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Abstract—In this paper, we examine the problem of optimal
state estimation or filtering in stochastic systems using an ap-
proach based on information theoretic measures. In this setting,
the traditional minimum mean-square measure is compared with
information theoretic measures, Kalman filtering theory is re-
examined, and some new interpretations are offered. We show
that for a linear Gaussian system, the Kalman filter is the optimal
filter not only for the mean-square error measure, but for several
information theoretic measures which are introduced in this
work. For nonlinear systems, these same measures generally are
in conflict with each other, and the feedback control policy has
a dual role with regard to regulation and estimation. For linear
stochastic systems with general noise processes, a lower bound on
the achievable mutual information between the estimation error
and the observation are derived. The properties of an optimal
(probing) control law and the associated optimal filter, which
achieve this lower bound, and their relationships are investigated.
It is shown that for a linear stochastic system with an affine
linear filter for the homogeneous system, under some reachability
and observability conditions, zero mutual information between
estimation error and observations can be achieved only when the
system is Gaussian.

Index Terms—Dual control, entropy, Kalman filtering, state
estimation.

I. INTRODUCTION

A SIGNIFICANT research effort has been devoted to the
problem of state estimation for stochastic systems. Fol-

lowing the classical work of Gauss on least squares estimation
and the modern day approach introduced by Kalman [1], [2]
and investigated by other researchers [3]–[7], there have been
intensive studies on least squares estimation. When applied
to stochastic control systems, Kalman filtering theory also
provides a tool for solving control problems, especially the
stochastic optimal control problem for linear Gaussian (LG)
systems where a separation principle holds.

On the other hand, information theory developed by Shan-
non [29] laid down a concrete mathematical framework for
communication systems. Shannon’s entropy has found con-
siderable applications in many other fields. Recognizing the
many similarities between state estimation and communica-
tion systems, many researchers have attempted to make the
connection between estimation/control theory and information
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theory [10]–[20]. Recently, Saridis [13] proposed a general
conceptual framework for stochastic and adaptive control
problems using Jaynes maximum entropy principle [21]; this
work provides a nice interpretation for many performance
criteria and control algorithms.

It is well known that except for LG systems (and/or linear
systems with a quadratic cost), the stochastic optimal control
problem is in general a dual control problem [23], [24],
and an optimal feedback control has two different, usually
conflicting, attributes known asprobing (or learning) and
regulating. A general solution to such dual control problems
has yet to be found. The probing aspect of a feedback control
is critical in the dual control problem. We expect that a
better understanding of how the control will effect the way
the system performs the learning or probing for uncertainties
will provide more insight into the final solution of the dual
control problem. In this paper, we study the state estimation
problem and the probing effects of a feedback control on
state estimation. We use an information theoretic approach
and illustrate the distinquishing features of an LG system
that enable solutions to certain control problems for these
systems to be obtained. We also investigate some interesting
properties for the information theoretic measures introduced.
In particular, for linear stochastic systems, we shall show that
the entropy measures introduced in this work enjoy the same
invariance properties as the mean-square error. A lower bound
on the attainable mutual information between the estimation
error and observation processes among all admissible controls
and filters is established for linear stochastic systems. We
conjecture that under some weak conditions this bound is zero
if and only if the system is Gaussian. We partially justify this
conjecture in Section IV by showing that it is true for systems
with a linear affine filter for the homogeneous system. An
example is given to illustrate some of the main results of
the paper. The paper is organized as follows. In Section II
after a brief survey of the existing results, we formulate the
general estimation problem for nonlinear stochastic systems
in an information theoretic framework. In Section III, we
establish some important properties of the optimal filter for
linear systems. In Section IV, for linear systems with an
affine linear filter for the homogeneous system, we prove
that zero error/observation mutual information can be achieved
only for an LG system, provided that some reachability and
observability conditions are satisfied. Section V contains an
example for the linear non-Gaussian case, and Section VI
contains our concluding remarks.
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II. ENTROPY AND THE GENERAL ESTIMATION

PROBLEM WITH ACTIVE PROBING

Consider the nonlinear stochastic system

(N)

where in (N), is the system state,
is the control variable, and is the output.

denotes the admissible control set. The sequences of
independent random vectors and

model the driving and measurement
noise processes, respectively. We assume that the basic random
variables and defined on a probability space

are independent with finite covariance matrices
and for all . For a random vector

defined on is the -algebra generated
by . is the observation (information)
vector at time , and a feedback control is a sequence

of measurable functions with .
Let denote the collection of all feedback controls. A filter
is a sequence of measurable functions with

the estimate of the state based on .
Let denote the collection of all filters.

Our objective is to design a feedback control
and a filter in a certain optimal fashion and to
study the relationship between and . Although the least
squares family of estimators has been extensively studied,
most notably, the minimum mean-square estimator for LG
systems and extensions to affine linear minimum mean-square
estimators for general linear systems, few researchers have
asked the questions: Is it possible to go beyond the tradi-
tional approaches? If so, what is an appropriate framework
for estimation, a criteria for optimality, and what is the
relationship to control system design? This paper proposes a
framework for state estimation, develops performance indexes
for state estimation using information theoretic concepts, and
investigates the intimate relationship between the design of an
optimal filter and a feedback control for the system.

Kalman filtering theory [1]–[8] revolutionized the classical
least squares method and also provided a methodology for
solving certain control problems, in particular, the stochastic
optimal control problem for LG systems where a separation
principle holds. For general classes of stochastic systems, the
difficulty in determining an optimal control and filter is imme-
diately apparent, even for a linear non-Gaussian system with a
quadratic cost functional. Even though a separation principle
holds for this case and the optimal filter is the (true) minimum
mean-square filter, it is generally not that the Kalman filter
and recursive finite-dimensional realizations of this optimal
filter are unknown. Further, complications result from the dual
concept of a feedback control law introduced by Feldbaum
[23]. Researchers have devoted a significant effort to studying
the dual optimal control problem, and even though many
meaningful results have been obtained, an optimal solution
to the problem is unknown. Consider, for example, an LG
system with unknown parameters in the system matrix taking
values from a finite discrete set and a quadratic cost functional.
It is shown [9] that a finite-dimensional nonlinear filter exists

for the joint estimation of state and the unknown parameter;
however, the dynamic programming approach does not lead
to a closed-form analytical solution for the optimal control.
The cost-to-go involves three terms: one for regulation, one
for probing (estimation), and one for equivocation. Due to the
conflicting nature of each of these cost terms, it is expected
that an inferior solution to this “multiobjective” optimization
problem should provide a reasonable solution to the problem.
In spite of the developments of control design using quadratic
cost functionals for LG systems, the computational difficulties
of dual control problems suggest that the traditional quadratic
cost functionals may not be the best criteria to use in the
synthesis of feedback control policies for general classes of
stochastic systems.

Information theory has revolutionized communication and
coding theory and has had significant applications in other
fields like statistics, physics, economics, and computer science.
A marriage between information and control theory may
provide better insight and understanding of many complicated
control problems. Several researchers have developed some
important results [10]–[14], [17]–[20]. In particular, Saridis
[13] has given an entropy formulation of optimal and adaptive
control problems and has interpreted the dual effect in terms of
information theoretic measures. In [11] and [12], Weidemann
and Stear studied estimation and feedback control systems and
analyzed various information quantities associated with such
a system. Kalata and Priemer [17] and Tomitaet al. [18], [19]
subsequently investigated prediction, filtering, and smoothing
problems for signals generated by an LG system and showed
that the Kalman filter minimizes the mutual information be-
tween the estimation error and observation process as well as
the error entropy. A study of the optimal dual control problem
for linear stochastic systems with parameter uncertainty using
Saridis’ formulation is presented in [15] and [16]. Before
presenting a generalization of the setup presented in [10]
for the problem of synthesizing a probing feedback control
associated with a filtering problem, some elementary results
from information theory are discussed. A detailed account
of information theory and its contribution to communication
theory and applications are presented in [26] and [27].

An essential notion of Shannon’s information theory is
entropy, including conditional entropy and mutual information.
For random variables and given, the(differential) entropy

of and thejoint (differential) entropy of
are defined as

(1)

where and are the (joint) density functions of
and , respectively. Likewise, theconditional (differential)
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entropy of given is defined as

(2)

where is the conditional density function. Another
important concept is themutual information of ,
which is defined as

(3)

Roughly speaking, the differential entropy measures
the dispersion of the random variable. The smaller the
differential entropy , the more concentrated the density
function of . Because is not invariant with respect
to a bijective transformation, it is usually not a measure of
information. However, the nonnegative quantity , which
is invariant with respect to a bijective transformation, is a
quantitative measure of the mutual information ofand .
The following properties [which we will refer to as Property
(P)] can be easily proved.

(P1) .
(P2) with

equality iff independent.
(P3) , for any measurable function

. (P)
(P4) , if .

iff independent.
(P5)

, for any constant .
(P6) , if independent.

References [26] and [27] provide a detailed account of these
properties and their interpretation in information theory.

A general framework for state estimation (filtering) in terms
of the information theoretic measures defined in (1)–(3) is
provided next. For a feedback control given, the closed-
loop quantities, like the state , the output , and the control

, are random variables which depend on. We shall use
the notation and to signify this fact. Similarly, the
superscript indicates that the estimate also depends on

. Let denote the filtering error. A diagram
for the combined estimation/control can be represented as in
Fig. 1.

In Fig. 1, denotes the output (or sensor) channel with
output function and measurement noise, and denotes
the filter. The objective is to design and so that a certain
optimal estimate is obtained. Note that the estimate
and the error depend on the selections of both the filter
and the feedback controller. This is a simple indication of the
dual property of the control. To make this relationship more
precise, we define the following types of optimal estimators
and optimal (probing) control laws in terms of some useful
information theoretic measures.

Definition 2.1: Consider the stochastic system (N) and the
estimation/control configuration given in Fig. 1.

1) For given, we call the minimum mean-
square estimator(of based on ), if min-

imizes the mean-square error

Fig. 1. Estimation/control system configuration.

for all , i.e.,

2) For given, we call the minimum
error/observation information estimator(of given

), if minimizes the mutual information
between the information vector and the

estimation error for all , i.e.,

3) For given, we call the minimum error
entropy estimator(of given ), if minimizes
the error (differential) entropy of the estimation
error for all , i.e.,

4) We call theoptimal probing control in the mean-
square senseand the minimum mean-square
estimator, if for all

Clearly, is the minimum mean-square estimator as-
sociated with ; refer to 1) above.

5) We call the optimal probing control in the
error/observation information senseand the
minimum error/observation information estimator, if for
all

Clearly, is the minimum error/observation informa-
tion estimator associated with ; refer to 2) above.

6) We call the optimal probing control in the error
entropy senseand the minimum error entropy
estimator, if for all

Clearly, is the minimum error entropy estimator
associated with ; refer to 3) above.
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7) We call theoptimal probing control in the sensor
channel transmittance sense, if maximizes thesensor
channel transmittance for all , i.e.,

We shall call the minimum mean-square (control
and filter) pair, ( ) the minimum error/observation pair,
and ( ) the minimum error entropy pair. In particular,
when , the minimum error/observation
information pair is referred to as the zero er-
ror/observation information pair. We assume that all informa-
tion theoretic quantities, like entropy and mutual information,
are well defined and that the indicated infimum and supremum
are achievable (the optimal performance measures can, how-
ever, take extended real values). Next, we comment on the
probing effect of a feedback control.

The probing effect of a control can be defined as the
influence that control actions have on estimation. This will
be quantified by a certain performance measure defined for
estimation. To be more precise, suppose that is a
performance measure for estimation, which we would like to
minimize. We will say has no probing effect [with
respect to ], if for any , there exists a filter

such that is the global minimum defined by
. This probing effect of is the same

probing or learning effect as in the dual control problem.
The concept of the minimum mean-square estimator

associated with a feedback control is well known. For
(N), we have . In particular, for LG
systems, i.e., for (N) with

and Gaussian, is realized
by the Kalman filter. It is also well known that in this
case the error covariance matrix is independent of the
selection of , and therefore has no probing effect. As
mentioned previously, the quantity measures
the mutual information between the estimation error and
the information vector . if and only if

is independent of and therefore can be regarded as a
measure of the dependence between and . Minimizing
this measure can lead to better estimation. Again, for an
LG system, it is well known that the minimum mean-square
estimation error is independent of for any , and
as a consequence has no probing effect in this sense
as well. If the mutual information , then the
minimum mean-square estimator extracts all the relevant
information about from the observation . The error
(differential) entropy measure measures the dispersion
of the estimation error , and for an LG system it can be

shown that , where and
are constants and is the error covariance matrix. Hence,
the Kalman filter also minimizes the error (differential)
entropy measure for any , and the control
has no probing effect in this sense as well. We conclude that
for LG systems, the Kalman filter is optimal in all senses

1)–3), and the optimal costs

and are independent of the choice of the feedback

law . The pair for any is also optimal
in all senses 4)–6), and has no probing effect. This
can be considered as an equivalent statement of a separation
principle for the linear-quadratic-Gaussian (LQG) problem.
In general, for nonlinear systems a feedback control law

does have an influence on state estimation, and the
solutions to any of the above optimal (probing) estimation
problems defined by 1)–6) remain unknown. Before going
into further analysis, we comment on the sensor channel
transmittance [11], which is a quantity that only
depends on the sensor and the feedback law .
For a fixed sensor , the data-processing inequality [32, p.
208] yields , for any .
Therefore, provides an upper bound on the amount
of information that can be extracted from the observations by
a filter . Intuitively, the synthesis of a probing control
should maximize so that the maximum amount of
information about is obtained from through the design
of the filter . If we regard the sensor as a communication
channel, can be interpreted as the channel
capacity.

Remark: To simplify notation, we will use the superscripts
“ ” and “ ” on variables and functionals of variables to denote
the dependence on the choice of the feedback law and
the filter . For example, and
both denote the mean-square error of the filter associated with
the given and .

The synthesis of a probing control requires maximizing
the sensor channel transmittance

(4)

and minimizing the error/observation (mutual) information

(P3)
(5)

Thus, from (4), select to minimize , while
from (5), select to maximize . Therefore,
(4) and (5) are in conflict, and one approach is to maximize
the difference, i.e.,

(6)

From (4) and (5)

and (6) is equivalent to

(7)

The constant is referred to as theentropy performance
index of the filter channel because it measures the reduction
(or difference) between the differential entropy of the input
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to the channel and the differential entropy of the
output from the channel ; see Fig. 1. Next, we
show that for all “nontrivial” filters . Because
the mutual information is nonnegative,
for all and if the filter is a given
deterministic sequence , which is referred to as a
constant filter, then

(8)

It follows that . Thus, a reasonable choice of a
filter should make the mutual information difference

nonnegative. Indeed, in the LG
case, the Kalman filter gives . A
filter is called anontrivial filter associated with , if

. Because is a measurable function
of , for a nontrivial filter

(9)

This inequality is important because it relates the three differ-
ential entropies in (9) that are the quantities to be optimized
in (4), (5), and (7).

An optimal probing control simultaneously optimizes
(4) and (5) with appropriately defined filters. If a solution ex-
ists, we say that the optimal probing control is nonconflicting.

For an LG system

(LG)

with

independent basic random variables, because there is no dual
effect, there is no conflict for any , and the Kalman
filter simultaneously optimizes all criteria. However, for a
general nonlinear stochastic system, this problem is extremely
difficult, and no general answers have been obtained to date.
Some preliminary results for this problem are presented in this
paper. In particular, we shall show in the next section that for
a linear (non-Gaussian) system, there exists a single probing
control which is optimal for all the measures defined. This is
not true for general nonlinear systems.

Before concluding this section, we derive some general
results for the nonlinear system (N) using an assumption which
is similar to the one adopted by several researchers [11], [12],
[17]–[19]. This assumption makes the probing effect of
partially nonconflicting. In Section IV, we shall show that this
restrictive assumption, under a reachability and observability
condition, is equivalent to the Gaussian assumption on the
basic random variables for a linear stochastic system, given a
linear affine filter for the homogeneous system.

Theorem 2.2:Consider the nonlinear stochastic system (N)
with the filtering configuration shown in Fig. 1.

a) Let be fixed. Then, the minimum mean-square
estimator is given by

. Furthermore, the minimum error/observation in-
formation filter is equivalent to the minimum error
entropy filter .

b) Given Assumption A): For any given, there is
a filter such that . That is,
for any , the zero error/observation information
filter exists and the estimation error is
independent of .

Then, the minimum mean-square filter associated
with is such a filter , i.e., , forms a zero
error/observation information pair. Let satisfy

(10)

then is the minimum error entropy pair. Let
be the optimal probing control in the sensor

channel transmittance sense, then maximizes
the entropy performance index with

(11)

Proof: We show a) first. Let be a fixed feedback
control. The fact that is the
minimum mean-square estimator is well known. Withfixed,
for any , we have

(P3)

The next statement of a) follows directly. For b), given that
Assumption A) holds, we first show that the minimum mean-
square filter associated with a is such a filter .
Consider that

(a.s.)

(12)

It follows that with a constant.

Thus, is also independent of and is a zero
error/observation information filter associated with .
Now, with
for any , it is easy to see that is also
the minimum error entropy pair. Similarly, with

for any and , it is
easy to see that under Assumption A), maximizes
the entropy performance index and (11) holds.

In Theorem 2.2, the probing control laws and are
defined by

(13)

and

(14)
respectively. Given Assumption A), these two optimal probing
control laws are not necessarily conflicting. We shall show
later that for a linear stochastic system, even without Assump-
tion A), a single feedback control can be selected
which is optimal in all senses defined earlier.
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Although Assumption A) is restrictive, it is also intuitive
from an information theory perspective since for any
given, the filter extracts all the necessary information about

from the observations . In this case, the control sends
the largest amount of information about to the observation

for a given sensor configuration, and either or
is the optimal control and filter pair in in terms

of mutual information. For an LG system, Assumption A) is
satisfied with , the Kalman filter. We show in the next
section that for a general linear stochastic system,
is actually independent of . Thus, is the control which
maximizes , i.e., the feedback control which maximizes
the dispersion of the state. This is a very naive solution from
a signal detection perspective. One may ask: Can Assumption
A) hold for a linear system without the Gaussian assumption?
We conjecture that in general the answer is no, although we
do not have a definitive proof.

III. FILTERING IN LINEAR STOCHASTIC SYSTEMS

A general framework for filtering and state estimation was
proposed, and an appealing but restrictive assumption, satisfied
by an LG system which guarantees that the probing control is
nonconflicting for a general nonlinear system, was presented.
In the next section it is shown that for a linear stochastic
system with an affine linear filter for the homogeneous system,
Assumption A) is equivalent to the Gaussian assumption, un-
der some reachability and observability conditions. Therefore,
we expect that in general there is no zero error/observation
pair for linear non-Gaussian systems, i.e., there is
no feedback control and filter such that

. The question then becomes: What is the
lower bound for the error/observation
information measure , and how do we characterize
the pair ? In this section, we study linear stochastic
systems defined by

(L)

where in (L), the independent basic random variables
and are assumed to have the first- and second-order

statistics

(15)

for all . In (L), the superscript is used to signify the
fact that all closed-loop variables depend on the selection of a
feedback control law . Here,
is the measurement (information) vector. When and
are Gaussian, (L) is an LG system. We begin by examining the
Kalman filter for an LG system in the present framework.

Proposition 3.1: Consider an LG system. Let

be the Kalman filter, i.e.,
. Then we have the following.

i) is the optimal filter in the senses 1)–3) given in Def-
inition 2.1. Furthermore, the optimal costs associated

with are ),

and , which are all
independent of the selection of . Here and

are constants and is the error covariance matrix

of (which is independent of ). Therefore,
for any feedback control law , the pair is
the optimal control and filter pair in the senses defined
in 4)–6) in Definition 2.1.

ii) For any

Also, there exists a such that
with and constants and the

solution of the matrix equation

(16)

Therefore, if and are such that
goes to as tends to , then, the sensor channel
transmittance (or capacity) tends to as goes to

.

Proof: For any feedback control law , it is
well known [22, pp. 93–104] that for the LG system, the
Kalman filter is the minimum mean-
square estimator, and the filter is given by the conditional
mean . Also, the error covariance

matrix can be computed off-line and is
independent of the selection of. This shows that is optimal
in the sense 1) of Definition 2.1. It is also known that the
estimation error is independent of and is distributed

according to . Then, it follows that
. Because for any , this shows that

is optimal in the sense of 2). For fixed, by 1) of
Theorem 2.2, we know that is also the minimum error

entropy filter associated with. Since , we
have by direct computation

(17)

for some and constants. The fact that for any ,
the pair is optimal for any measures of 4)–6) is a
direct consequence of the fact that is independent of the
selection of . This proves i). For ii), by the independence
of and , we have from (P3) and (P4) that for any

(18)

Now, take as an open-loop control, i.e., a
deterministic sequence. Then, the state processis Gaussian
with distribution . Here satisfies (16). Therefore,
we obtain

(19)
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with and constants. Thus, if goes to ,
(18) and (19) imply that will go to as well.
This completes the proof.

Proposition 3.1 states that for an LG system, the control law
has no probing effect in any of the above senses, and

the zero error/observation information pair is defined via the
Kalman filter. This is another explanation for the separation
principle which holds for LG systems. For general linear
stochastic systems, it is known that the (true) minimum mean-
square filter associated with (which may not be the
Kalman filter for non-Gaussian systems) also makes the error
covariance matrix independent of the selection of. However,

may not be optimal in other senses. Another observation
is that infinite sensor channel transmittance corresponds to
infinite channel capacity of an ideal Gaussian channel without
power limitation. From the state detection perspective, this
result says that optimal state detection is realized when the
dispersion of the state distribution is maximized, i.e.,
tends to infinity.

In general, the feedback control law does have a
probing effect on state estimation, and the answer to any of the
above optimal (probing) estimation problems defined by 1)–6)
remain as open questions, even for the simplest nonlinear/non-
Gaussian systems. We address some of these issues in the
remainder of the paper.

We begin by studying a general linear system (L). The
following decomposition of (L) [22] is essential to our de-
velopment. For a , we can decompose and
as

(20)

In (20), the processes and are defined by the
equations

(D)

with and the initial state . The processes
and are defined by the equations

(H)

where and are given as before. Let
be the past control inputs up to

time , and let be the information vector. Let
be the information vector associated

with the homogeneous system (H). Consider the following
lemma, whose proof is given in [22].

Lemma 3.2: For the linear system (L), let be
arbitrarily given. We have

(21)

where in (21), denotes the -algebra generated by the
random vector . Equivalently, and are (measur-
able) functions of each other.

Proposition 3.3: For the linear system (L), we have the
following.

1) For any and

(22)

Note that the conditional differential entropy
is associated with the “homogeneous” system (H) and
therefore is independent of the selection ofand .

2) For any and given, there is a

such that .

Proof: For 1), let and be given. Since
, the equality

follows from (P3). Since from (20), we have
and is a measurable function of

from (D), we have . However,
by Lemma 3.2, , and using (P4), we have

. This shows (22). For 2), let
and be given. By Lemma 3.2, there are measurable
functions and such that

(23)

Then, and we have from (20)
that

(24)

where in (23), the filter is defined by

(25)

Proposition 3.3 is a very interesting result because 1) states
that for a linear system, the conditional entropy ,
which is the equivocation of the sensor channel, is independent
of the selection of . From the previous discussion,
given Assumption A) for the nonlinear system (N), the optimal
probing controls and defined in Theorem 2.2 may not
be conflicting. From Proposition 3.3, for the linear system (L)
without Assumption A), a single feedback control ,
which is optimal for all the performance measures defined for
the probing estimation problem, can be determined. It is in this
sense that the probing estimation problem for a linear systems
is nonconflicting.
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Theorem 3.4:For the linear stochastic system (L), there is
a control and filter pair such that

(26)

Proof: Recall the assumption that the and opera-
tions given above are achievable. Let be such that the
first equation in (26) holds. Take such that

(27)

From Proposition 3.3 for any and , a
(which depends on and ) exists such that

. It follows that

(28)

We conclude that

(29)

We show the third equation in (26) next. From Proposition 3.3,
for any , we have

Note that is associated with the homogeneous
system (H). Thus

Similarly, we have from the previous proposition that

(P3)

(30)

This establishes the fourth equation in (26). The last equation
follows directly from the fact that

from the third and the fourth equations in (26).

Theorem 3.4 states that for the linear stochastic system (L),
the pair is simultaneously the optimal control and
filter pair in all the senses defined in 2), 3), and 5)–7) given
in Definition 2.1. Furthermore, will maximize the entropy

and therefore will tend to increase the dispersion of the
state . This destabilizes the system so that the sensor channel
transmittance is maximized. is the optimal filter
which minimizes the error entropy , and therefore

is minimized. We know from Theorem 2.2 that
under Assumption A), can be selected as the minimum
mean-square estimator, similar to the LG case. However, we
will see later that Assumption A) does not hold for linear non-
Gaussian systems in general. Thus,may not in general be
the minimum mean-square filter.

Now, suppose we ignore the probing effect of on
the sensor channel transmittance and only concern
ourselves with the error/observation information
or the error entropy . Then, a direct consequence of
Proposition 3.3 is that has no probing effect, and the
attainable lower bound on only depends on the
homogeneous system (H). We study this in some detail next.
In what follows, we shall use to denote the family of filters
associated with the homogeneous system (H).

Theorem 3.5:For the linear stochastic system (L), let
be such that

(31)

Then

(32)

and for any given, there is a such that

(33)

or equivalently

(34)

Proof: For the trivial control given by
for all , we have that , etc., reduces to , etc.,
for the homogeneous system (H), except for a constant bias
induced by . Let be defined by (31). Then, (32)
follows from (22) immediately. Now, for the control/filter pair

and , by 2) of Proposition 3.3, there is an
such that

(35)

Again, from 2) of Proposition 3.3, for any pair ,
there is a pair such that .
Thus, we have

(36)

From (35) and (36), we conclude (33). Equation (34) follows
directly from (22) and (P3).

It is important to note that if a realization of the “homoge-
neous” optimal filter for the homogeneous system (H)
can be determined, then the associated optimal filter
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which minimizes can be realized for any given
from (25), i.e.,

(37)

because is deterministic. In (37), and are sequences
that can be computed directly. We also observe from Theorem
3.5 that the achievable lower bound on the error/observation
information measure depends only on the homogeneous sys-
tem (H). has no probing effect for this measure.
Equation (37) gives an equivalent optimal filter for (L). A
corollary to this theorem is given next.

Corollary 3.6: For the linear stochastic system (L), there
exists a control and filter pair such that

for all , i.e., there is a zero error/observation
pair if and only if there exists a filter for the
homogeneous system (H) such that for all

(38)

This corollary provides conditions for which Assumption A)
is satisfied. Furthermore, from our previous results, if such
an exists, then the minimum mean-square estimator

for the homogeneous system given by
is such a filter. We know that for LG systems, the

Kalman filter is a realization of the minimum mean-square
estimator. In general, however, the minimum mean-square
estimator is a nonlinear function of and determining a
finite-dimensional realization of the filter may not be possible.
One may ask: What is the condition for the existence of
a zero error/observation filter ? A partial answer to this
question is presented in the next section, where we show that
for the linear stochastic system (L) with an affine linear filter

for the homogeneous system, under some reachability and
observability conditions, a necessary and sufficient condition
for the existence of a zero error/observation control and filter
pair is that the basic random variables are Gaussian.

IV. ZERO ERROR/OBSERVATION INFORMATION

AND THE GAUSSIAN ASSUMPTION

In the previous sections we discussed the importance of a
zero error/observation control and filter pair such that

(39)

Roughly speaking, this is the control and filter pair such that
all the information about contained in is extracted by
the filter. For a linear stochastic system (L), from the previous
section, we see that the feedback controlplays no role in
this case, and the problem is equivalent to determining the
existence of a filter for the homogeneous system (H)
such that the zero error/observation information is achieved
by . For an LG system, the Kalman filter is such a filter. Or
in other words, the Gaussian assumption on the basic random
variables is a sufficient condition for the existence of such an

. Is the Gaussian assumption also necessary? In this section,

we partially answer this question for linear stochastic systems
when restricting our attention to the family of affine linear
filters for the homogeneous system and assuming all
basic random variables have independent components.

For the homogeneous system (), the family of affine linear
filters is defined as

constant matrices

An affine linear filter with
is called a linear filter, if . Let

denote the family of linear filters for (H). For the error entropy
or the error/observation information , a shift

in the error

(40)

has no effect. Note, the superscript
in (40) denotes a linear filter in , and there exists a linear
zero error/observation filter for the homogeneous
system (H) if and only if there exists an affine linear zero
error/observation information filter . For simplicity,
we restrict our attention to time-invariant single-input/single-
output (SISO) homogeneous systems of the form

(H )

where and . Let .
Assume that and are zero mean independent
random variables with finite and positive variances. The results
can be easily modified to treat more general systems (H)
with the assumption that all the basic random variables have
independent components.

Definition 4.1: The triple or the SISO discrete-
time system

( )

1) is said to be componentwise observable, if for any
, the initial state in the form

is observable;
2) is said to be output reachable from zero, if for

and any given, there is a control such that
for some .

The following lemma, whose proof is omitted here, follows
directly from well-known results in linear systems theory.

Lemma 4.2:The SISO linear discrete-time system
is componentwise observable if and only if no column of
the observability matrix is
identically zero. is output reachable from zero if only if
the row vector is not identically
zero.

Note that the usual observability and reachability (from
zero) condition for is a sufficient condition (not neces-
sary) for the componentwise observability and output reach-
ability we just defined. The next theorem is the main result
of this section.
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Theorem 4.3:For the system (H), a necessary and suffi-
cient condition for Statement B) given below to be true is that

and the system is both componentwise observable
and output reachable from zero.

Statement (B): If a linear (or affine linear) zero er-
ror/observation information filter exists so
that is independent of for all ,
then the basic random variables and

must be Gaussian for all .

Remark: If all the basic random variables are Gaussian,
then the Kalman filter is an affine linear zero error/observation
information filter, and Theorem 4.3 says that under the con-
ditions posed, the existence of a linear (affine linear) zero
error/observation filter is equivalent to the Gaussian as-
sumption on the system.

Before we begin the proof of this important theorem, some
technical results, stated as lemmas, are required. A key result
from statistics [28], Lemma 4.4 is presented next.

Lemma 4.4: Let be independent random
variables with positive and finite variances. If there are con-
stants for with for all
such that and are independent, then
is Gaussian for each .

A direct consequence of this Lemma is as follows.
Lemma 4.5: Given independent random variables
with positive and finite variances, suppose that there are

nonzero constants and with
such that

(41)

are independent, then must be Gaussian. However,
the distribution of can be arbitrary (unspecified).

Proof: Define .
Then, by the assumption of the lemma, we see thatand

are independent because is independent of both
and . From Lemma 4.4, we know
that must be Gaussian. Clearly, the distributions of

remain unspecified.
Lemma 4.6: Let be a matrix, and

let be the th column of . There is a row vector
such that for all if and only if

for all .
Proof (Necessity):Assume that for some . Then

for all . For sufficiency, assume that for
all . Consider that for any fixed, the relation
defines an -dimensional subspace in . Then, with

, the set has volume
zero, and we can always select such that
for all .

Now, we begin to prove Theorem 4.3. We do so by showing
a slightly more general result. With and the basic
random variables, and a linear function of , it is easy
to see that we have the following functional relationships for
all :

(42)

where all functions are linear in their arguments. It follows
that (a Taylor series expansion and linearity) we have (43), as
shown at the bottom of the page. If we represent the second
equation in (43) in a matrix form, we have

...
...

(44)
where

...
...

...

...

...

...

(45)

for all
Theorem 4.7:For any fixed, if there is a linear filter

such that is independent of , then

are Gaussian if and only if there exists
and such that

Componentwise

Componentwise (46)

and also

Componentwise,

(47)

(43)
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Proof: We show sufficiency first. Note that and
are independent if and only if and are independent
for all and . For the and given in the theorem, since

is independent of , it follows that and are
independent. However, from (43) and (44), we have

(48)

Equations (46) and (47) are equivalent to the fact that all the
coefficients inside on the right-hand side of (48) (except
those for ) are not zero. We conclude that

and are Gaussian from
Lemma 4.5.

For necessity, assume that for alland , (46) and (47) do
not hold. That is, for any and constant vectors, at least one
coefficient inside on the right-hand side of (48) is zero.
It is easy to see that this implies that there is a coefficient,
without loss of generality, say , that is zero for almost
all . This implies that is independent of . Then, by
Lemma 4.5, the distribution of can be arbitrary (even though

is independent of ).
At this stage, from Lemma 4.6, the necessary and sufficient

condition given in Theorem 4.7 is equivalent to the following
two conditions:

(C1)

and

(C2)
where in (C2), and is the
th standard basis vector for . Note that Condition (C2)

is equivalent to and the system is componentwise
observable and output reachable. Therefore, the necessity part
of Theorem 4.3 is proved. To show sufficiency, we prove the
following result.

Proposition 4.8: Assume that , and is both
componentwise observable and output reachable. Then, for the
Kalman filter and arbitrary but fixed, we have

for some
for some

for some

(C3)

Proof: Without loss of generality, we can assume that
all the basic random variables are Gaussian. (Otherwise, just
regard the notation as the orthogonal projection of

onto the Hilbert space , and change
“independent” to “uncorrelated” in the following proof, etc.
For a detailed account on the Hilbert space approach to the
filtering problem, see [25].) Note also that all random variables
involved are zero mean. We show the first equation in (C3)
next. Suppose that for all for some ,
say, . Since is
a linear function of its arguments, then is independent of

. Define a new system

(K)

where the initial state with a Gaussian
random variable independent of and . Let

and denote the error covariances of the Kalman
filter for (H ) and (K), respectively. Since is not a function
of , we have for any . We show next this
will lead to .

By linearity, we have

(49)

where is the information vector for (K)
and . It follows that

Since is independent of , this implies that
. Therefore,

and

(50)

Hence

(51)

From (49), we have . It follows that

(52)

Let be the innovation. Then

(53)

where and are independent. By a direct computation, we
have from (51)–(53)

(54)

Thus, if and only if

(55)

We shall show (55) implies that . Let us compute
(note that is a scalar). The

innovation can be computed as

(56)
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Since is independent of , we have

(57)

and

(58)

Then, (56)–(58) yields

(59)

It follows that

(60)

However, because is independent of , we have

(61)

Also, from the independence ofand , we have

(62)

Combining (60)–(62), we have

(63)

Using the matrix inversion lemma, with (the
invertability of is guaranteed by ) we obtain

(64)

From (63) and (64), we see that with sufficiently large,
the second term inside in (63) dominates. Because (55)
holds for all , this implies that this term must be zero for
all large, i.e.,

(65)
Since is positive definite, (65) is equivalent to

either or (66)

Using (66) for , we can easily conclude that

This contradicts the componentwise observability and proves
the first statement in (C3).

For the second equation in (C3), suppose that for all ,
for some , say . Define a new system

(K )

where and is defined as before, and
for . Then, by linearity, we have similar to (49) that for

all and with

(67)

Following the same arguments, with replaced by and
by , we obtain instead of (66)

either or
(68)

Using (68) for , we can easily conclude that
.

For the last equation in (C3), assume that for all
and for some , i.e., is independent of . Since

and is independent of all other random
variables and , this implies that is not a function of

. However, we have

where and are independent.
This implies that either

(69)

or

(70)
Equation (70) contradicts the componentwise observability and
output reachability, but (69) leads to , which contra-
dicts the output reachability. This shows the last equation in
(C3) and completes the proof.

Now, we continue with the proof of Theorem 4.3.
Proof of Theorem 4.3:Necessity follows directly from

Theorem 4.7 and (C2). For sufficiency, assume that and
is both componentwise observable and output reachable.

Note that for all is independent of by assumption.
For any arbitrarily given, select sufficiently large so
that (C3) holds and (C2) holds with . Then,
it follows that there exist and such that (48) holds with

and

Now applying Lemma 4.5, we conclude that and
must be Gaussian. Since are arbitrary, this proves that

and are Gaussian for all .
Next, we examine the linear inhomogeneous system. Define

the family of quasi-affine linearfilters associated with a
feedback control as

are real-valued matrices. (71)

Clearly, the Kalman filter is a quasi-affine linear filter for any
. Suppose that is the affine linear minimum error

entropy filter for the homogeneous system. Then, by Theorem
3.5, for any given, there is a filter such that (33)
and (34) hold. From (37), we know that this filter can be
taken as

where is the transformation such that . Since
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from (20), we can write with

. Then, we have

(72)

From (D), we see that both and are linear functions
of and . Hence, from (72), we see that is a quasi-
affine linear filter associated with if and only if is an
affine linear filter for the homogeneous system. Therefore, as
a consequence of Theorems 4.3 and 3.5 (or Corollary 3.6), we
have the following result.

Theorem 4.9:For the linear stochastic system

(L )

where and are independent
random vectors with independent components and .
A necessary and sufficient condition for the Statement (C)
given below to be true is that , and is
componentwise observable and output reachable.

Statement (C): If there is a feedback control and a
quasi-affine linear filter such that
is a zero error/observation information pair,
then the basic random vectors and

must be Gaussian for all .

Remark: The key idea of the above proof is that the
condition guarantees that for any fixed, there is
a such that is a function of so that will affect

in a nontrivial way. Similarly, the output reachability
condition guarantees that for anyfixed, there is a such that

is a (nontrivial) function of , and the componentwise
observability condition guarantees that each component
of the initial state will affect in a nontrivial way, for
some time instant . This idea can be directly applied to the
proof of the multivariable case where in (L), and
are all vectors, say, and such
that and have independent components. In this case,

and are matrices. Without giving
a detailed proof, we claim that the necessary and sufficient
condition for Statement (C) is: for each ,
is componentwise observable for some, and for any given,
there is a such that is output reachable. (Note that
the componentwise observability is well defined for in
an obvious way.)

V. EXAMPLE

In this section, we present an example to illustrate some of
the results presented in the previous sections.

Example: Consider the scalar linear stochastic system

(73)

where and are independent random variables with
the uniform distributions

(74)

Assume that are constants. By the results of
Section IV, to derive the optimal filter(s), we consider the

homogeneous system for (73)

(75)

For this simple system, and have the same distribution,
then we can consider the output equation

(76)

Here is an i.i.d. sequence of random variables
which are independent of . We derive different filters for
(75) next.

The Kalman Filter: Since all the random variables have
zero mean, the Kalman filter is the linear minimum mean-
square filter given by

where the are chosen so that the error covariance
is minimized. Since is indepen-

dent of , (76) yields

Thus, we see that for and ,
i.e.,

(77)

The Minimum Mean-Square Filter:The minimum mean-
square filter is given by

By the independence, it is easy to see that
. To determine , we have to

compute the conditional density function and then
carry out the integration. A direct computation yields, with

and

if
if
if

(78)

The Affine Linear Minimum Error Entropy Filter:Let
denote an affine linear filter.

Then, the error entropy is given by

(P5)

Since is independent of for , then
by (P6), we have

Hence, the affine linear minimum error entropy filter is given
by , where is chosen to



784 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 6, JUNE 1997

minimize the error entropy

(79)

The last equality follows the fact that and are inde-
pendent and has a symmetric distribution about zero. After
some manipulation with densities and entropy, it can be shown
that a global minimum is attained at and
the affine linear minimum mean-square filter is given by

(80)

From the above, we see that the (true) minimum mean-
square filter is a piecewise linear function of . In
the case when , we have

. That is, the Kalman filter, the minimum mean-square
filter, and the affine linear minimum entropy filter are the
same linear function of . To compare the performance of
these (optimal) filters according to different measures, we
have to compute the error covariance, the error entropy,
and the error/observation (mutual) information associated with
each of them. The computation is straightforward but tedious
and is omitted here. We present the results next. (Note that
the superscripts and indicate the Kalman filter, the
minimum mean-square filter, and the minimum error entropy
filter, respectively.)

For the error covariances, we have

(81)

For the error entropy, we have

(82)

It can be shown by direct computation that
. Then, from

for the error/observation information mea-
sures are given by

(83)

It can be shown that for any given, and ,

we have the relations

(84)

with equality if and only if , and

(85)

with equality if and only if .
From (84) and (85), we see that there is no affine linear zero

error/observation information filter. System (73) apparently
satisfies the condition of Theorem 4.9, and the basic random
variables are uniform rather than Gaussian. Also, we observe
that in terms of all performance measures, the (true) minimum
mean-square filter always has the best performance among
these three filters. For the error covariance, the Kalman filter
(the affine linear minimum mean-square filter) is superior to
the affine linear minimum error entropy filter. But, for the
error entropy (and error/observation information measures),
the affine linear minimum error entropy filter is superior
to the Kalman filter. Hence, we expect that there will be
conflict or competition among these measures. One may
ask whether or not there is a nonlinear filter for the
homogeneous system which will have a lower error entropy (or
error/observation) information measure when compared to the
(true) minimum mean-square filter, or what is the true min-
imum error/observation information filter? We are unable to
answer these questions so far. Some simulation evidence sug-
gests that for piecewise linear filters with one corner, no filter
will perform better than the minimum mean-square filter.

Finally, from (72) and (20), we see that for any feedback
control , the optimal filter(s) for the inhomogeneous
system (73), defined according to 1)–6) of Definition 2.1, is
given by

(86)

where is the (piecewise) linear function defined in (77),
(78), and (80) for respectively.

For a detailed discussion on systems with quantization and
the application of the framework developed in this work to
this class of systems, the readers are referred to [10].

VI. CONCLUDING REMARKS

A general framework for filtering and state estimation in
stochastic systems from an information theoretic point of
view is proposed in this paper. Linear stochastic systems
are studied in some detail, and it is shown that under some
reachability and observability conditions, the existence of an
affine linear zero error/observation filter for the homogeneous
system or a quasi-affine linear filter for the inhomogeneous
system is equivalent to having all the basic random variables
Gaussian. An example is given to illustrate some of the results
for linear stochastic systems. Reference [10] illustrates the
application of the proposed framework to quantized systems.
We observe that, in general, there is conflict and competition
between the different performance criteria that can be used to
design an estimator. For linear stochastic systems, we showed
that a feedback control strategy has no probing effect in
the sense of the mean-square error, the error entropy, and
the error/observation information measures. However, for a
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nonlinear system (e.g., the quantized system studied in [10]),
the choice of the feedback control can have a significant effect
on estimation in all of the senses considered in this paper.

For future research, there are many problems that need to
be studied. The first and most important one is constructing a
realization of the minimum error entropy filter, or a realization
of a suboptimal filter for a general linear stochastic system,
as a finite-dimensional dynamic system. We know that this
realization should reduce to the Kalman filter for LG systems.
Apparently, this will involve an entropy optimization problem.
Current results available in the literature may not be sufficient
to accomplish this task. One problem is that the orthogonality
condition which results in the Kalman filter is lacking. The
second interesting problem is to determine how far the results
developed in Section IV can be extended. In particular, under
what conditions does there exist a zero error/observation filter
for the general class of stochastic systems? A third problem is
to determine under what circumstances the (true) minimum
mean-square filter is actually the minimum error entropy
filter. We see that from the example given in Section V, the
(true) minimum mean-square filter associated with a feedback
control is actually the minimum error entropy and minimum
error/observation information filter associated with the same
control. Furthermore, the filtering error associated with the
minimum mean-square filter has a density function ,
which is a piecewise linear, even, nonincreasing function
centered at when . We wonder if this is the
reason why the filters are equivalent.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,”Trans. ASME, J. Basic Eng., Series 82D, pp. 35–45, Mar.
1960; reprinted in [7].

[2] R. E. Kalman and R. S. Bucy, “New results in linear filtering and
prediction theory,”Trans. ASME, J. Basic Eng., Series 83D, pp. 95–108,
Mar. 1961; reprinted in [7].

[3] Y. C. Ho and R. C. K. Lee, “A Bayesian approach to problems in
stochastic estimation and control,”IEEE Trans. Automat. Contr., vol.
AC-9, pp. 333–339, Oct. 1964; reprinted in [7].

[4] T. Kailath, “An innovation approach to least-sqaure estimation—Part I:
Linear filtering in additive white noise,”IEEE Trans. Automat. Contr.,
vol. AC-13, pp. 646–655, Dec. 1968; reprinted in [7].

[5] , “An innovation approach to least square estimation—Part II:
Linear smoothing in additive white noise,”IEEE Trans. Automat. Contr.,
vol. AC-13, pp. 655–660, Dec. 1968; reprinted in [7].

[6] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood
estimation of linear dynamic systems,”AIAA J., vol. 3, pp. 1445–1450,
Aug. 1965; reprinted in [7].

[7] H. W. Sorenson, Ed.,Kalman Filtering: Theory and Application. New
York: IEEE Press, 1985.

[8] , “Least square estimation: From Gauss to Kalman,”IEEE Spec-
trum, vol. 7, pp. 63–68, July 1970; reprinted in [7].

[9] B. E. Griffiths and K. A. Loparo, “Optimal control of jump-linear
Gaussian systems,”Int. J. Contr., vol. 43, no. 4, pp. 792–819.

[10] X. Feng and K. A. Loparo, “Active probing for information in con-
trol systems with quantized state measurements: A minimum entropy
approach,”IEEE Trans. Automat. Contr., vol. 41, pp. 216–238, Feb.
1997.

[11] H. L. Weidemann, “Entropy analysis of feedback control systems,” in
Adv. Contr. Syst., C. Leonodes, Ed. New York: Academic, 1969.

[12] H. L. Weidemann and E. B. Stear, “Entropy analysis of estimating
systems,”IEEE Trans. Inf. Theory, vol. 16, no. 3, pp. 264–270, 1970.

[13] G. N. Saridis, “Entropy formulation of optimal and adaptive control,”
IEEE Trans. Automat. Contr., vol. 33, no. 8, pp. 713–721, 1988.

[14] J. Zaborszky, “An information theory viewpoint for the general iden-
tification problem,” IEEE Trans. Automat. Contr., vol. 11, no. 1, pp.
130–131, 1966.

[15] Y. A Tsai, F. A. Casiello, and K. A. Loparo, “Discrete time entropy
formulation of optimal and adaptive control problem,”IEEE Trans.
Automat. Contr., vol. 37, no. 7, pp. 1083–1087, 1992.

[16] F. A. Casiello and K. A. Loparo,Entropy Interpretation of Active and
Passive Learning Controllers, submitted for publication.

[17] P. Kalata and R. Priemer, “Linear prediction, filtering and smoothing:
An information theoretic approach,”Inf. Sci., vol. 17, pp. 1–14, 1979.

[18] Y. Tomita, S. Omatu, and T. Soeda, “An application of the information
theory to filtering problem,”Inf. Sci., vol. 11, pp. 13–27, 1976.

[19] , “Information theoretical optimal smoothing estimation,”Inf. Sci.,
vol. 22, pp. 201–215, 1980.

[20] R. S. Bucy, “Information and filtering,”Inf. Sci., vol. 18, pp. 179–187,
1979.

[21] E. T. Jaynes, “Information theory and statistical mechanics,”Phys. Rev.,
vol. 106, no. 4, pp. 620–630, 1957.

[22] P. R. Kumar and P. Varaiya,Stochastic Systems. Englewood Cliffs,
NJ: Prentice Hall, 1986.

[23] A. A. Feldbaum, Optimal Control Systems. New York: Academic,
1965.

[24] G. N. Saridis,Self-Organizing Control of Stochastic Systems. New
York: Marcel Dekker, 1977.

[25] D. G. Luenberger,Optimization by Vector Space Methods. New York:
Wiley, 1969.

[26] R. G. Gallager,Information Theory and Reliable Communication. New
York: Wiley, 1968.

[27] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[28] S. G. Ghurye and I. Olkin, “A characterization of the multivariable
normal distribution,”Ann. Math. Statist., vol. 33, pp. 533–541, 1962.

[29] C. E. Shannon, “Extracting state information from a quantized output
record,” Syst. Contr. Lett., vol. 13, pp. 365–372, 1989.

[30] D. F. Delchamps, “A mathematical theory of communication,”Bell Syst.
Tech. J., vol. 27, pp. 379–423, 623–656, 1948.

[31] , “Controlling the flow of information in feedback systems with
measurement quantization,” inProc. 28th IEEE Conf. Decision Contr.,
Tampa, FL, Dec. 1989, pp. 2355–2360.

[32] R. M. Gray, Entropy and Information Theory. New York: Springer-
Verlag, 1990.

Xiangbo Feng, for a photograph and biography, see p. 238 of the February
1997 issue of this TRANSACTIONS.

Kenneth A. Loparo (S’75–M’77–SM’89), for a photograph and biography,
see p. 238 of the February 1997 issue of this TRANSACTIONS.

Yuguang Fang (S’92–M’94) received the B.S. and
M.S. degrees in mathematics from Qufu Normal
University, Shandong, The People’s Republic of
China, in 1984 and 1987, respectively, and the Ph.D.
degree in systems, control and industrial engineering
from Case Western Reserve University, Cleveland,
OH, in 1994.

From 1987 to 1988, he held research and teaching
positions in both the Mathematics Department and
the Institute of Automation at Qufu Normal Univer-
sity. From 1989 to 1993, he was a Teaching and

Research Assistant in the Department of Systems, Control and Industrial
Engineering at Case Western Reserve University, where he became a Research
Associate from January 1994 to May 1994. He was a Post-Doctoral Research
Associate in the Department of Electrical and Computer Engineering at Boston
University from 1994 to 1996. He is now completing his Ph.D. requirements in
wireless and mobile communications networks. His research interests include
wireless and mobile communications and networking, personal communi-
cations services (PCS), stochastic and adaptive systems, hybrid systems in
integrated communications and controls, robust stability and control, nonlinear
dynamical systems, and neural networks.


