and Yang [18] study a joint transport, routing,
and frequency channel allocation optimization problem to
maximize network utility. Ding et al. [44] attempt to maxi-
mize network utility by joint relay selection, routing, and
frequency channel allocation, and propose both centralized

and distributed algorithms to obtain suboptimal results.
Hou et al. [19], [29] try to minimize space-bandwidth prod-
uct by joint frequency channel sharing and routing. Heuris-
tic algorithms are proposed to find lower bounds on the
optimal results. In such works, time-domain link scheduling
is not considered.

We summarize the main differences between the above
works and ours in Table 6. In general, only a few perform a
complete study on joint link scheduling (both in time
domain and in frequency domain) and routing. Besides,
previous works only obtain suboptimal results that are
either unbounded or still far from the optimal results. In
this paper, we are able to find !-bounded approximate
results, which are less than ð1þ !Þ and larger than ð1& !Þ of
the optimal result and hence much tighter. Here, 0 + ! < 1
is a system control parameter. Besides, some conflict graph
based works like [3], [4] assume all the maximal indepen-
dent sets are given, while we do not make this assumption
in this study.

Moreover, a few works [11]–[13] study cognitive cellular
networks, but they focus on resource management rather
than join link scheduling and routing optimization, and still
enforce one-hop direct communications between nodes
within the transmission range of base stations and the base
stations. In addition, since each node has only one radio,
such networks can be considered as a special case in the
proposed M3C2Ns.

Furthermore, most previous research on the minimum
length scheduling has been conducted on traditional ad hoc
networks [46]–[48] and only considers link scheduling. In
contrast, we study this problem in cognitive networks by
taking into consideration both scheduling and routing.
Besides, most previous works only derive an upper bound
on the minimum scheduling length, while we obtain both
upper and lower bounds in !-bounded approximate solu-
tions, which converge quickly, and can also efficiently find
the optimal result when ! ¼ 0%.

In addition, most previous works study homogeneous
networks, where each node has a fixed set of available chan-
nels and all nodes have the same transmission range on all

TABLE 6
Comparison between Our Work and Existing Works
on Cross-Layer Optimization for Wireless Networks
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the channels. While in M3C2Ns, we consider heterogeneous
networks and take uncertain channel availability into
account, which is an intrinsic feature of cognitive radio net-
works but has rarely been studied before. Besides, although
column generation has been adopted in the study of wire-
less networks [49]–[54], our problem formulation and the
algorithm design are completely different. We propose an
!-bounded approximation algorithm for the first time in the
literature.

8 CONCLUSIONS

In this paper, we have proposed a novel multi-radio multi-
channel multi-hop cognitive cellular network (M3C2N)
architecture to enhance the throughput of current cellular
networks. We study the minimum length scheduling prob-
lem in M3C2Ns, and formulate it as a maximal independent
set based joint scheduling and routing optimization prob-
lem, which we call OOP and is a mixed integer linear pro-
gramming (MINLP) and hence generally NP-hard problem.
Then, we decompose OOP into a sequence of MPs, each of
which is further decomposed into an RMP and a PP. Notic-
ing that RMP can be solved in polynomial time but PP is still
an NP-complete problem, we then design a sequential-fix
algorithm which can find a suboptimal solution to PP in
polynomial time. After that, an !-bounded approximation
algorithm is developed which can find the !-bounded
approximate result and the optimal result (when ! ¼ 0%)
quickly. Consequently, we are able to solve OOP very effi-
ciently, in terms of both !-bounded approximate solutions
and optimal result as demonstrated by simulations, without
having to find the maximal independent sets. Furthermore,
although most previous research only assumes constant
channel bandwidth, we take uncertain channel availability
into consideration to account for practical issues, e.g., the
unpredictable activities of primary users.
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