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Abstract—In a large scale sensor network, it is infeasible to assign a unique Transport Layer Key (TLK) for each pair of nodes to

provide the end-to-end security due to the huge memory cost per node. Thus, conventional key establishment schemes follow a key

predistribution approach to establish a Link Layer Key (LLK) infrastructure between neighboring nodes and rely on multihop paths to

provide the end-to-end security. Their drawbacks include vulnerability to the node compromise attack, large memory cost, and energy

inefficiency in the key establishment between neighboring nodes. In this paper, we propose a novel key establishment scheme, called

LAKE, for sensor networks. LAKE uses a t-degree trivariate symmetric polynomial to facilitate the establishment of both TLKs and LLKs

between sensor nodes in a two-dimensional space, where each node can calculate direct TLKs and LLKs with some logically

neighboring nodes and rely on those nodes to negotiate indirect TLKs and LLKs with other nodes. Any two end nodes can negotiate a

TLK on demand directly or with the help of only one intermediate node, which can be determined in advance. As for the LLK

establishment, LAKE is more secure under the node compromise attack with much less memory cost than conventional solutions. Due

to the location-based deployment, LAKE is also energy efficient in that each node has direct LLKs with most neighbors without

spending too much energy on the establishment of indirect LLKs with neighbors through multihop routing.

Index Terms—Sensor networks, transport layer, link layer, key establishment, node compromise.
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1 INTRODUCTION

SECURITY has been drawing wide interest in the area of

wireless sensor networks, which usually consist of
thousands of resource-limited sensor nodes deployed in a

designated area without any fixed infrastructure [1], [2], [3]

because of the network vulnerability to malicious attacks in

unattended and hostile environments such as battlefield

surveillance and homeland security monitoring [4], [5], [6],

[7], [8], [9], [10]. Under such circumstances, security services

such as encryption and authentication are indispensable for

guaranteeing the proper operation of sensor networks.
Key management is very critical to security protocols

because encryption and authentication services are based
on the operations involving keys. One of the fundamental
problems of key management is how to set up keys to
protect connections between sensor nodes. Generally, two
kinds of connections can be formed in a network. One is the
one-hop connection between a pair of neighboring nodes. In
the network stack, this one-hop connection is managed by
the link layer protocol. In order to secure the link layer
connection, a shared Link Layer Key (called LLK hereafter)
needs to be established between the neighboring nodes. The
other type of connection can be formed between two nodes

over a multihop path. Because the two nodes are out of each
other’s neighborhood, this end-to-end connection is mana-
ged by the transport layer protocol instead of the link layer
protocol. Therefore, a Transport Layer Key (called TLK
hereafter) needs to be established to provide the end-to-
end security.

The TLK establishment is not an easy problem. In a
network of N nodes, theoretically, each node can be
preloaded with N � 1 keys uniquely shared with other
nodes, but the feasibility can be challenged because of the
contradictory requirements between the scarce memory of
sensor nodes and the large scale of sensor networks.
Instead, most recent solutions [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25] relax the
security requirement and target the establishment of Link

Layer Keys (LLK) between any pair of neighboring nodes. In a
large scale sensor network, the number of neighbors of a
node is usually a small constant. Thus, it is more feasible to
establish an LLK infrastructure by which to save memory
resource. Based on this LLK infrastructure, two end nodes
can perform secure communications over a multihop path
with the help of intermediate nodes and can negotiate a
TLK on demand, if needed, through the secure handshake.
The LLK infrastructure can effectively prevent external
attackers from accessing the network, but cannot counteract
internal attackers, such as compromised nodes. Therefore, a
TLK negotiated along a multilink path can be exposed if
any of the intermediate nodes is compromised. Because the
number of hops along a path can be large, the possibility of
the TLK exposure is rather high.

Moreover, the previous LLK schemes [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]
themselves are also vulnerable to node compromise. An
adversary can use the secrets in compromised nodes to

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 9, SEPTEMBER 2007 1009

. Y. Zhou is with the Wireless Networks Laboratory (WINET), Department
of Electrical and Computer Engineering, University of Florida, 481 New
Engineering Building, PO Box 116130, Gainesville, FL 32611.
E-mail: yzufl@ufl.edu.

. Y. Fang is with the Wireless Networks Laboratory (WINET), Wireless
Information Networking Group (WING), Department of Electrical and
Computer Engineering, University of Florida, 435 Engineering Building,
PO Box 116130, Gainesville, FL 32611. E-mail: fang@ece.ufl.edu.

Manuscript received 24 Jan. 2006; revised 24 July 2006; accepted 13 Nov.
2006; published online 7 Feb. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-0026-0106.
Digital Object Identifier no. 10.1109/TMC.2007.1008.

1536-1233/07/$25.00 � 2007 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



derive the secrets shared between other noncompromised
nodes. Hence, some compromised nodes may cause many
failure points in the network and destroy the entire LLK
infrastructure. Another drawback of the previous LLK
scheme is that they have a large memory requirement to
maintain a certain level of security or connectivity.

Based on our work in [26], here, we introduce a novel
scheme, called LAKE (two-LAyer Key Establishment), for the
establishment of both TLKs and LLKs in sensor networks.
Particularly, all sensor nodes are organized into a two-
dimensional space and a trivariate polynomial is predis-
tributed to facilitate the establishment of TLKs and LLKs
in the space. To increase connectivity and reduce commu-
nication overhead, the nodes close to each other are
preloaded with correlated secrets, called shares, derived
from the trivariate polynomial. The main contributions are
as follows:

1. Our LAKE effectively addresses the TLK establish-
ment problem for sensor networks. Any two nodes
can negotiate a TLK on demand directly or with the
help of only one intermediate node. Though, in
conventional LLK schemes, two nodes can also
negotiate a TLK through a multihop path, there is
more than one intermediate node that can learn the
TLK. Hence, LAKE is much more secure under the
node compromise attack compared with conven-
tional proposals.

2. Compared with the conventional LLK schemes,
LAKE features much less memory cost, which can
be less than 1:8171

ffiffiffiffiffi
N
p

, where N is the total number
of nodes in the network.

3. By utilizing location information, LAKE guarantees
that two neighboring nodes can establish a direct
LLK with high probability. This provides energy
efficiency compared with the conventional LLK
schemes because the probability of indirect LLK
establishment through multihop paths between two
neighboring nodes is reduced.

The rest of the paper is organized as follows: Previous
work is reviewed in Section 2. Details of LAKE are given in
Section 3. Analysis and evaluation of LAKE compared with
other schemes are carried out in Section 4. After a short
discussion in Section 5, the paper is concluded in Section 6.

2 RELATED WORK

Key establishment is not an easy task for WSNs. A simple
global key [27] shared by all the sensor nodes is secure to
external attackers that do not know the key but not internal
attackers because the key can be exposed if any node is
compromised. Centralized key distribution [10] may incur a
large amount of communication overhead because two
close nodes may have to do handshakes through a central
key server at a distant place. In addition, the key server may
become a potential point of failure in that the entire network
is broken down if the server is corrupted by an attacker.

Due to the distributed nature of WSNs, the distributed
key establishment becomes a promising technique. One
method is to configure each node with a set of keys and
establish a shared key between two nodes by combining the

keys in the intersection of their key sets [28], [29]. The idea
of the key predistribution approach is applied for WSNs in
[11] and sparks many other schemes [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25]. They all
target the LLK establishment, where some secrets are
predistributed into sensor nodes to facilitate LLK establish-
ment between neighboring nodes.

Random predistribution (RPD) schemes [11], [12], [13], [14],
[15], [16], [17], [18], [19] uniformly predistribute a global set
of secrets in the network so that each node has a secret
subset and two neighboring nodes can achieve a probabilistic
key agreement by the intersection of their secret subsets. If
some nodes are compromised by an adversary, the secrets
in those nodes are exposed to the adversary and the security
of the entire network might degrade due to the uniform
secret predistribution. To reduce the impact of the node
compromise attack, it is wise to limit the number of secrets
that each node needs to keep such that the adversary gets
fewer secrets each time he/she compromises one node.
Fewer predistributed secrets, however, implies a smaller
probability that two neighboring nodes can establish a
direct LLK, i.e., lower local secure connectivity, and much
more communication overhead on indirect LLK establish-
ments through multihop paths. The contradictory memory
requirements by security and local secure connectivity
render RPD schemes less suitable for sensor networks.
Furthermore, RPD schemes do not scale well in the sense
that the memory cost increases linearly with the total
number of nodes in the network if a certain level of security
or connectivity is desired [20].

A deterministic scheme, called PIKE, is proposed by Chan
and Perrig [20]. In PIKE, all sensor nodes are put in a two-
dimensional grid and one intermediate node is used to
facilitate the LLK establishment between neighboring
nodes. Each node is preloaded with unique pairwise keys
for 2ð

ffiffiffiffiffi
N
p
� 1Þ nodes, where N is the total number of nodes,

and then deployed according to a uniform distribution in
the entire terrain. The low connectivity, however, indicates
large energy consumption on the LLK establishment. A
hypercube-based scheme is also proposed in [17]. All
N sensor nodes are organized into a n-dimensional hyper-
cube based on their identities. Along each dimension, the
scheme proposed by Blundo et al. [30] is used. Each node
needs to keep shares of n t-degree bivariate polynomials.

Location-based predistribution (LPD) schemes [21], [22],
[23], [24], [25] use location information to localize the
impact of the node compromise attack and increase
connectivity by intentionally predistributing the same set
of secrets in small cells. They can achieve much higher
connectivity than uniform predistribution schemes because
the connectivity in LPD schemes is mainly determined by
node deployment information. The memory cost is propor-
tional to the number of nodes in one cell.

Though polynomials have been used in [16], [17], [21],
[30], those schemes are totally different from LAKE.
Blundo et al. [30] first use a t-degree bivariate polynomial
to achieve key agreement in a network. Their scheme is
t-secure in that, in a network of N nodes, the collusion of
less than tþ 1 nodes cannot reveal any key held between
other pairs of normal nodes. The memory cost per node to
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achieve t-secure is tþ 1. To guarantee perfect security, a
ðN � 2Þ-degree polynomial should be used, which means
the memory cost per node is N � 1. Therefore, it is
infeasible in large scale sensor networks. The schemes
[16], [17], [21] follow the probabilistic approach and use
bivariate polynomials to achieve probabilistic LLK agree-
ment between neighboring nodes. Particularly, they pre-
distribute polynomial pools in the network terrain. If two
neighboring nodes have polynomial(s) in common, they
can calculate an LLK based on the Blundo scheme. LAKE,
however, uses a trivariate polynomial to establish both
TLKs and LLKs in a large-scale sensor network. In
Section 3, we will describe LAKE in detail.

LEAP [31] assumes that attackers are not able to
compromise a node during the network initialization phase
and, thus, a global key is used during the network
initialization phase to facilitate the key establishments
between neighboring nodes. To avoid the exposure of the
global key due to node compromise, the global key is
deleted by each node at the end of the network initialization
phase. In [32], Deng et al. proposed an OTMK scheme,
which is based on LEAP but is more secure in the sense
that, even if the global key is compromised, the pairwise
keys between sensor nodes are still safe. The trick there is
that the global key is only used to authenticate neighboring
nodes but not to establish pairwise keys. Zhou et al. [33]
and Zhang et al. [34] also developed node authentication
and key establishment schemes based on the elliptic curve
cryptography. These schemes can provide a higher security
level than symmetric ones, but have more overhead. LBRS
[35] divides the network into cells, each of which is
associated with multiple keys. Based on its location, a node
stores one key for each of its local neighboring cells and a
few randomly chosen remote cells. Those keys are used to
authenticate reports along the path from the source cell to
the base station. These schemes are based on different
assumptions and target at different purposes from the
aforementioned key establishment schemes.

3 TWO-LAYER KEY ESTABLISHMENT

In LAKE, a t-degree trivariate polynomial is predistributed
to facilitate key establishment in a two-dimensional space.
Specifically, every node is preloaded with partial informa-
tion, called share, of a global t-degree trivariate polynomial.
The entire network is organized into a two-dimensional
space. Every node is identified in the space with its
coordinates and can find other logical neighbors in the
space. The predistributed shares of the global t-degree
trivariate polynomial are used to establish TLKs and LLKs
between those logical neighbors. By choosing the global
polynomial degree properly, LAKE can achieve perfect
resilience to the node compromise attack compared with
conventional schemes.

LAKE consists of three phases: share predistribution, direct

key calculation, and indirect key negotiation. In the share
predistribution phase, shares of a global t-degree trivariate
polynomial are predistributed among sensor nodes. All the
shares cannot reveal the global polynomial even if they are
captured by adversaries. Two nodes can calculate a shared

key directly with the shares they hold if they are logical

neighbors in the space. The indirect key negotiation phase

tells how to negotiate a shared key between two nodes with

the help of another node if they are not logical neighbors.
We will show that LAKE can efficiently establish both

LLKs and TLKs between sensor nodes. An LLK infrastruc-

ture can be established just after network deployment. TLKs

are established on demand when two end nodes need to

communicate with each other.

3.1 System Models

3.1.1 Key Agreement Model

We have proposed in [26] a scalable and deterministic key

agreement model, which is based on a multivariate poly-

nomial for large-scale distributed systems. LAKE applies a

special case of [26] in wireless sensor networks, which

consists of a large number of sensors. Particularly, a t-degree

trivariate symmetric polynomial is used to achieve the key

agreement between any pair of nodes. A t-degree trivariate

polynomial is defined as

fðx1; x2; x3Þ ¼
Xt
i1¼0

Xt
i2¼0

Xt
i3¼0

ai1;i2;i3 x
i1
1 x

i2
2 x

i3
3 : ð1Þ

All the polynomial coefficients are chosen from a finite field

IFq, where q is a prime that is large enough to accommodate

a cryptographic key. Unless otherwise stated, all calcula-

tions in this paper are performed over the finite field IFq.
A three-tuple permutation is defined as a bijective

mapping

� : f1; 2; 3g�!f1; 2; 3g: ð2Þ

By choosing all the coefficients according to

ai1;i2;i3 ¼ ai�ð1Þ;i�ð2Þ;i�ð3Þ ð3Þ

for any permutation � of f1; 2; 3g, we can obtain a
symmetric polynomial in that

fðx1; x2; x3Þ ¼ fðx�ð1Þ; x�ð2Þ; x�ð3ÞÞ: ð4Þ

At first, every node should have two credentials, which

are positive and pairwise different integers. Suppose node u

has credentials ðu1; u2Þ and node v has ðv1; v2Þ. Before node

deployment, a polynomial share fðu1; u2; x3Þ is assigned to u

and another share fðv1; v2; x3Þ to v. By assigning polynomial

shares, we mean that the coefficients of t-degree univariate

polynomials fðu1; u2; x3Þ and fðv1; v2; x3Þ are loaded into

nodes u’s and v’s memories, respectively.
If the credentials of nodes u and v have one element

in common, i.e., u1 ¼ v1; u2 6¼ v2 or u1 6¼ v1; u2 ¼ v2, then

node u and node v can have a shared key. Suppose the

ith credentials of u and v are different, where i ¼ 1 or

i ¼ 2. Node u can take vi as the input to its own share

fðu1; u2; x3Þ and node v can take ui as the input to its

share fðv1; v2; x3Þ. Then, the desired shared key between

nodes u and v can be established as

Kuv ¼ fðu1; u2; viÞ ¼ fðv1; v2; uiÞ; ð5Þ

where i ¼ 1 or i ¼ 2.
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In fact, nodes u and v achieve the key agreement by a
marginal t-degree bivariate polynomial,

fcjðxi; x3Þ ¼ fðcj; xi; x3Þ; ð6Þ

where cj for j 6¼ i and i; j 2 f1; 2g is the common credential
between nodes u and v.

3.1.2 Network Model

It has been shown in [21], [22], [23], [24], [25] that utilizing
deployment information can achieve higher connectivity.
So, even though our key agreement model can achieve
deterministic key agreement between any pair of nodes (as
is shown in [26]), we consider incorporating deployment
information into LAKE.

The entire network is divided into N1 nonoverlapping
square cells and each cell includes N2 sensor nodes. Each
node in the network is identified by a coordinate ðn1; n2Þ in
the two-dimensional space, where

ni ¼ 0; 1; . . . ; Ni � 1; i 2 f1; 2g;

and we may use the coordinate ðn1; n2Þ as the node ID and
the index n1 as the cell ID.

Cell IDs are assigned in a fixed order such that each cell
ID acts like a coordinate in a two-dimensional plane. We
may allocate 2h higher bits from the node ID field for the
cell ID. The 2h bits are divided into a pair of integers ði; jÞ,
where i is the row index and j is the column index of the
cell. Hence, each cell ID reflects the location information of
the corresponding nodes. This information is coarse, so we
can only tell in which area a node with a given cell ID
resides. The node deployment in each cell may follow any
probabilistic distribution, such as Gaussian [15], [24], [36] or
uniform [21], [23], [25]. We assume Gaussian distribution
here and evaluate its influence in Section 4.

Our key agreement model is deterministic, so every node
knows with which other nodes it can establish a shared key
directly. If two nodes cannot calculate a shared key directly,
they rely on one intermediate node to negotiate an indirect
key. Just like in previous work [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], we assume that
the underlying routing protocol can correctly route key
negotiation messages over multihop paths between those
peer nodes.

Fig. 1 illustrates an example of the network model. There
are 64 cells in the network. Each cell consists of N2 nodes.
We assign cell IDs in an order from left to right and from
top to down. Every node can be located by the cell ID in its
node ID. For example, node ð0; n2Þ is in the most up-left cell,
and node ð63; n2Þ is in the most down-right cell. Other
examples of nodes are also depicted in Fig. 1.

3.1.3 Adversary Model

Because of the broadcast nature of radio communications,
adversaries can easily eavesdrop any messages, either
nonencrypted or encrypted, transmitted over the air
between nodes. Moreover, it is also unrealistic and un-
economical to employ tamper-resistant hardware to secure
the cryptographic materials in each individual node because
of cost constraints. Even if tamper resistant devices are

available, they are still not able to guarantee perfect security
of secrets [37]. Hence, adversaries may capture any node and
compromise the secrets stored in the node. Furthermore,
adversaries can use the compromised secrets to derive more
secrets shared between other noncompromised nodes. It
means that the node compromise attack is unavoidable.
What we can do is to reduce the impact on other normal
nodes as much as possible. In LAKE, we attempt to reduce
the probability that the keys shared between noncompro-
mised nodes are exposed when some nodes have already
been compromised.

3.2 Share Predistribution

Before network deployment, a global t-degree trivariate
polynomial is chosen as is stated in Section 3.1. This
polynomial is used to derive shares for sensor nodes.

To establish keys, every node should have two creden-
tials ðc1; c2Þ, which are positive and pairwise different.
These credentials can be created and preloaded into nodes
before deployment. However, it requires additional mem-
ory space per node. Fortunately, the two credentials can be
derived from node ID by a bijection, i.e.,

c1 ¼ n1 þ 1þN2

c2 ¼ n2 þ 1;

�
ð7Þ

where ni ¼ 0; 1; . . . ; Ni � 1 for i ¼ 1; 2. Thus, the two
credentials are drawn from different zones ½N2 þ 1; N1 þ
N2� and ½1; N2�, respectively, which guarantee they are
positive and pairwise different. Besides, by doing this
mapping, each node needs to store only N2 instead of two
credentials.

Every node in the network is assigned a polynomial
share

fðc1; c2; x3Þ ¼ fðn1 þ 1þN2; n2 þ 1; x3Þ

¼
Xt
i1¼0

Xt
i2¼0

Xt
i3¼0

ai1;i2;i3ðn1 þ 1þN2Þi1ðn2 þ 1Þi2xi33 :

ð8Þ

Hence, every node in the network needs to keep only a
t-degree univariate polynomial that has tþ 1 coefficients
over a finite field IFq. Those coefficients are preloaded into
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every node’s memory before deployment and used to
establish keys after deployment.

3.3 Direct Key Calculation

As is stated in Section 3.1, two nodes can calculate a shared
key directly if they have a credential in common, i.e., a
common index in their node IDs. We will call one of the two
nodes a level-i neighbor of the other if their ith indices in
their IDs are different and the other indices are the same.
Obviously, every node can establish shared keys with its
neighbors at level 1 (intercell) and level 2 (intracell).

In the two-dimensional network, all nodes in each cell
are level-2 neighbors because they have the same cell ID,
and each node has a level-1 neighbor in each of other cells.
For example, in the two-dimensional network in Fig. 1,
node (18,4) and node (18,6) are level-2 neighbors and they
can calculate a shared key directly. Node (18,4) and
node (37,4) are level-1 neighbors and they can also calculate
a shared key directly.

All nodes can calculate direct keys on their own without
interaction with other logical neighbors. Each direct key
between two logical neighboring nodes is only secret to
them. An adversary cannot learn the direct key unless he/
she knows the corresponding polynomial share.

3.4 Indirect Key Negotiation

If two nodes have no common indices in their IDs, they
cannot calculate a shared key directly because they are not
logical neighbors. This happens when the two nodes reside
in different cells and they have different indices in their
cells, respectively. In this case, one node can find in its cell a
level-2 neighbor, which is also a level-1 neighbor of the
other node. Then, the intermediate node can act as an agent
to facilitate a shared key negotiation between the two end
nodes.

There are two agent nodes that can help the indirect key
negotiation. Suppose node u with ID ðu1; u2Þ and node v
with ID ðv1; v2Þ, where u1 6¼ v1 and u2 6¼ v2, need to negotiate
a shared key. Either node ðu1; v2Þ or node ðv1; u2Þ can act as
an agent because either one is the common neighbor of
nodes u and v. Then, an indirect key can be established
through the following protocol:

u! a : ha; u; nu; fhv; u;KuvigKua
;Hða k u

k nu k fhv; u;KuvigKua
k KuaÞi;

a! v : hv; a; na; fhv; u;KuvigKav
;Hðv k a

k na k fhv; u;KuvigKav
k KavÞi;

where a is an agent node, nu and na are nonces used to
counteract replay attacks, Kuv is the indirect key between
node u and node v, Kua and Kav are direct keys shared with
the agent a, “f�gf�g” is the encryption operation, Hð�Þ is a
hash function that generates a Message Authentication Code
for authentication and integrity checking, and “k” is the
concatenation operator. After verifying the authenticity and
the integrity of the key Kuv, the agent node a forwards the
key to node v and immediately deletes it so that it cannot be
revealed later.

For example, in Fig. 1, there are two secure paths
between node (18,6) and node (37,4) and a shared key can

be negotiated through either of the secure paths with the
help of the agent nodes (18,4) or (37,6).

3.5 LLK Establishment

Given node density and radio radius in a large-scale sensor
network, the number of neighbors of a node is usually
small. Each node may establish LLKs for all neighbors and
keep those LLKs in its memory for future use. This can be
done just after node deployment because each node has
been preloaded with a polynomial share which can help key
establishment.

When two neighboring nodes are from the same cell, i.e.,
have the same cell index, they can apply the direct key
calculation to establish an LLK. Due to the deployment
knowledge, we can expect that each node can establish
LLKs directly with most of its neighboring nodes because
they are almost from the same cell.

If two neighboring nodes are from different cells but they

are level-1 neighbors, then they can calculate a direct LLK,

just like nodes (1,2) and (2,2) in Fig. 2. Even if two level-1

neighbors are far away from each other, like nodes (1,5) and

(2,5), they can always calculate a shared key independently.
The keys between level-1 neighbors can act as bridges

between two cells. A node in one cell can go through any of

the bridges to negotiate keys with nodes in the other cell. In

Fig. 2, for example, node (1,2) can negotiate an indirect LLK

with node (2,6) through either node (2,2) or node (1,6).

Due to the deployment error, some nodes may reside

outside of their supposed cells. In Fig. 2, for example,

node (1,7) needs to establish LLKs with neighboring

nodes (2,2), (2,5), and (2,6). In this case, node (1,7) can

carry out indirect key negotiation through its level-1

neighbor (2,7). Of course, node (2,7) may be a multihop

away from node (1,7), but the underlying routing protocol

can route key negotiation messages between them, just as is

shown in previous work [11], [12], [13], [14], [15], [16], [17],

[18], [19], [20], [21], [22], [23], [24], [25].
Communication overhead is a concern in the indirect

LLK negotiation. LAKE includes deployment information
into the establishment of LLKs, thus, each node may
calculate direct LLKs with almost all of its neighbors. This
high local secure connectivity is desirable because it means
that each node does not need to spend too much energy on
the establishment of indirect LLKs with neighbors through
multihop routing. Conventional LLK schemes with uniform
key predistribution have more energy consumption in
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terms of lower local secure connectivity. In Section 4, we

will evaluate the secure connectivity assuming Gaussian

distribution for node location in each cell.

3.6 TLK Establishment

Due to the huge number of nodes in the network, it is

impossible to establish a TLK for each pair of nodes and

store the TLK in the pair of nodes during the network
initialization phase. A dynamic establishment of TLKs is

very promising in large-scale sensor networks. Generally, a

TLK should be dynamically established on demand during

the handshake procedure between any pair of nodes when

they want to communicate with each other.
Similar to the LLK establishment, each node can

establish a direct TLK for each of the other nodes in its

cell because they are level-2 neighbors. As each node has a

level-1 neighbor in each of other cells in the network, it can

establish a direct TLK for the level-1 neighbor in that cell

(like nodes (18,6) and (37,6) in Fig. 1). Then, it can rely on

the level-1 neighbor as an agent to establish indirect TLKs

with other nodes in that cell (in Fig. 1) and node (18,6) can

negotiate an indirect TLK with node (37,4) through

node (37,6)). Due to the deployment error, there is a

possibility that node (37,6) is not in cell 37, but the

underlying routing protocol can relay key negotiation

messages between these nodes as is assumed in previous

work [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],

[22], [23], [24], [25].
If a secure link is defined as the communication path

between two nodes that have a shared key, where the

secure link may be one-hop or multihop, LAKE can achieve

the TLK agreement through a secure path consisting of no

more than two secure links, which means that at most one

agent is needed to facilitate the TLK establishment between

any two end nodes. Each secure path in most conventional

schemes, which target LLK establishment, usually consists

of more than two secure links, and the length of the secure

path is difficult to determine because it depends on not only

the underlying routing protocol, but also the establishment

of direct keys between neighboring nodes, especially in

large-scale networks. Thus, most conventional schemes are

more vulnerable to the node compromise attack than LAKE.

4 SECURITY ANALYSIS AND PERFORMANCE

EVALUATION

In this section, we carry out some performance evaluation

on the memory cost, the resilience to the node compromise

attack, the local secure connectivity, and the computation

overhead.

4.1 Metrics

4.1.1 Memory Cost

We will calculate how many memory units per node are

necessary for its polynomial share, where each memory unit

can accommodate a cryptographic key in conventional

schemes or a polynomial coefficient. Due to the resource

constraint of sensor nodes, the small memory cost is

desirable.

4.1.2 Resilience to the Node Compromise Attack

Usually, it is unavoidable to prevent an adversary from
launching the node compromise attack. We can do nothing
to rescue those compromised nodes. However, a good
scheme should reduce the impact of the node compromise
attack on other normal nodes as much as possible. By
compromising a node, the adversary can learn the keys that
the compromised node uses to communicate with other
nodes, but he/she should not learn other keys that the
compromised node does not know so that the communica-
tions between other normal nodes are still safe. The
additional key exposure probability is used here to evaluate
the resilience to the node compromise attack. Specifically,
the probability that the keys shared between other
noncompromised nodes are exposed should be as small as
possible when the adversary has already compromised
some nodes.

4.1.3 Local Secure Connectivity

Local secure connectivity is the probability that two
neighboring nodes establish a direct key, i.e., the portion
of neighbors with which a node can establish direct keys. It
is directly related to the communication overhead of key
establishments. In sensor networks, high local secure
connectivity is desirable because it means that each node
does not need to spend too much energy on the establish-
ment of indirect keys with neighbors through multihop
routing, thus saving a lot of communication overhead.

4.1.4 Computation Overhead

We will evaluate the computation overhead for each node
to calculate a direct key. LAKE uses efficient symmetric key
techniques to achieve key agreements and is thus viable on
resource constrained sensor platforms.

4.2 Memory Cost

All nodes in the network hold partial information of a
global t-degree trivariate polynomial to achieve key agree-
ment. If an adversary compromises some nodes and gathers
many pieces of those partial information, he/she can use
those pieces of information to derive keys shared between
other normal nodes. The adversary can launch two scales of
the node compromise attack: level scale and network scale.

Each node has N2 � 1 level-2 neighbors in its cell and
N1 � 1 level-1 neighbors from other cells, and it can
establish direct keys with these logical neighbors through
t-degree bivariate polynomials, which are the marginal
polynomials of the global polynomial (refer to Section 3.1).
If the adversary compromises enough nodes at one level,
the bivariate polynomial of the level may be exposed in the
level scale attack so that the adversary can calculate the
direct keys between any pairs of nodes in the level.

Furthermore, the adversary can launch the network scale
attack to compromise nodes at more than one level. If the
adversary gets enough information, he/she may even
expose the global t-degree trivariate polynomial; thus, the
secure infrastructure of the entire network is destroyed and
the adversary may calculate the key between any pair of
nodes in the network. The hardness of exposing the global
polynomial depends on the polynomial degree t. Thus, the
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value of t should be large enough to provide the secrecy of
the global polynomial so that no matter how many nodes
the adversary compromises, the global polynomial is still
secret to the adversary. The value of t is directly related to
the memory cost because each node keeps a t-degree
univariate polynomial which has tþ 1 coefficients. Hence,
the minimal t which can provide the secrecy of the global
polynomial should be chosen.

4.2.1 Level Scale

Let us consider the level scale node compromise attack. Any
pair of nodes at one level can achieve key agreement by a
marginal t-degree bivariate polynomial,

fcjðxi; x3Þ ¼ fðcj; xi; x3Þ; ð9Þ

where cj for j 6¼ i is the common credential between the
pair of nodes (refer to Section 3.1). It has been shown in
[30] that a t-degree bivariate polynomial is t-secure in that
the coalition between less than ðtþ 1Þ nodes holding shares
of the t-degree bivariate polynomial cannot reconstruct the
polynomial. To guarantee that any pair of nodes among a
level of Ni nodes has a direct key that is unsolvable by
other Ni � 2 nodes, an ðNi � 2Þ-secure bivariate polynomial
should be used. Hence, the degree of polynomial should
satisfy

0 � Ni � 2 � t; i ¼ 1; 2: ð10Þ

4.2.2 Network Scale

Let us consider the attack at the network scale. If the

adversary compromises all Ni nodes at one level, he/she

can construct NiðNiþ1Þ
2 equations, i.e.,

f2ðci;0; ci;0Þ ¼ K0;0

..

.

f2ðci;0; ci;Ni�1Þ ¼ K0;Ni�1

f2ðci;1; ci;1Þ ¼ K1;1

..

.

f2ðci;Ni�1; ci;Ni�1Þ ¼ KNi�1;Ni�1;

8>>>>>>>><
>>>>>>>>:

ð11Þ

where ci;j for j ¼ 0; 1; . . . ; Ni � 1 is the credential of the
jth node at level i for i ¼ 1; 2, Kj1;j2

; j1 6¼ j2 is the direct key
between the j1th and the j2th nodes at level i and Kj;j is
calculated with the polynomial share of the jth node. The
total number of nodes is

N ¼ N1 �N2: ð12Þ

Suppose that all of the N nodes are compromised. The total
number of equations the adversary can construct is

Ne ¼ N2 �
N1ðN1 þ 1Þ

2
þN1 �

N2ðN2 þ 1Þ
2

¼ N1N2

2
ðN1 þN2 þ 2Þ:

ð13Þ

The number of distinct coefficients of a t-degree trivariate
symmetric polynomial is [30]

Nc ¼
tþ 3

3

� �
: ð14Þ

Thus, to guarantee the secrecy of the global polynomial, the
following condition should be satisfied, i.e.,

Ne � Nc¼)
N1N2

2
ðN1 þN2 þ 2Þ � tþ 3

3

� �
: ð15Þ

4.2.3 Choice of t

To sum up, the degree t of the global polynomial should
satisfy the following conditions, i.e.,

0 � Ni � 2 � t; i ¼ 1; 2
N1N2

2 ðN1 þN2 þ 2Þ � tþ3
3

� �
:

(
ð16Þ

Hence, to minimize the memory cost, we should use the
polynomial which has the minimum degree satisfying the
above inequalities.

A common case to design a network is to let N1 ¼ N2.
Thus,

N1
2ðN1 þ 1Þ � t

3
þ 1

� �
� t

2
þ 1

� �
� tþ 1ð Þ

¼)N1
3 þN1

2 � t
3

3!
þ t2 þ 11t

6
þ 1:

ð17Þ

The minimum polynomial degree t� should satisfy this
inequality. In another way, when

t � N1

ffiffiffiffi
3!

3
p

; ð18Þ

(17) is automatically satisfied. Because tþ3
3

� �
is a monotonic

increasing function of t, the solution of (17) should be
½t�;1Þ. Because the solution of (18) is also the solution of
(17), the minimum polynomial degree t� can be bounded as

t� �
ffiffiffiffi
3!

3
p

N1 ¼ 1:8171 N1: ð19Þ

Fig. 3 gives the ratio of the minimum t� to the number of
nodes at level-1 and its upper bound.

Because each node keeps tþ 1 coefficients of a t-degree

univariate polynomial, the memory cost per node is less
than 1:8171

ffiffiffiffiffi
N
p
þ 1, where N is the total number of nodes in

the network.
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We compare the memory cost per node of our LAKE
with some typical schemes in Table 1. The second column
in Table 1 gives the normal memory cost of each scheme. In
key-pool-based schemes [11], [12], [13], [14], [17], [18], [19],
[22], each node keeps m keys out of a global or local key
pool. Du et al.’s [15], Liu and Ning’s [16], and Huang et al.’s
[23] schemes replace key pools with space pools of matrix
or polynomials of degree t. In PIKE [20], each node is
preloaded with unique pairwise keys for 2ð

ffiffiffiffiffi
N
p
� 1Þ nodes,

where N is the total number of nodes in the network. The
hypercube scheme [17] uses a higher dimensional grid.
Unlike PIKE, hypercube uses a t-degree bivariate poly-
nomial for each dimension. For fair comparison, we assume
a two-dimensional grid for hypercube. Therefore, the
memory cost of hypercube is 2ðtþ 1Þ. In LBKP [21], each
node is preloaded with five polynomial shares, each of
which has a degree of t. Zhou et al.’s schemes [24], [25]
have a memory cost of 6ðtþ 1Þ and 3ðtþ 1Þ, respectively. In
LAKE, unlike in previous work, each node needs to keep
only a t-degree univariate polynomial and, thus, the
memory cost is only tþ 1.

The third column in Table 1 gives how many memory
units are necessary to provide secrecy for direct keys, i.e., no
matter how many nodes are compromised, the direct keys
among noncompromised nodes are still safe. Key-pool-
based schemes [11], [12], [13], [14], [17], [18], [19], [22] cannot
provide secrecy because, each time an adversary compro-
mises one more node, he/she knows more keys in the global
or local key pools. In Du et al.’s [15], Liu and Ning’s [16], and
Huang et al.’s [23] schemes, the degree of each matrix or
polynomial must be set as t ¼ N � 2 to avoid the exposure of
direct keys. So, their memory cost is on the order of N . In
PIKE [20], all those 2ð

ffiffiffiffiffi
N
p
� 1Þ keys are preloaded and

unique, so any of the keys is secure even if other keys are
compromised. In a two-dimensional hypercube [17], each
dimension has

ffiffiffiffiffi
N
p

nodes. In order to protect direct keys, the
polynomial degree must be set as t ¼

ffiffiffiffiffi
N
p
� 2 and, thus, the

memory cost is 2ð
ffiffiffiffiffi
N
p
� 1Þ. Suppose that LBKP [21], Zhou

et al.’s schemes [24], [25], and LAKE use the same network

configuration, where the entire network is divided intoffiffiffiffiffi
N
p

cells and each cell consists of
ffiffiffiffiffi
N
p

nodes. In LBKP [21], to
guarantee that each bivariate polynomial is secret, the
degree should be no less than 5

ffiffiffiffiffi
N
p
� 2 because each

bivariate polynomial is used in its home cell and four
adjoining cells. Similarly, the memory costs of Zhou et al.’s
schemes [24], [25] are 6ð2

ffiffiffiffiffi
N
p
� 1Þ and 3ð2

ffiffiffiffiffi
N
p
� 1Þ, respec-

tively. However, the memory cost of LAKE is less than
1:8171

ffiffiffiffiffi
N
p
þ 1.

4.3 Resilience to the Node Compromise Attack

By launching the node compromise attack, an adversary
may easily obtain all secrets stored in the compromised
nodes. Usually, it is impossible to prevent this kind of attack
due to the lack of tamper-proof hardware. Furthermore, the
adversary may use the compromised secrets to derive the
direct keys belonging to other pairs of normal nodes. In
addition, by compromising some nodes, the adversary can
also obtain the messages passing through these nodes. This
may also lead to the exposure of indirect keys. Here, we can
use the additional key exposure probability to evaluate the
resilience to the node compromise attack.

4.3.1 Additional Direct Key Exposure Probability

By choosing the global polynomial degree t, we can achieve
the secrecy of the global polynomial, i.e., no matter how
many nodes an adversary compromises, he/she cannot
calculate the direct keys belonging to other pairs of
noncompromised nodes. Hence, the additional direct key
exposure probability of LAKE is 0.

In conventional key-pool-based or space-pool-based
schemes [11], [12], [13], [14], [15], [16], [17], [18], [19], [22],
[23], every time an adversary compromises one more nodes,
he/she obtains more information about the global key pool
or space pool, which means that more keys are compro-
mised. For example, in E-G [11], the additional direct key
exposure probability can be calculated as [12], [22]

Pc ¼ 1� 1�M
S

� �x
; ð20Þ
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where each node randomly selects a key subset of size M

from a global key set of size S and the number of

compromised nodes is x. We can see that it is an increasing

function of x.
PIKE [20] can also achieve the zero additional direct key

exposure probability because of the predistribution of

unique direct keys.
Hypercube-2D [17], LBKP [21], and Zhou et al. [24], [25]

use a t-degree bivariate polynomial to achieve key agree-

ment. Suppose that there are A nodes sharing a t-degree

bivariate polynomial and N is the total number of nodes in

the network. Given x compromised nodes, the probability

that i out of A nodes were compromised is

PcðiÞ ¼
A
i

� �
N�A
x�i
� �
N
x

� � ð21Þ

and, thus, the probability that the polynomial was

compromised is given by

Pc ¼
XA
i¼tþ1

PcðiÞ: ð22Þ

Supposing that each node has a memory size of M units for

cryptographic materials, each memory unit can accommo-

date a cryptographic key or a polynomial coefficient, and

each node must keep B polynomial shares, the probability

of exposing a polynomial can be rewritten as

Pc ¼
XA
i¼bMBc

PcðiÞ: ð23Þ

Here, the values of A and B are
ffiffiffiffiffi
N
p

and 2 for Hypercube-

2D [17], 5Nc and 5 for LBKP [21], 2Nc and 6 for Zhou et al.

[24], and 2Nc and 3 for Zhou et al. [25], where Nc is the

number of nodes in one cell.

Example. Suppose 10,000 nodes are deployed in an area

2; 000� 2; 000 m2. The global key pool of E-G [11] is set to

100,000. PIKE [20] and Hypercube [17] use a two-
dimensional grid. For LBKP [21], Zhou et al. [24], [25],
and LAKE, there are 100 cells and, thus, the number of
nodes per cell is 100. Suppose that each node has a
memory size of M units for cryptographic materials and
each memory unit can accommodate a cryptographic key
or a polynomial coefficient. Fig. 4 gives the additional
direct key exposure probability according to the fraction
of compromised nodes when M ¼ 240;180. We observe
that LAKE outperforms other schemes with the zero
probability of the additional direct key exposure. When
there is more memory resource (M ¼ 240), Hypercube-
2D [17] can also give the zero probability of the
additional direct key exposure. However, when memory
resource is limited (M ¼ 180), Hypercube-2D [17] be-
comes vulnerable to node compromise.

4.3.2 Additional Indirect Key Exposure Probability

Every node needs an agent node to establish indirect LLKs
and TLKs with other nodes. If the agent node is
compromised, the indirect keys are exposed. Suppose x
out of N nodes in the network are compromised. The
probability of the indirect key exposure is

Pc ¼ 1�
N�1
x

� �
N
x

� � ¼ x

N
: ð24Þ

PIKE-2D [20] and Hypercube-2D [17] can achieve the
same probability of the indirect key exposure because it also
relies one agent node to establish pairwise keys between
neighboring nodes. In other schemes [11], [12], [13], [14],
[15], [16], [17], [18], [19], [22], [23], [21], [24], [25], two nodes
have to rely on a secure path consisting of multiple agent
nodes to establish an indirect key. It is very difficult to
determine those agent nodes because it depends on not only
the underlying routing protocol, but also the establishment
of direct keys between neighboring nodes, especially in
large-scale networks. For example, in E-G [11], the secure
path between two neighboring nodes consists of two or
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three agent nodes and the secure path between any two end
nodes consists of more than 11 agent nodes on average [11].
Suppose the secure path between two nodes in E-G and
LBKP consists of h agent nodes. The probability that the
indirect key between the two end nodes is exposed can be
calculated as

pc ¼ 1�
N�h
x

� �
N
x

� � 	 1� 1� x

N

� 	h
	 xh
N
; ð25Þ

where N 
 h > 1. Thus, LAKE is more resilient to the node
compromise attack.

4.4 Local Secure Connectivity

Every node can calculate direct LLKs with some neighbors
and establish indirect LLKs with other neighbors through
one agent node. The local secure connectivity is directly
related to the communication overhead of key establish-
ment. If a node has high probability to calculate direct
LLKs, it can save a lot of communication overhead on the
establishment of indirect LLKs through multihop routing.
Hence, high local secure connectivity, which is the prob-
ability of establishment of direct LLKs, is desirable in sensor
networks.

In the schemes [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], key materials are uniformly predistributed in
the network. It is highly possible that two nodes with
correlated key materials cannot establish a direct LLK
because they are far away from each other. For example, in
the E-G scheme [11], each node randomly selects M keys
from S keys; thus, the local secure connectivity of E-G is

1� S �M
M

� �

S

M

� �
	 1� 1�M

S

� �M
	M

2

S
;

where S 
M. In PIKE-2D [20] and Hypercube-2D [17],

each node keeps pairwise keys with 2ð
ffiffiffiffiffi
N
p
� 1Þ nodes; thus,

the local secure connectivity of these two schemes is

2ð
ffiffiffiffiffi
N
p
� 1Þ=N 	 2ffiffiffi

N
p . The low connectivity will incur sig-

nificant communication overhead.
It has been shown that deployment knowledge can be

used to increase the connectivity [21], [22], [23], [24], [25]. By
intentionally predistributing the same set of secrets in small
cells, they can achieve much higher connectivity than
uniform predistribution schemes. Though our key agree-
ment model still works in uniform predistribution scenar-
ios, we consider deployment knowledge here to further
increase the local secure connectivity.

Due to deployment errors, we cannot expect each node
to reside at the predetermined location. Rather, the node
deployment in each cell follows some probabilistic distribu-
tion. In order to evaluate the influence of deployment
knowledge, we use the Gaussian distribution [15], [24], [36]
in our simulation. Particularly, the location of each node
follows the distribution

pðx; yÞ ¼ 1

2��2
exp
�ððx� xcÞ2 þ ðy� ycÞ2Þ

2�2
; ð26Þ

where ðxc; ycÞ is the center of the cell in which the node
resides and ðx; yÞ is the real location of the node.

We use the same configuration parameters in Section 4.3
in our simulation. There are 10,000 nodes deployed in an
area of 2; 000� 2; 000 m2. All the schemes evaluated here
can store M ¼ 200 keys. The node radio radius is 150 m,
which corresponds to MICA2 capability [38]. The global key
pool of E-G [11] is set 100,000. The schemes E-G [11], PIKE-
2D [20], and Hypercube [17] use the uniform predistribu-
tion. As for the location-based schemes LBKP [21], Zhou
et al. [24], [25], and LAKE, there are 100 cells and, thus, the
number of nodes per cell is 100. The intercell distance (the
distance between the centers of neighboring cells) is set to
200 m. The standard derivation is set to � ¼ 50 m. Under
these configurations, we simulate a sensor network, find the
local secure connectivity of each node, and average it over
all the nodes. The average local secure connectivity is given
in Table 2.

We observe that the local secure connectivity for the
uniform predistribution schemes [11], [20], [17] is very low.
The location-based schemes [21], [24], [25] have much
higher connectivity because all the nodes in neighboring
cells are predistributed with correlated key materials. LAKE
has lower local secure connectivity than the location-based
schemes [21], [24], [25] because, in LAKE, only the nodes in
one cell have correlated key materials and each node can
establish a direct key with only one node in another cell.
However, LAKE still has much higher local secure con-
nectivity than the uniform predistribution schemes such as
E-G [11], PIKE-2D [20], and Hypercube [17].

4.5 Computation Overhead

LAKE is based on the symmetric key technology, where a
global t-degree trivariate symmetric polynomial is used to
build up a secure infrastructure. Each sensor node can
calculate a key by using a t-degree univariate polynomial,
which is a share of the global polynomial. It has been shown
in Hypercube [17] that the polynomial evaluation is
comparable with conventional symmetric key primitives
such as Message Authentication Code based on RC5 or
SkipJack. To calculate a key, each node should calculate
2t� 1 modular multiplications over ZZ�q : t� 1 for x2; . . . ; xt

and t for b1x; b2x
2; . . . ; btx

t. Under the symmetric key
technology, the length of q is usually 64 bits or 128 bits.
Suppose the same configuration parameters in Section 4.3
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are used here, where total number of nodes is N ¼ 10;000,

the number of nodes per cell is 100, and the number of cells

is 100. According to Table 1, t is less than 181. Hence, each

node needs to perform only 361 64-bit or 128-bit modular

multiplications. Similarly, the number of modular multi-

plications of other polynomial-based schemes is given in

Table 3. Obviously, LAKE is more efficient than most

conventional symmetric key schemes.
Public key techniques such as RSA and Diffie-Hellman

can also achieve key agreement. The basic operation of RSA

and Diffie-Hellman is the modular exponentiation of the

form yx ðmod qÞ. One modular exponentiation needs 3
2 log2 q

log2 q-bit modular multiplications on average [39]. To

guarantee the same level of security, here, q is usually

1,024 bits and y and x are drawn from ZZ�q . Thus, public key-

based operations require 1,536 1,024-bit modular multi-

plications on average. A 1,024-bit modular multiplication is
1;024

64

� �2¼ 256 times more expensive than a 64-bit modular

multiplication [15]. Hence, the public key techniques are

256� 1;536
361 ¼ 1; 089 times more expensive than LAKE if

64-bit symmetric keys are used in LAKE.

5 DISCUSSION

LAKE uses a key agreement model derived from our work

in [26] where a multivariate polynomial is used to achieve

key agreement for large-scale distributed systems. We can

also extend LAKE into higher dimensional space and, thus,

our work [26] can be used. In this case, each node can be

identified by k indices ðn1; n2; . . . ; nkÞ for k-dimensional

extension and assigned a share of a global t-degree ðkþ
1Þ-variate symmetric polynomial. If two nodes have one

mismatch in their k-tuple IDs, they can calculate a direct key

independently. If they have more than one mismatch in

their IDs, they can negotiate an indirect key through a

secure path consisting of multiple agent nodes. It has been

shown in [26] that the minimum polynomial degree can be

bounded as

t �
ffiffiffiffiffi
N

k
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ!

2

kþ1

r
; ð27Þ

where N is the total number of nodes.

The extensions of PIKE [20] and Hypercube [17] are

similar to our work. They also put sensor nodes in a

multidimensional grid and predistribute secrets so that

each node has pairwise keys with kð
ffiffiffiffiffi
Nk
p
� 1Þ nodes which

are on the k axes passing through it. To guarantee the

perfect security of direct keys, each node must store

kð
ffiffiffiffiffi
Nk
p
� 1Þ keys. Therefore, the memory cost of PIKE [20]

and Hypercube [17] is higher than ours. In other words,

given the same amount of memory resource, our scheme

can achieve a higher security level than PIKE [20] and

Hypercube [17].

6 CONCLUSION

LAKE uses a t-degree trivariate polynomial to facilitate the

key establishment between sensor nodes in a two-dimen-

sional space. It can efficiently establish both TLKs and LLKs

in sensor networks. Any two nodes can negotiate a TLK

with the help of no more than one intermediate node. As for

the LLK establishment, LAKE is more secure under the

node compromise attack with much less memory cost than

conventional schemes. Due to the location-based deploy-

ment, LAKE is also energy efficient in that each node has

direct keys with almost all neighbors and does not need to

consume too much energy on the establishment of indirect

keys with neighbors through multihop routing, thus saving

significant communication overhead.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation under grant CNS-0626881 and under grant

ANI-0093241 (CAREER Award).

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
Survey on Sensor Networks,” IEEE Comm. Magazine, vol. 40, no. 8,
pp. 102-114, Aug. 2002.

[2] J.M. Kahn, R.H. Katz, and K.S.J. Pister, “Next Century Challenges:
Mobile Networking for Smart Dust,” Proc. MobiCom, pp. 217-278,
Aug. 1999.

[3] G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network
Sensors,” Comm. ACM, vol. 43, no. 5, pp. 51-58, May 2000.

ZHOU AND FANG: A TWO-LAYER KEY ESTABLISHMENT SCHEME FOR WIRELESS SENSOR NETWORKS 1019

TABLE 3
Computation Overhead of Different Schemes

The second column gives the number of polynomial shares each node needs to keep. The third column gives the maximum polynomial degree. The
fourth column gives the number of modular multiplications each node needs to perform to calculate a direct key.



[4] H.T. Kung and D. Vlah, “Efficient Location Tracking Using Sensor
Networks,” Proc. IEEE Wireless Comm. and Networking Conf.
(WCNC ’03), Mar. 2003.

[5] R. Brooks, P. Ramanathan, and A. Sayeed, “Distributed Target
Classification and Tracking in Sensor Networks,” Proc. IEEE,
vol. 91, no. 8, pp. 1163-1171, 2003.

[6] A. Wood and J. Stankovic, “Denial of Service in Sensor Net-
works,” IEEE Computer Magazine, vol. 35, no. 10, pp. 54-62, Oct.
2002.

[7] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures,” Proc. First IEEE Int’l
Workshop Sensor Network Protocols and Applications (SNPA ’03),
May 2003.

[8] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“TinyPK: Securing Sensor Networks with Public Key Technol-
ogy,” Proc. Second ACM Workshop Security of Ad Hoc and Sensor
Networks (SASN ’04), Oct. 2004.

[9] D.J. Malan, M. Welsh, and M.D. Smith, “A Public-Key Infra-
structure for Key Distribution in Tinyos Based on Elliptic Curve
Cryptography,” Proc. First IEEE Int’l Conf. Sensor and Ad Hoc
Comm. and Networks (SECON ’04), Oct. 2004.

[10] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D.E. Culler,
“SPINS: Security Protocols for Sensor Networks,” Wireless Net-
works, vol. 8, pp. 521-534, Sept. 2002.

[11] L. Eschenauer and V. Gligor, “A Key Management Scheme for
Distributed Sensor Networks,” Proc. Ninth ACM Conf. Computer
and Comm. Security (CCS ’02), Nov. 2002.

[12] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution
Schemes for Sensor Networks,” Proc. IEEE Symp. Security and
Privacy, pp. 197-213, May 2003.

[13] R.D. Pietro, L.V. Mancini, and A. Mei, “Random Key-Assignment
for Secure Wireless Sensor Networks,” Proc. 10th ACM Conf.
Computer and Comm. Security (CCS ’03), Oct. 2003.

[14] M. Ramkumar and N. Memon, “An Efficient Random Key
Predistribution Scheme,” Proc. IEEE Global Telecomm. Conf.
(Globecom ’04), Dec. 2004.

[15] W. Du, J. Deng, Y.S. Han, and P.K. Varshney, “A Pairwise Key
Predistribution Scheme for Wireless Sensor Networks,” Proc. 10th
ACM Conf. Computer and Comm. Security (CCS ’03), Oct. 2003.

[16] D. Liu and P. Ning, “Establishing Pairwise Keys in Distributied
Sensor Networks,” Proc. 10th ACM Conf. Computer and Comm.
Security (CCS ’03), Oct. 2003.

[17] D. Liu, P. Ning, and R. Li, “Establishing Pairwise Keys in
Distributed Sensor Networks,” ACM Trans. Information and System
Security, vol. 8, no. 1, pp. 41-77, Feb. 2005.

[18] J. Hwang and Y. Kim, “Revisiting Random Key Predistibution
Schemes for Wireless Sensor Networks,” Proc. Second ACM
Workshop Security of Ad Hoc and Sensor Networks (SASN ’04), Oct.
2004.

[19] R. Wei and J. Wu, “Product Construction of Key Distribution
Sschemes for Sensor Networks,” Proc. 11th Int’l Workshop Selected
Areas in Cryptography (SAC ’04), Aug. 2004.

[20] H. Chan and A. Perrig, “Pike: Peer Intermediaries for Key
Establishment in Sensor Networks,” Proc. INFOCOM, Mar. 2005.

[21] D. Liu and P. Ning, “Location-Based Pairwise Key Establishments
for Relatively Static Sensor Networks,” Proc. ACM Workshop
Security of Ad Hoc and Sensor Networks (SASN ’03), Oct. 2003.

[22] W. Du, J. Deng, Y.S. Han, S. Chen, and P.K. Varshney, “A Key
Management Scheme for Wireless Sensor Networks Using
Deployment Knowledge,” Proc. INFOCOM, Mar. 2004.

[23] D. Huang, M. Mehta, D. Medhi, and L. Harn, “Location-Aware
Key Management Scheme for Wireless Sensor Networks,” Proc.
Second ACM Workshop Security of Ad Hoc and Sensor Networks
(SASN ’04), Oct. 2004.

[24] Y. Zhou, Y. Zhang, and Y. Fang, “LLK: A Link-Layer Key
Establishment Scheme in Wireless Sensor Networks,” Proc. IEEE
Wireless Comm. and Networking Conf. (WCNC ’05), Mar. 2005.

[25] Y. Zhou, Y. Zhang, and Y. Fang, “Key Establishment in Sensor
Networks Based on Triangle Grid Deployment Model,” Proc.
IEEE Military Comm. Conf. (MILCOM ’05), Oct. 2005.

[26] Y. Zhou and Y. Fang, “A Scalable Key Agreement Scheme for
Large Scale Networks,” Proc. IEEE Int’l Conf. Networking, Sensing
and Control (ICNSC ’06), Apr. 2006.

[27] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti, “Secure
Pebblenets,” Proc. MobiHoc, 2001.

[28] C.J. Mitchell and F.C. Piper, “Key Storage in Secure Networks,”
Discrete Applied Math., 1995.

[29] M. Dyer, T. Fenner, A. Frieze, and A. Thomason, “On Key Storage
in Secure Networks,” J. Cryptology, 1995.

[30] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and
M. Yung, “Perfectly-Secure Key Distribution for Dynamic Con-
ferences,” Proc. Conf. Advances in Cryptology (CRYPTO ’92),
vol. 740, pp. 471-486, 1992.

[31] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security
Mechanism for Large-Scale Distributed Sensor Networks,” Proc.
10th ACM Conf. Computer and Comm. Security (CCS ’03), Oct. 2003.

[32] J. Deng, C. Hartung, R. Han, and S. Mishra, “A Practical Study of
Transitory Master Key Establishment for Wireless Sensor Net-
works,” Proc. First IEEE Int’l Conf. Security and Privacy for Emerging
Areas in Comm. Networks (SecureComm ’05), Sept. 2005.

[33] Y. Zhou, Y. Zhang, and Y. Fang, “Access Control in Wireless
Sensor Networks,” Elsevier Ad Hoc Networks J., to appear.

[34] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location-Based
Compromise-Tolerant Security Mechanisms for Wireless Sensor
Networks,” IEEE J. Selected Areas in Comm., vol. 24, no. 2, pp. 247-
260, Feb. 2006.

[35] H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbaugh, “Toward
Resilient Security in Wireless Sensor Networks,” Proc. MobiHoc,
May 2005.

[36] W. Du, L. Fang, and P. Ning, “LAD: Localization Anomaly
Detection for Wireless Sensor Networks,” Proc. 19th Int’l Parallel
and Distributed Processing Symp. (IPDPS ’05), Apr. 2005.

[37] R. Anderson and M. Kuhn, “Tamper Resistance—A Cautionary
Note,” Proc. Second USENIX Workshop Electronic Commerce, pp. 1-
11, Nov. 1996.

[38] Crossbow Technology, http://www.xbow.com/, 2006.
[39] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied

Cryptography. CRC Press, 1996.

Yun Zhou received the BE degree in electronic
information engineering (2000) and the ME
degree in communication and information sys-
tems (2003) from the Department of Electronic
Engineering and Information Science at the
University of Science and Technology of China,
Hefei, China. He is currently pursuing the PhD
degree in the Department of Electrical and
Computer Engineering at the University of
Florida, Gainesville. His research interests are

in the areas of security, cryptography, wireless communications and
networking, signal processing, and operating systems. He is a student
member of the IEEE.

Yuguang Fang received the PhD degree in
systems engineering from Case Western Re-
serve University in January 1994 and the PhD
degree in electrical engineering from Boston
University in May 1997. He was an assistant
professor in the Department of Electrical and
Computer Engineering at New Jersey Institute of
Technology from July 1998 to May 2000. He
then joined the Department of Electrical and
Computer Engineering at the University of

Florida in May 2000 as an assistant professor and got an early
promotion to an associate professor with tenure in August 2003 and a
professor in August 2005. He has published more than 150 papers in
refereed professional journals and conferences. He received the US
National Science Foundation Faculty Early Career Award in 2001 and
the US Office of Naval Research Young Investigator Award in 2002. He
has served on many editorial boards of technical journals including IEEE
Transactions on Communications, IEEE Transactions on Wireless
Communications, IEEE Transactions on Mobile Computing, and ACM
Wireless Networks. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1020 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 6, NO. 9, SEPTEMBER 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


