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Optimal State Estimation for Stochastic Systems:
An Information Theoretic Approach

Xiangbo Feng, Kenneth A. Lopar&enior Member, IEEEand Yuguang Fangviember, IEEE

Abstract—In this paper, we examine the problem of optimal theory [10]-{20]. Recently, Saridis [13] proposed a general
state estimation or filtering in stochastic systems using an ap- conceptual framework for stochastic and adaptive control
proach based on information theoretic measures. In this setting, problems using Jaynes maximum entropy principle [21]; this

the traditional minimum mean-square measure is compared with K id . . . f f
information theoretic measures, Kalman filtering theory is re- WOrK provides a nice Interpretation for many performance

examined, and some new interpretations are offered. We show Criteria and control algorithms.
that for a linear Gaussian system, the Kalman filter is the optimal It is well known that except for LG systems (and/or linear
filter not only for the mean-square error measure, but for several systems with a quadratic cost), the stochastic optimal control

information theoretic measures which are introduced in this o
work. For nonlinear systems, these same measures generally areprObIem is in general a dual control problem [23], [24],

in conflict with each other, and the feedback control policy has and an optima! feedback control hgs two differlent, usually
a dual role with regard to regulation and estimation. For linear ~conflicting, attributes known agrobing (or learning and
stochastic systems with general noise processes, a lower bound omegulating A general solution to such dual control problems
the achievable mutual information between the estimation error p5¢ yet to be found. The probing aspect of a feedback control

and the observation are derived. The properties of an optimal . - .
(probing) control law and the associated optimal filter, which is critical in the dual control problem. We expect that a

achieve this lower bound, and their relationships are investigated. Petter understanding of how the control will effect the way
It is shown that for a linear stochastic system with an affine the system performs the learning or probing for uncertainties

linear filter for the homogeneous system, under some reachability will provide more insight into the final solution of the dual
and observability conditions, zero mutual information between control problem. In this paper, we study the state estimation
estimation error and observations can be achieved only when the bl d h. bi ff' f a feedback |
system is Gaussian. problem an _t e probing e e_cts of a feedbac _contro on
state estimation. We use an information theoretic approach
and illustrate the distinquishing features of an LG system
that enable solutions to certain control problems for these
systems to be obtained. We also investigate some interesting
I. INTRODUCTION properties for the information theoretic measures introduced.

SIGNIFICANT research effort has been devoted to thé particular, for linear stochastic systems, we shall show that
problem of state estimation for stochastic systems. Féfte entropy measures introduced in this work enjoy the same
lowing the classical work of Gauss on least squares estimatigifariance properties as the mean-square error. A lower bound
and the modern day approach introduced by Kalman [1], [2] the attainable mutual information between the estimation
and investigated by other researchers [3]—[7], there have b&fpr and observation processes among all admissible controls
intensive studies on least squares estimation. When appl@t§l filters is established for linear stochastic systems. We
to stochastic control systems, Kalman filtering theory alg®njecture that under some weak conditions this bound is zero
provides a tool for solving control problems, especially thié and only if the system is Gaussian. We partially justify this
stochastic optimal control problem for linear Gaussian (L&pnjecture in Section IV by showing that it is true for systems
systems where a separation principle holds. with a linear affine filter for the homogeneous system. An
On the other hand, information theory developed by Shaéxample is given to illustrate some of the main results of
non [29] laid down a concrete mathematical framework féhe paper. The paper is organized as follows. In Section II
communication systems. Shannon’s entropy has found caifter a brief survey of the existing results, we formulate the
siderable applications in many other fields. Recognizing tigeneral estimation problem for nonlinear stochastic systems
many similarities between state estimation and communida- an information theoretic framework. In Section Ill, we
tion systems, many researchers have attempted to make elt@blish some important properties of the optimal filter for
connection between estimation/control theory and informatidinear systems. In Section IV, for linear systems with an
Manuscript received July 29, 1993. Recommended by Associate Editarf-rlne linear filter for t.he homoggneous .SyStem’ we prove
W. S. Wong. This work was supported in part by the Ford Motor Compan} /@t ZEro error/observation mutual information can be achieved
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[I. ENTROPY AND THE GENERAL ESTIMATION for the joint estimation of state and the unknown parameter;
PROBLEM WITH ACTIVE PROBING however, the dynamic programming approach does not lead
to a closed-form analytical solution for the optimal control.
The cost-to-go involves three terms: one for regulation, one
{-Tk+l = ap(p, uk, wr), k>0 (N) for probing (estimation), and one for equivocation. Due to the
Yk = br(r, vi) conflicting nature of each of these cost terms, it is expected
where in (N),z;, € R™ is the system statay, € U ¢ R™ that an inferior solution to this “multiobjective” optimization
is the control variable, and;, € R? is the output.U C problem should provide a reasonable solution to the problem.
R™ denotes the admissible control set. The sequences!®yspite of the developments of control design using quadratic
independent random vectofs;, € R : k = 0,1,---} and COSt functionals for LG systems, the computational difficulties
{vp €ER?: k=0,1,---} model the driving and measuremen®f dual control problems suggest that the traditional quadratic
noise processes, respectively. We assume that the basic ranf@84 functionals may not be the best criteria to use in the
variables zo, w;, and v;, defined on a probability spacesynthesis of feedback control policies for general classes of
(Q, F, P), are independent with finite covariance matrice§tochastic systems.
Yo, Qi, and R; for all 4,5 > 0. For a random vectog Information theory has revolutionized communication and
defined on(€), I, P), 0{¢} C F is the o-algebra generated coding theory and has had significant applications in other
by £&. Vi = {vo,51, -,y } is the observation (information) fields like statistics, physics, economics, and computer science.
vector at timek, and a feedback control is a sequence= A marriage between information and control theory may
{g0,91,- -, } of measurable functions withy, = g, () € U. Provide better insight and understanding of many complicated
Let G denote the collection of all feedback controls. A filtefontrol problems. Several researchers have developed some
is a sequence = {fo, f1,---} of measurable functions with Important results [10]-[14], [17]-[20]. In particular, Saridis

i = fr(Vk) € R™ the estimate of the state, based or,. [13] has given an entropy formulation of optimal and adaptive
Let F denote the collection of all filters. control problems and has interpreted the dual effect in terms of

Our objective is to design a feedback contrpl € G information theoretic measures. In [11] and [12], Weidemann
and a filter f € F in a certain optimal fashion and toand Stear studied estimation and feedback control systems and
study the relationship betweepn and f. Although the least analyzed various information quantities associated with such
squares family of estimators has been extensively studi@dSystem. Kalata and Priemer [17] and Tongtaal. [18], [19]
most notably, the minimum mean-square estimator for L&bsequently investigated prediction, filtering, and smoothing
systems and extensions to affine linear minimum mean-squifeblems for signals generated by an LG system and showed
estimators for general linear systems, few researchers h#y@t the Kalman filter minimizes the mutual information be-
asked the questions: Is it possible to go beyond the tra@ieen the estimation error and observation process as well as
tional approaches? If so, what is an appropriate framewdfke error entropy. A study of the optimal dual control problem
for estimation, a criteria for optimality, and what is thdor linear stochastic systems with parameter uncertainty using
relationship to control system design? This paper proposeS&idis’ formulation is presented in [15] and [16]. Before
framework for state estimation, develops performance index@&senting a generalization of the setup presented in [10]
for state estimation using information theoretic concepts, afftf the problem of synthesizing a probing feedback control
investigates the intimate relationship between the design of @gsociated with a filtering problem, some elementary results
optimal filter and a feedback control for the system. from information theory are discussed. A detailed account

Kalman filtering theory [1]-[8] revolutionized the classicaPf information theory and its contribution to communication
least squares method and also provided a methodology fagory and applications are presented in [26] and [27].
solving certain control problems, in particular, the stochastic An essential notion of Shannon’s information theory is
optimal control problem for LG systems where a separatidftropy, including conditional entropy and mutual information.
principle holds. For general classes of stochastic systems, ki random variableg and# given, the(differential) entropy
difficulty in determining an optimal control and filter is imme-2(&) of £ and thejoint (differential) entropyi(€,n) of (£, 7)
diately apparent, even for a linear non-Gaussian system witd& defined as
guadratic cost functional. Even though a separation principle

Consider the nonlinear stochastic system

holds for this case and the optimal filter is the (true) minimum
mean-square filter, it is generally not that the Kalman filter h(&) = /pf(w) log(1/pe()) dx
and recursive finite-dimensional realizations of this optimal
filter are unknown. Further, complications result from the dual == /Pf(x) log(pe(x)) d

concept of a feedback control law introduced by Feldbaum

[23]. Researchers have devoted a significant effort to studying ~ 2(§,7) = /pfn(%y) log(1/pey(z,y)) dx dy

the dual optimal control problem, and even though many

meaningful results have been obtained, an optimal solution = —/pgn(aj,y) log(pen(x,y)) dz dy @
to the problem is unknown. Consider, for example, an LG

system with unknown parameters in the system matrix taking

values from a finite discrete set and a quadratic cost functionaherep, (+) andpg,(x, v) are the (joint) density functions &f
It is shown [9] that a finite-dimensional nonlinear filter existand(¢, n), respectively. Likewise, theonditional (differential)
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entropy of £ given n is defined as

he | ) = / / Petnle | )1og(pep(a | ) dudy — (2)  ©

wherepy |, (x | y) is the conditional density function. Another
important concept is thenutual informationi (£;n) of (¢,7),
which is defined as

I(¢; )—/pan(w y)lo gM

pe(@)py(y)

Roughly speaking, the differential entropy(¢) measures

dz dy. 3)

the dispersion of the random variabfe The smaller the Fig. 1.

differential entropyh(¢), the more concentrated the density
function of £&. Becauseh(¢) is not invariant with respect
to a bijective transformation, it is usually not a measure of
information. However, the nonnegative quaniity; ), which

is invariant with respect to a bijective transformation, is a
guantitative measure of the mutual information find 7.
The following properties [which we will refer to as Property

(P)] can be easily proved. 2)

(P1) h(&,m) = h(&)+h(n | &) = h(m)+h(£ | n) = h(n, ).

(P2) I(&;m) = I(m;€) = h(&§) + h(n) = h(&,m) = O with
equality iff £, independent.

(P3) h(&+ f(mIn) = h(&|n), for any measurable function
f (P)

(P4) h(¢§ [ m) = h(&] Q). if o{n} = o{C}. h(& | n) = h(£)
iff £,n independent.

(P5) h(§+c) =1(E), I(§+cm) = 1(&m), h(E[n+e)=  3)

h(¢ | n), for any constant.

(P6) h(&+mn) > max{h(&), h(n)}, if & n independent.
References [26] and [27] provide a detailed account of these
properties and their interpretation in information theory.

A general framework for state estimation (filtering) in terms
of the information theoretic measures defined in (1)—(3) is
provided next. For a feedback contipk G given, the closed-
loop quantities, like the state,, the outputy,, and the control
ug, are random variables which depend gnWe shall use
the notationzy, y;, andwj to signify this fact. Similarly, the
superscriptf indicates that the estimai#’ 7/ also depends on
f. Let#9d = 2¢ — 297 denote the filtering error. A diagram
for the comblned esnmauon/control can be represented as in
Fig. 1. 5)

In Fig. 1,b(-, -) denotes the output (or sensor) channel with
output functiony;, and measurement noisg, and f(-) denotes
the filter. The objective is to desigfi and g so that a certain
optimal estimate:¥”/ is obtained. Note that the estimait&”’
and the errorf:i’f depend on the selections of both the filfer
and the feedback controller This is a simple indication of the
dual property of the contrgf. To make this relationship more
precise, we define the following types of optimal estimators
and optimal (probing) control laws in terms of some useful
information theoretic measures.

Definition 2.1: Consider the stochastic system (N) and the
estimation/control configuration given in Fig. 1.

1) For g € G given, we callf, € F the minimum mean-

square estimatofof x; based on)), if fg € F min-
imizes the mean-square err@{”f(a?k) = E{||~gf|| }
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Estimation/control system configuration.

for all £ > 0, i.e.,,
inf 097 (&)

= () = jng

it B{[#]}

O'g fg xk

For ¢ € G given, we call fg € F the minimum

error/observation information estimatofof xj given

i, if fg € F minimizes the mutual information
I(#7; Y9) between the information vectd?? and the
estimation errotzy’ S for all k >0, i.e.,

Lk 0) = (o 0).

For g € G given, we callfg € F the minimum error
entropy estimatofof = given)Y), if fg € F minimizes
the error (differential) entropﬁ(f:i’f ) of the estimation
error #7/ for all k > 0, i.e.,

AT = i h(a).

) We callg* € G theoptimal probing control in the mean-

square sensand f* € F the minimum mean-square
estimator, if for allk > 0

B{||lzg )"} =

Clearly, f* is the minimum mean-square estimator as-
sociated withg*; refer to 1) above.

We call g#* € G the optimal probing control in the
error/observation information senseand f# < F the
minimum error/observation information estimator, if for
alk > 0

IEARIN 4

~9.f
nf_B{jap|).

I(”’k 7yk)

inf
geG,fEF

Clearly, f# is the minimum error/observation informa-
tion estimator associated wi¥; refer to 2) above.

6) We callg” ¢ G the optimal probing control in the error

entropy sensand f% € F the minimum error entropy
estimator, if for allk > 0
) = inf

%:f%

h(&,

Clearly, f% is the minimum error entropy estimator
associated withy”; refer to 3) above.
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7) We callg® € G theoptimal probing control in the sensorlaw g € G. The pair (g, f,) for any g € G is also optimal
channel transmittance sensé ¢ maximizes thesensor in all senses 4)-6), and € G has no probing effect. This

channel transmittancé(z;; V7)) for all k > 0, i.e., can be considered as an equivalent statement of a separation
& gt 9 g principle for the linear-quadratic-Gaussian (LQG) problem.
I(zg ;%) :iggf(xk?yk)- In general, for nonlinear systems a feedback control law

. € G does have an influence on state estimation, and the
We shall call(g*, f*) the minimum mean-square (Controéolutions to any of the above optimal (probing) estimation
and filper) pair, 6%, %) the minimum error/observation pair’problems defined by 1)-6) remain unknown. Before going
and @%,#f%z the minimum error entropy pair. In particularnty further analysis, we comment on the sensor channel
when 19777 (&,,)%) = 0, the minimum error/observation transmittancel (+7; J¢) [11], which is a quantity that only
information pair (¢%, f#) is referred to as the zero er-gepends on the senséf-,-) and the feedback law € G.
ror/observation information pair. We assume that all informaeqgy 3 fixed sensdi(-, -), the data-processing inequality [32, p.
tion theoretic quantities, like entropy and mutual informatiorpg) yieldssup ;. I(xi%ffi’f) < I(zf;)9), for any g € G.
are well defined and that the indicated infimum and supreMufRerefore,l(x; J)¢) provides an upper bound on the amount
are achievable (the optimal performance measures can, h@information that can be extracted from the observations by
ever, take extended real values). Next, we comment on Hejjter f. Intuitively, the synthesis of a probing contrgle G
probing effect of a feedback contrgl should maximizel (z{; V¥) so that the maximum amount of
The probing effect of a controj can be defined as thejnformation about:? is obtained from)? through the design
influence that control actions have on estimation. This wWi§t the filter f. If we regard the sensor as a communication
be quantified by a certain performance measure defined &){anneLsup co I(x3; V) can be interpreted as the channel
estimation. To be more precise, suppose tR&t (i) is a capacity. 9=
performance measure for estimation, which we would like to Remark: To simplify notation, we will use the superscripts
minimize. We will sayg € G has no probing effect [with «» 3nd “* on variables and functionals of variables to denote
respect toP*/(iy)], if for any g € G, there exists a filter the dependence on the choice of the feedbackdawg and
fy € F such thatP%/s is the global minimum defined by he filter f € . For exampIeE{||a~:%f||2} and B9/ {|| 212}

infgeg, rer P9/ (&1). This probing effect ofg is the same poth denote the mean-square error of the filter associated with
probing or learning effect as in the dual control problem. he giveng € G and f € F.

The concept of the minimum mean-square estimafpr  The synthesis of a probing contrgl requires maximizing
associated with a feedback contipk G is well known. For ihe sensor channel transmittance
(N), we havef,(JY) = E{zf | Y?}. In particular, for LG
systems, i.e., for (N) withu (z, v, w) = Axz + Bru + Grw, sup I9(z; Vi) = sup[h?(zx) — h9(zx | V)] (4)
bi(z,v) = O+ Hyv, andzo, w;, vy, Gaussiany, is realized 9cd ged
by the Kalman filter. It is also well known that in thisand minimizing the error/observation (mutual) information
case the error covariance matrik,; is independent of the ) Fra

inf 197 (Zx; Vr)

selection ofg, and thereforeg has no probing effect. As geG, feF

mentioned previougly, the quantiﬂ(izi’f;'y,{f).z 0 measures — inf (A7 (@n) — A0 (E )]

the mutual information between the estimation eti‘@f and 9EG,fEF

the information vectory?. I(#%/;)9) = 0 if and only if ) inr [T = W | V). 5)
# is independent opY and therefore can be regarded as a 96, fex

measure of the dependence betwé%ﬁ and)y{. Minimizing  Thus, from (4), selecy € G to minimize h9(zy, | Vi), while
this measure can lead to better estimation. Again, for &om (5), selecty € G to maximizeh9(zy | Vi). Therefore,
LG system, it is well known that the minimum mean-squar@) and (5) are in conflict, and one approach is to maximize
estimation erron?i’fg is independent oy} for anyg € G, and the difference, i.e.,

as a consequencg € G has no probing effect in this sense g, def g afin

as well. If the mutual informatiod (9-s, J¥) = 0, then the QEZUJPUW = Jax [I9(wi; i) = 197255 )] (6)
minimum mean-square estimatgy extracts all the relevant -
information aboutz? from the observation)y. The error From (4) and (5)

(differential) entropy measurie(i:%f) measures the dispersion Wl — 9z Vi) — Ig,f(a;k.yk) = h9(zy) — hg,f(jjk)
of the estimation_erroﬁi’f , and for an LG system it can be 7 7

shown thath(27?) = alogdetXy, + 4, wherea and 3 and (6) is equivalent to

are constants antl,;. is the error covariance matrix. Hence, sup W9 = sup [I9(wr; Vi) — 197 (Gr; Vo)
the Kalman filter f, also minimizes the error (differential) gEG,.fEF g€G,fEF

entropy measureh(i:i’f) for any g € G, and the controly = sup [h9(zw) — B9 (@) 7)
has no probing effect in this sense as well. We conclude that geG . fEF

for LG systems, the Kalman filtef, is optimal in all senses The constant¥’#-/ is referred to as thentropy performance

1)-3), and the optimal costB{||z7 |12}, I(z0:7;¢) = 0, indexof the filter channel because it measures the reduction
and h(a?i’fg) are independent of the choice of the feedbadlor difference) between the differential entropy of the input
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to the channeky, h9(x;), and the differential entropy of the b) Given Assumption A)For anyg € G given, there is

output from the channeﬁ’f, hof(iy); see Fig. 1. Next, we a filter f, € F such thatl9/s(#;;)}) = 0. That is,
show thatWw¢:/ > 0 for all “nontrivial” filters f. Because for any g € G, the zero error/observation information
the mutual information is nonnegativéy9-f < I9(xy; Vi) filter f, € F exists and the estimation err@i’f‘? is
for all g and f if the filter f = {fo, f1-++, fx -~} is @ given independent oQi,_{f. . _
deterministic sequencé, = «y, which is referred to as a Then, the minimum mean-square filt¢y associated
constant filter then with ¢ € G is such a filterf,, i.e., (g, fggy, forms a zero
error/observation information pair. Let® satis
h9(ay) = h9I (F + ag) = B9 (&) 8 parr. Let € ¢ Y
g% _inf Y
It follows that W9/ = 0. Thus, a reasonable choice of a W (x| D) _;Ielf;h (@ | Vi) (10)
filter should make the mutual information differendés-/ = % 7 N . )
19(z1; Vi) — 199 (F1; Vi) nonnegative. Indeed, in the LG then (97, f,») is the minimum error entropy pair. Let
case, the Kalman filtef gives W9/ = I9(zz; )3) > 0. A g® € G be the optimal probing control in the sensor
filter f € F is called anontrivial filter associated withy, if channel transmittance sense, thed, f,s) maximizes
W9/ > 0. Becausei?’ = f;,()?) is a measurable function the entropy performance indé -/ with
9 ivial fi sz
of V¢, for a nontrivial filter W ls = sup WO =sup Iz V). (12)
hg(a:k) > hg’f(izk) > hg’f(izk | yk) - hg(a:k | yk)_ (9) 9€G,.feF geg

This inequality is important because it relates the three differ- Proof: We show a) first. Ley € G be a fixed feedback

9.fs _ F gy _— i
ential entropies in (9) that are the quantities to be optimiz&?mml' The fact thatt;, o f’“(yk;) = By | y’“}. IS the
in (4), (5), and (7) minimum mean-square estimator is well known. Wjtfixed,

An optimal probing contro € G simultaneously optimizes for any f € ¥, we have

(4) and (5) with appropriately defined filters. If a solution ex- 197 (F; Vi) = B9 (1) = B9 (F0 | D)
ists, we say that the optimal probing control is nonconflicting. (P3) 4 /)
For an LG system ="hON (@) = (@ | V).

The next statement of a) follows directly. For b), given that
Assumption A) holds, we first show that the minimum mean-
square filterf, associated with @ € G is such a filterf,.
Consider that

jji,fg =B | W} = E{f:i’f" +57Z’fg | yiz}
independent basic random variables, because there is no dual — Ai:fg + E{izi’fg | V7L = f:i’f" + E{jji:fg} (a.s.)
effect, there is no conflict for any € G, and the Kalman (12)
filter f, simultaneously optimizes all criteria. However, for a
g_er_1era| nonlinear stochastic system, this problem is extrem@foliows that izi’fg _ aéi’fg + ci’f" with ci’f" a constant.
difficult, and no general answers have been obtained to d Bus. 7970 | . g o

us, #;/’¢ is also independent o) and f, is a zero

Some preliminary results for this problem are presented in this N ) i . .

. . . error/observation information filter associated wighe G.

paper. In particular, we shall show in the next section that fﬂow with 197 (G Vh) = 19:Ts (@) — ho(ax | Vi) = 0

a linear (non-Gaussian) system, there exists a single probjng a’my P i’,:’ isk ea_sy o se’:a thaty'" kf )kis Hlso
’ ) g%

control which is optimal for all the measures defined. This e minimum error entro air. Similarly. withvo-f —
not true for general nonlinear systems. Py pair. Y, -

Before concluding this section, we derive some generéi(xk;yk) — 197 (ix; D) for any g € g$an_df < ]: 'F IS
results for the nonlinear system (N) using an assumption whi RSY to see that under Assumpt}on A, fy5) maximizes
is similar to the one adopted by several researchers [11], [1 ,e entropy performance md_@i{g: and (11) 0h0|ds' g
[17]-[19]. This assumption makes the probing effect gof 'F‘ Theorem 2.2, the probing control laws® and ¢* are
partially nonconflicting. In Section IV, we shall show that thi§JIefIneOI by
restrictive assumption, under a reachability and observability hg%(xk | Vi) = inf h9(zx | Vi) (13)
condition, is equivalent to the Gaussian assumption on the 589
basic random variables for a linear stochastic system, given, gy
linear affine filter for the homogeneous system. .

Theorem 2.2:Consider the nonlinear stochastic system (NYY (zx; Vi) = sup I9(zx; Vi) = sup[h¥(zx) — h9(zs | Vi)]

with the filtering configuration shown in Fig. 1. 9ee 9ee (14)

a) Letg € G be fixed. Then, the minimum mean-squargespectively. Given Assumption A), these two optimal probing
estimatorf, = {fo. f1,+--}is given byj:i’fg = E9{z; | control laws are not necessarily conflicting. We shall show
Vi }. Furthermore, the minimum error/observation intater that for a linear stochastic system, even without Assump-
formation filter f, is equivalent to the minimum errortion A), a single feedback contrgf* € G can be selected
entropy filterfg. which is optimal in all senses defined earlier.

{-Tk+1 = Apz + Brug + Grwy (LG)

yr = Crax + Hyvg
with
X0 NN(.TZQ,EQ), wW; NN(O,QZ), 2 NN(O,RJ)
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Although Assumption A) is restrictive, it is also intuitive with fg areE{Hj;i’ng?} = tr(2k|k). ](5;i’fg;yg) =0,
from an information theory perspective since for ang ¢ and h(a?i’f) = alogdet(Sy) + 4, which are all
glgven, the filterf, extractsgall theinecessary information about independent of the selection gfe G. Herea > 0 and
zj from the observationg{. In this case, the contrgf sends /3 are constants anbly,. is the error covariance matrix
the largest amount of information abatif to the observation £ 2955 (which is ind dent Theref
Y for a given sensor configuration, and eiti’(@ﬁ,f s) or of ;"% (which is independent 0 € g)_. eretore,

g for any feedback control law € G, the pair(g, f;) is

(9°: fo2) |s_the opﬂr_nal control and filter pair i x 7 in _terms . the optimal control and filter pair in the senses defined
of mutual information. For an LG system, Assumption A) is . . -
in 4)-6) in Definition 2.1.

satisfied withf, = f;, the Kalman filter. We show in the next ii) For any g € G
section that for a general linear stochastic systefty;. | Vi) Y9

is actually independent af € G. Thus,¢® is the control which 9.9 — W9So(5,) — 9N _ 1 (29:fs
maximizesh?(zy), i.e., the feedback control which maximizes Haks ) =W g (20) = h(af) —h(@7)

the dispersion of the state. This is a very naive solution from = h(a}) = (alogdet(Xye) + ).

a signal detection perspective. One may ask: Can Assumption  Also. there exists @ € G such thath(z?) = v +
A) hold for a linear system without the Gaussian assumption? nlogdet(Sy) with > 0 and~ constants and;, the

We conjecture that in general the answer is no, although we  gq|ution of the matrix equation
do not have a definitive proof. _ _ B
Ypa1 = A Ap + GGy, Yo =2X.  (16)

Ill. FILTERING IN LINEAR STOCHASTIC SYSTEMS Therefore, iy, Ay, Gx, andQy, are such tha[ﬂet(ik)

A general framework for filtering and state estimation was goes to+oo ask tends to+oo, then, the sensor channel
proposed, and an appealing but restrictive assumption, satisfied transmittance (or capacity) tends e ask goes to
by an LG system which guarantees that the probing control is  +oc.
nonconflicting for a general nonlinear system, was presented. proof: For any feedback control law € G, it is
In the next section it is shown that for a linear stochastigell known [22, pp. 93-104] that for the LG system, the
system with an affine linear filter for the homogeneous systeRaiman filter fy = {fo,f1,---} is the minimum mean-
Assumption A) is equivalent to the Gaussian assumption, Whuare estimator, and the filter is given by the conditional
der some reachability and observability conditions. Thereforgean (YY) = E{«9 | Y¢}. Also, the error covariance
we expect that in general there is no zero error/observati f.

pair (¢%, f%) for linear non-Gaussian systems, i.e., there Rde : - s :
. pendent of the selection @f This shows thaf, is optimal
no feedback controly € ¢ and filter f € 7 such that ;, 0 gonge 1) of Definition 2.1. It is also known that the

9. (5, - — i . :
L2 Vo) = 0. The question then becomes: What Is thg oo, erroe?"’* is independent o and is distributed
lower bound 19 /" (#;;)%) > 0 for the error/observation ) i 0. Fs g
information measurés/ (;; Vi), and how do we characterize2cc0rding to]\iEIO}EkLk). Then, it follows that/(z;"*; V) =
the pair (g%, f¥)? In this section, we study linear stochasti€- Becausel(zy'; ;) > 0 for any f € F, this shows that
systems defined by fg is optimal in the sense of 2). Far € G fixed, by 1) of

Theorem 2.2, we know thaf, is also the minimum error
(L) entropy filter associated witin Sincea?i’fg ~ N(0, Xpk), we
have by direct computation

Afhtrix Tk = Cov(a?i’fg) can be computed off-line and is

{xi—i—l = Aka:i + Bkui + Grwy,

where in (L), the independent basic random variablgs= YA )
xo,w;, andv; are assumed to have the first- and second-order h(xk ) = alogdet(Zy) + (17)
statistics for somea > 0 and 8 constants. The fact that for amye G,
E{zo} = Zo, 0 < Cov(xo) = o < 400 the pair (g, f,) is optimal for any measures of 4)-6) is a
direct consequence of the fact tha; is independent of the
E{wi} =0, 0 < Cov(w;) = Qi < +0 selection ofg € G. This proves i). For ii), by the independence
E{v;} =0, 0 < Cov(vj) =Rj <400 (15) (of aéi’fg, and J{, we have from (P3) and (P4) that for any

for all 4,5 > 0. In (L), the superscripy is used to signify the 9€46

fact that all closed-loop variables depend on the selection Off’(a:i;yfj) = h(2?) — h(ad | V) = h(2d) — h(i:i’f" | V9)
feedback control law:] = g (7). Here, VY = {y3,v{, -} o f S
is the measurement (information) vector. Whepw;, andwv; h(zf) — h(E077) = W (3,)
are Gaussian, (L) is an LG system. We begin by examining the = W) — (alogdet(Xyx) + ). (18)
Kalman filter f, for an LG system in the present framework.

Proposition 3.1: Consider an LG system. Lef, = {f;,, Now takeg as an open-loop control, i.ej,= {ug,u1, -} a
fl---,fk---} be the Kalman filter, i.e"%i,fg _ fk(y,i) deterministic sequence. Then, the state proa:%ss Gaussian

— E{«? | J7}. Then we have the following. with distribution N (z,, %1 ). HereX,, satisfies (16). Therefore,

k we obtain
i) fyis the optimal filter in the senses 1)-3) given in Def-

inition 2.1. Furthermore, the optimal costs associated h(zf) = v+ nlogdet(Ey) (19)
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with v > 0 and 5 constants. Thus, iflet(3;) goes to+oo, Proposition 3.3: For the linear system (L), we have the
(18) and (19) imply that/(zf; YY) will go to +o0o as well. following.
This completes the proof. O 1) Foranyg € Gandf € F

Proposition 3.1 states that for an LG system, the control law
g € G has no probing effect in any of the above senses, and 91 g 9 f 1 g
the zero error/observation information pair is defined via the h(xk | yk) = h(xk’ | yk) = bk | Vi) (22)
Kalman filter. This is another explanation for the separation
principle which holds for LG systems. For general linear Note that the conditional differential entropyxz;, | Vi)
stochastic systems, it is known that the (true) minimum mean-  js associated with the “homogeneous” system (H) and

square filterf, associated witty € G (which may not be the therefore is independent of the selectiongodnd f.
Kalman filter for non-Gaussian systems) also makes the errop) For anyg, § € g and f € F given, there is Qf cF
covariance matrix independent of the selectiory.dflowever, such thath(i? ) h(i )

fg may not be optimal in other senses. Another observation
is that infinite sensor channel transmittance corresponds toy
infinite channel capacity of an ideal Gaussian channel withg
power limitation. From the state detection perspective, t?%

Proof For 1), letg € G and f € F be given. Since
— fe())), the equalityh(zf, | V{) = h(&y” | V§)
Iows from (P3). Since from (20), we have(z7, | Y9 =
Iy + x| Vi) and zj is a measurable function ¥y
rom (D), we haveh(z; | V7)) = h(z | V{). However,
by Lemma 3.2,0{)7} = o{)}, and using (P4), we have
h(zr | V7) = h{zi | V). This shows (22). For 2), let,§ € G
df € F be given. By Lemma 3.2, there are measurable
nctlonsTk,Tk,Tk, and T’ such that

result says that optimal state detection is realized when
dispersion of the state distribution is maximized, i/e(zf)
tends to infinity.

In general, the feedback control lay € G does have a
probing effect on state estimation, and the answer to any of
above optimal (probing) estimation problems defined by 1)—
remain as open questions, even for the simplest nonlinear/non-

Gaussian systems. We address some of these issues in the Vi =Ti(Vr), Vi = T3 (V4) (23)
remainder of the paper. g _ — (Y8
We begin by studying a general linear system (L). The i k(%) Y AN
following decomposition of (L) [22] is essential to our de-
velopment. For ag € G, we can decompose; and y{ Then, Vi = Tk(Tk(yk)) = (yk) and we have from (20)
as that
=T+ Tk, YL =T+ Uk (20) ;
=95\ — 1 (=9 (V9 _
In (20), the processe$zy} and {77} are defined by the MET) = D OF) + o = S (OF))
equations = h(# (Sk(V])) + 2 = fr(Sk(VF)))
fohes =ty + o = W@ () + o - [(54()

. = Cuity - & (5. (7)) + 2. ()])
with «f = g;()¥) and the initial state = 7. The processes = h(z (V) + 2 — [ (M)
{z1} and{y;} are defined by the equations _ h(jg,f) (24)

= h(z]7).

{“”“*1 = Ay 4 Gr (H) where in (23), the filterf € F is defined by

yr = Crzy + Hywy

wherezg = z — Zo, wi, and v; are given as before. Let fk(yk) [fk(sk(yk)) z (5K (%)) + 7 (V)] (25)
U = {ud,ui,---,uj_;} be the past control inputs up to
time k, and letZ7 = {){, U} be the information vector. Let a
Vi = {wo,v1, - +,yr} be the information vector associated Proposition 3.3 is a very interesting result because 1) states
with the homogeneous system (H). Consider the followirifpat for a linear system, the conditional entropfe | V7)),
lemma, whose proof is given in [22]. which is the equivocation of the sensor channel, is independent
Lemma 3.2:For the linear system (L), ley € G be of the selection ofg € G. From the previous discussion,
arbitrarily given. We have given Assumption A) for the nonlinear system (N), the optimal
probing controlsg” and ¢* defined in Theorem 2.2 may not
be conflicting. From Proposition 3.3, for the linear system (L)
without Assumption A), a single feedback contil € G,
which is optimal for all the performance measures defined for
where in (21),0{¢} denotes ther-algebra generated by thethe probing estimation problem, can be determined. It is in this
random vecto. Equivalently, 27, V7, and ), are (measur- sense that the probing estimation problem for a linear systems
able) functions of each other. is nonconflicting.

o} =o{2]} = o{} (21)
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Theorem 3.4:For the linear stochastic system (L), there i%9(x;) and therefore will tend to increase the dispersion of the
a control and filter paifg*, f/*) € G x F such that statex{. This destabilizes the system so that the sensor channel
" B v transmittancd ?(z; Vi) is maximized.f* is the optimal filter
h? (ax) = sup h?(zy) which minimizes the error entropy? /(z;), and therefore

9€g - ‘the
194 (#4; Vy) is minimized. We know from Theorem 2.2 that
R (&) = inf W9 (i) = inf B9V () (Ta; Vi)

jeF 9€G, feF under Assumption A)f* can be selected as the minimum
gt _ gro. . mean-square estimator, similar to the LG case. However, we
s D) = f,‘é%’f (x5 V) will see later that Assumption A) does not hold for linear non-
198 GV = inf 19 (i V) Gauss_ia_m systems in general_. Thiis,may not in general be
9e€G.fEF the minimum mean-square filter.
wo = sup W9, (26) Now, suppose we ignore the probing effectofc G on
9€G,fEF the sensor channel transmittankx,.; ) and only concern

ourselves with the error/observation informatith/ (zy; V)

Proof: Recall the assumption that thef andsup opera- .
P P ob or the error entropy:9-/ (7). Then, a direct consequence of

tions given above are achievable. lggte G be such that the

: . + Proposition 3.3 is thay € G has no probing effect, and the
first equation in (26) holds. Tak F such that
q (¢ ) ¢ 6 attainable lower bound o#¢/(z; );) only depends on the
RIS (8) = }n}ff R (34,). (27) homogeneous system (H). We study this in some detail next.
S

In what follows, we shall usé;, to denote the family of filters
From Proposition 3.3 for any € G and f € F, a f/ € F associated with the homogeneous system (H).

(Which depends om, f, and g*) exists such thabd/ (i) = Theorem 3.5:For the linear stochastic system (L), lgt €
he"+F (#4,). It follows that F» be such that

- Gf (i) — TS (N> inf B (5 R (3) = inf B (i) (31)
el M = e M) 2 BT @) ()= g, b

D h S (). (28) Then
We conclude that 1 (@13 00) = fien}f_‘] 1@ ) (32)
h I (&) = geti;njfef ho I (34,). (29) and for anyg € g given, there is af, € F such that

We show the third equation in (26) next. From Proposition 3.3, h9Js (i) = ge(i;njfef hoI (&) = hY (@) (33)

for any g € G, we have

or equivalently
I (zy; Vi) = h9(an) — h(n | Vi)-

Ig:fg(jjk;yk): inf Ig’f(fkayk)

Note thath(z) | Vi) is associated with the homogeneous 9eGIEF
system (H). Thus =17 (& V). (34)
I9 (xs Vi) = B9 (23) = R | Vo) Proof: For the trivial control0 € G given by u;, = 0
= supl[h?(z1) — h(zy | Vi)] = sup I9(zy; Vi)  for all k, we have thah®/(z;), etc., reduces t&/(iy), etc.,
e ged for the homogeneous system (H), except for a constant bias

induced byz,. Let fO € F;, be defined by (31). Then, (32)
follows from (22) immediately. Now, for the controlffilter pair

inf I97(z: ) = inf  [h9F(3) = b9 (3 | D 0, f°) and , by 2) of Proposition 3.3, there is F
et (T Vi) geé{lfef[ (%) (@ | V)] (0,f°) andg € G, by 2) positi isdh e

Similarly, we have from the previous proposition that

*3) such that
= i 9 (3.) — h9(zs, . 0 0
pedtl AP @) = D@ A VL pon oy = 008 ) = W (@) = int R (). (35)
. Fra 9€G,.fCF
= inf [ (Z) — h(zk | D)) _ N _
9eg.JEF Again, from 2) of Proposition 3.3, for any pdig, f) € G x F,
@) WS (F) = hzx | V) thr(]ere is a r;?air(o,fh(g, f)) such thath?f (i) = hOFr(iy).
W op Thus, we have
=197 (33 Vi) (30)
. . L . inf (#3)= inf A%P (@) < inf R (G
This establishes the fourth equation in (26). The last equation gEéllr,le}' Tx) gEEIJI,le]-'h (@x) < flen]-'h M (@)
follows directly from the fact thatv e/ = I9(z;; ) — =n'" (). (36)

195 (21; V) from the third and the fourth equations in (26).
0 From (35) and (36), we conclude (33). Equation (34) follows
Theorem 3.4 states that for the linear stochastic system (Hjrectly from (22) and (P3). |
the pair (¢*, f*) is simultaneously the optimal control and It is important to note that if a realization of the “homoge-
filter pair in all the senses defined in 2), 3), and 5)-7) givameous” optimal filterf® € F;, for the homogeneous system (H)
in Definition 2.1. Furthermoreg* will maximize the entropy can be determined, then the associated optimal ffifee G
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which minimizesI9f(&;)) can be realized for any givenwe partially answer this question for linear stochastic systems

g € G from (25), i.e., when restricting our attention to the family of affine linear
‘ filters f° € F, for the homogeneous system and assuming all
(Fo (Vi) basic random variables have independent components.
=[RS (39)) +22(¥]) — 22 (Sk(¥¥))]  (mod c) For the homogeneous systefi, the family of affine linear
= [R(S(O)) + 2 (V)] (mod &) (37) filters A, C 7, is defined as
def
becausez! is deterministic. In (37)¢;, andcj, are sequences Av ={f={fo, fr, frr -} € Fr s fr(Q)
that can be computed directly. We also observe from Theorem = LY + dy, Ly, d;, constant matricgs

3.5 that the achievable lower bound on the error/observation _ )

information measure depends only on the homogeneous y8-affine linear filterf = {fo, f1,---} € An with f,(Vy) =
tem (H). ¢ € G has no probing effect for this measurelxVi + di is called a linear filter, ifd, = 0. Let £, C Ay,
Equation (37) gives an equivalent optimal filter for (L). adenote the family of linear f|!ter§ for (H)._ For the error en'Fropy
corollary to this theorem is given next. ht(z) or the error/observation informatidd (z; Vi), a shift

Corollary 3.6: For the linear stochastic system (L), there-dx in the error

exists a control and filter paitg, f) € G x F such that .5 _ . _ 2d)) = (21— L V) —ds = & —dy 40
195 (33; V1) = 0 for all k, i.e., there is a zero error/observation T = o= (Ldhctdy) = (o= Lidi) —di = #—di— (40)
pair (g, f) if and only if there exists a filtef® € F, for the has no effect. Note, the superscript {L, ), : k > 0} € £},

homogeneous system (H) such that for/all in (40) denotes a linear filter iy, and there exists a linear
o ] fra zero error/observation filte?® € £, for the homogeneous
I (& V) = flen]f'hl (Zx; Vx) = 0. (38) system (H) if and only if there exists an affine linear zero

_ . - . _ error/observation information filtef® € A,,. For simplicity,
This corollary provides conditions for which Assumption A)ye restrict our attention to time-invariant single-input/single-

is satisfied. Furthermore, from our previous results, if su@ytput (SISO) homogeneous systems of the form
an f9 exists, then the minimum mean-square estimgtas

F;, for the homogeneous system given By = E{i; | {$k+1 = Axy + Guy, (H)

Vi} is such a filter. We know that for LG systems, the yr = Cxp + duy

Kalman filter is a realization of the minimum mean-squalGnere,, e R™ andyy, wi, v; € R. Letzo = (o1, -, Ton)
: ¢y Wey Uy . — ’ ) n,) -

est!mator._ln genelr_al, ho;/vevgr, the mlnljmgm mean-squalEsume thatzo;,w,, and v, are zero mean independent
e_sFlmat_or IS a noniinear. unction Qv’“ and determining @ random variables with finite and positive variances. The results
finite-dimensional realization of the filter may not be possibl ?n be easily modified to treat more general systems (H)

; N . T
One may ask: What. IS the coondltlon for the emstencg Yith the assumption that all the basic random variables have
a zero error/observation filtef’? A partial answer to this independent components

guestion is presented in the next section, where we show th efinition 4.1: The triple (4, G, C) or the SISO discrete-
for the linear stochastic system (L) with an affine linear ﬁltetri e system T

f for the homogeneous system, under some reachability anrg

observability conditions, a necessary and sufficient condition {-Tk-i—l = Axy + Guy )
for the existence of a zero error/observation control and filter yr = Cxy

pair is that the basic random variables are Gaussian.

1) is said to be componentwise observable, if for any
IV. ZERO ERROR'OBSERVATION INFORMATION 1 < i < n, the initial statexqy in the form zy =
AND THE GAUSSIAN ASSUMPTION (0,---,0,2z0;,0,---,0) is observable;

In the previous sections we discussed the importance of ) 1S Said to be output reachable from zero, if fgr = 0

zero error/observation control and filter pgj#, f#) such that and anyy” € R given, there is a control such that
yr = y* for somek.

I (@) = inf I199(@50) =0, (39)  The following lemma, whose proof is omitted here, follows
9€G. feF . L
directly from well-known results in linear systems theory.

Roughly speaking, this is the control and filter pair such that Lemma 4.2: The SISO linear discrete-time syste(ix’)
all the information about; contained in); is extracted by is componentwise observable if and only if no column of
the filter. For a linear stochastic system (L), from the previouke observability matrix0 = (C’,(CAY,---,(CA™ 1YY is
section, we see that the feedback conggblays no role in identically zero.(¥') is output reachable from zero if only if
this case, and the problem is equivalent to determining ttiee row vectolCC = C(G, AG, - -+, A"~1G) is not identically
existence of a filterf® € F;, for the homogeneous system (H)zero.
such that the zero error/observation information is achievedNote that the usual observability and reachability (from
by f°. For an LG system, the Kalman filter is such a filter. Ozero) condition for(¥') is a sufficient condition (not neces-
in other words, the Gaussian assumption on the basic randsany) for the componentwise observability and output reach-
variables is a sufficient condition for the existence of such ability we just defined. The next theorem is the main result
f9. Is the Gaussian assumption also necessary? In this sectafnthis section.
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Theorem 4.3:For the system (H, a necessary and suffi- Now, we begin to prove Theorem 4.3. We do so by showing
cient condition for Statement B) given below to be true is that slightly more general result. Withy,v;, and w, the basic
d # 0 and the systeniX’) is both componentwise observableandom variables, ang, a linear function of)*, it is easy
and output reachable from zero. to see that we have the following functional relationships for
Statement (B): If a linear (or affine linear) zero erall ¢, j,k:
ror/observation information filtef exists so

thatj:{ is independent o}, for all k& > 0, xyZ - gi((a;o’%7 e v%‘—lv;@v i) “2)
then the basic random variables, w;, and S S et R Rt
Ty = .’L’j(.’IZ’(),TUO, e, Wi—1,V0, 0 7Uj)

v; must be Gaussian for aflz > 0.

Remark: If all the basic random variables are Gaussiawvhere all functions are linear in their arguments. It follows
then the Kalman filter is an affine linear zero error/observatianat (a Taylor series expansion and linearity) we have (43), as
information filter, and Theorem 4.3 says that under the coshown at the bottom of the page. If we represent the second
ditions posed, the existence of a linear (affine linear) zeeguation in (43) in a matrix form, we have
error/observation filterf is equivalent to the Gaussian as-

sumption on the system. oYk wo vo

Before we begin the proof of this important theorem, som¥* = ——aq + (Ho, H1, -+, Hy—1) : +d
technical results, stated as lemmas, are required. A key result o Wh—1 o
from statistics [28], Lemma 4.4 is presented next. (44)

Lemma 4.4:Let ny,---,m € R be independent randomwhere
variables with positive and finite variances. If there are con- Sy
stantsa;,b; € R for ¢ = 1,---,k with a;b; # 0 for all 4 gTo, C
such thaty>¥ | a;n; and 3%, by; are independent, them A I~ I e ¢ R(k+1)xn
is Gaussian for each € {1,---,k}. drg B ;

A direct consequence of this Lemma is as follows. oyn! C Ak

Lemma 4.5: Given independent random variablés,- - -, Jzo
&, with positive and finite variances, suppose that there are 0 0
nonzero constant&;,---,q; and 3y,---, 3, with 0 < I < : :
m < n such that o 5 0 0 Kt

i = | %irr | = eER (45)
ow; cG
X=wéi+ -+ : :
Y =516+, Bnm (41) % CAk—1-icy

are independent, thefy, - - -, & must be Gaussian. Howeverfor all ¢ = 0,1,---,(k — 1).
the distribution ofé;y 1, -+, &, can be arbitrary (unspecified). Theorem 4.7:For anyk > n fixed, if there is a linear filter

Proof: Define Y = Y — (Biy1éi41 + -+ + Bmém). SUch thati, is independent of/*, then
Then, by the assumption of the lemma, we see fkiaand

Y are independent becausg is independent of both L0, W0, * ** s Wh—n, Vo, ** * U
and (Bi11&41 + -+ + Fmém). From Lemma 4.4, we know L ) .
that&y, ---,& must be Gaussian. Clearly, the distributions quir(l;ausds?n_ﬁ a}nd only;f therefxmsh: (;"0’ iy ) €
&i41,- -+, &, remain unspecified. o R andf = (B1,---, ) € R™ such that
Lemma 4.6:Let A = (ai;)nxm be an x m matrix, and Yk
let a; be thejth column of A. There is a row vectory = g # 0 Componentwisg
(ay,- -, ay) such thatva, # 0 for all j if and only if a; # 0 aH(;éO Vim0, (k—n):
for all j. tre S '
Proof (Necessity):Assume thati; = 0 for some;. Then ad # 0 Componentwise (46)
aa; = 0 for all . For sufficiency, assume that # 0 for and also
all 5. Consider that for any fixed, the relationaa; = 0 jaffk :
: . : ; . — # 0 Componentwise,
defines an(n — 1)-dimensional subspace iR™. Then, with /8330 7 P
S; ¥ {a € R" : aa; = 0}, the setD ' U;S; has volume /335% £0, Vi= 0, (k—n): /3% £0
zero, and we can always selec R™\D such thatva; # 0 ow; " T oy T
for all j. | Vj=0,---,k. 47)
B = gabT0F guswot o ¥ gt wioL + gkvo o Gk
Yi = gio Zo+ gio wo+ -+ agi’ilwi_l + gbo Vot gff v, 43)

i=0,1,-- k
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Proof: We show sufficiency first. Note that, and J* Proof: Without loss of generality, we can assume that
are independent if and only ifi; and 3Y* are independent all the basic random variables are Gaussian. (Otherwise, just
for all « and 3. For thea: and 3 given in the theorem, since regard the notatio®{z; | ;} as the orthogonal projection of

73, is independent ofy*, it follows that 37; and a)* are z; onto the Hilbert spac&® = span{yo, ---,:}, and change
independent. However, from (43) and (44), we have “independent” to “uncorrelated” in the following proof, etc.
For a detailed account on the Hilbert space approach to the
. - Oy, A=z 0%y, filtering problem, see [25].) Note also that all random variables
i = [Z <ﬁa_x0) Toi + Z <ﬁa—wi>wi involved are zero mean. We show the first equation in (C3)
=t N ‘ =0 . next. Suppose that for alt > 0, gjok = 0 for somejq,
Oz \ Oxg \ say,i = 1. Since i = (o1, Ton,Wo, +, W_1) IS
+; </38—vi>vz +i—k2;1+1 <ﬁawi>“’1 a linear function of its arguments, ther, is independent of

" k zo1. Define a new system
4 ~ [ oYk —
aYk = [Z <a—8x0 )i-’lfoi + Z(O{Hz)wz {j;k_H = A7), + Gy, ©

i=1 =0 Y = C.fk + dvk
k k—1
+Z dovi | + Z (aH;)w;. (48) Wwhere the initial statefo = xo + ey with ¢ € R a Gaussian
o il N(0,0?) random variable independent of, w;, andv;. Let

Y and iklk denote the error covariances of the Kalman
Equations (46) and (47) are equivalent to the fact that all thiéter for (H’) and (K), respectively. Sincé;, is not a function
coefficients insidg: - ] on the right-hand side of (48) (exceptof zo;, we haveL,; = Iy for any o2. We show next this

those forwy_p+41,- -, wr—1) are not zero. We conclude thatwill lead to O¢; = 0.
LoL, ", Lon, Wo, "+ +, Wk—n, @andug, - - -, v, are Gaussian from By linearity, we have
Lemma 4.5. _ k
For necessity, assume that for aland3, (46) and (47) do T = T+ Aler(
not hold. That is, for any and3 constant vectors, at least one Vi = Vi + Orer¢ (49)

cqefﬂment inside]- - -] on th nght-hand side of (48) is Z.er.o'v{/here P = (fo, -+, 7x) is the information vector for (K)

It is easy to see that this implies that there is a coefﬂuer{lmdo = (C'(CAY .-~ (CA*YY. It follows that

without loss of generality, sayi;, that is zero for almost k= ’ 7 '

all «. This implies thaty* is independent ofy;. Then, by E{Z | Vi, ) = E{ap | Vi, ¢ + (AFer)C.

Lemma 4.5, the distribution af; can be arbitrary (even though o S

iy, is independent op¥). o Since( is independent of V., zx), thI_S implies thatE{z;, |
At this stage, from Lemma 4.6, the necessary and sufficielt: ¢} = kE{xk | Vi}. Therefore, E{zy, | Vi, (} = Ef{ay |

condition given in Theorem 4.7 is equivalent to the foIIowiné’k} + (A% )¢ and

two conditions: Zr — E{Zn | Vi, €Y = 21 — Elaw | Vo) = @, (50)
e 700 Vi=12.-m, Hence
Gt £0,  Vi=0,1,---,(k—n), (C1)
QoL £0,  Vi=1,2,- k. rie = Cov(Zy, — E{Tx | Vi, (D). (51)
and From (49), we haver{ )k, ¢} = o{, (}. It follows that
gi/ok ~ Ope; £0, V=12 .n, Ty — E{@ [ Vh, (b = 20 — B{Z [ Vi, (. (B2)
gJL/U" =H; #0, Vi=0,1,---,(k—n), Let { = ¢ — E{¢ | Ji} be the innovation. Then
ke . _ _ o~

(C2) R
where in (C2),0 def (C',(CAY,- .-, (CA*YY ande; is the where),, and( are independent. By a direct computation, we
ith standard basis vector fo®". Note that Condition (C2) have from (51)—(53)

is equivalent tod # 0 and the system is componentwise s s Elz | D¢
observable and output reachable. Therefore, the necessity part kb ?Ov(xk {xf: [ Vi C})~/ ) 2
of Theorem 4.3 is proved. To show sufficiency, we prove the =T — (B{z " D(E{ZC L /(E{C7)). (B4)

following result.

Proposition 4.8: Assume thatd # 0, and (¥’) is both
componentwise observable and output reachable. Then, for the E{fkff} =0. (55)
Kalman filter and:, j,! arbitrary but fixed, we have

Thus, Zy = Zyr if and only if

We shall show (55) implies thabe; = 0. Let us compute

So 20 for somek > 0, E{z;¢} = E{z:('} (note that¢( = (' is a scalar). The
Gk #0 for somek > 0, (C3) innovation can be computed as

971 . _ _ o _

au 70 forsomek 2 0. C=C=B{C| D} = (= E{CHEDIRN ™ Tk (56)



782

Since( is independent oy, we have

E{CV1} = E{COk + (Ore1)Q)} = 0*(Oer)’  (57)
and
E{NYr} = E{(Vk + (Ore1)O) (Vi + (Ore1)Q)'}
= (B{VI) + 02 0peret Of) & (5).  (58)
Then, (56)—(58) yields
(= ¢ = OLE) D (59)
It follows that
E{z,(} = BE{mi(} — o B{m}(2p) ' Oer. (60)
However, becausg is independent ok, we have
E{ziC} = B{(zi + (A%e))¢} = 0%(A%er).  (61)

Also, from the independence dfand (zy, Vi), we have
E{zid} = E{(zn + (A%e)Q) (W + (Ore1) O}
= B{x;V;} + o*(AFe))(Oper).
Combining (60)—(62), we have
E{z)(} = o?[AFe; — % (A%e))(Orer) (25) 7 (Orer)
— E{xi Vi (Z5) " H(Oker)]. (63)

Using the matrix inversion lemma, with, = E{)}Y; } (the
invertability of X, is guaranteed byl # 0) we obtain

(85)7 = (£, +0*(Orer)(Orer)) ™
(64)

(62)

_ <E_1 (251 0re1) (£510pcr)’
sz -

o2 + (E;lokel)/Ey (X5 Oker)
From (63) and (64), we see that witi? sufficiently large,

the second term inside- -] in (63) dominates. Because (55)
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Following the same arguments, with replaced byG and A*
by A¥~1, we obtain instead of (66)

eitherA*1G =0 or (0/,0;,_))G=0, VEk>O0.
(68)
Using (68) fork = 1,.---,n, we can easily conclude that

CC = C(G,AG,---, A" 1@) = 0.
For the last equation in (C3), assume tl—%lt =0 for all
k > 0 and for somd > 0, i.e., &, is independent of;. Since
1y, = Cz; + dv; and v is independent of all other random
variables and{ # 0, this implies thatz;. is not a function of
y;. However, we have
-1
Y= CA'zy + Z CA™ " G, + du,

1=0
where xo1,- -, Zon,wo, -+, wi—1, and v; are independent.
This implies that either
cAl=o, CG=CAG=---=CA"'G=0 (69)

or
%y, oy, . ;

= — = << <3< ({-=-1).
D0; , T, 0, 1<i<n, 0<j<(I-1)

(70)
Equation (70) contradicts the componentwise observability and
output reachability, but (69) leads t8C = 0, which contra-
dicts the output reachability. This shows the last equation in
(C3) and completes the proof. O
Now, we continue with the proof of Theorem 4.3.
Proof of Theorem 4.3:Necessity follows directly from
Theorem 4.7 and (C2). For sufficiency, assume thgt0 and
(X) is both componentwise observable and output reachable.
Note that for allk > 0, &}, is independent o/, by assumption.
For anys, 7,1 arbitrarily given, select sufficiently large so
that (C3) holds and (C2) holds with—n > max{j,}. Then,
it follows that there existv and 3 such that (48) holds with

holds for all 2, this implies that this term must be zero for </3%) £0, /3% £0, /3% £0
all o2 large, i.e., dzo / ; dw, v

k I -1 2 and
(A%e1)(Orer)'(-+ )7 (Orer) =0, vk >0, 2> 1. Y,

(65) <o¢a—$0> # 0, aH; #0, od # 0.

. RN -, . . . i

Since (X))~ is positive definite, (65) is equivalent to Now applying Lemma 4.5, we conclude thaf:, w;, and v,
either A¥¢; = 0 or Oye; = 0, vk > 0. (66) must be Gaussian. Singej,! are arbitrary, this proves that

Using (66) fork = 0,1, - - ,n— 1, we can easily conclude that®, /¢ ndv; are Gaussian for ai, j = 0. O

On_lel = 061 =0.

Next, we examine the linear inhomogeneous system. Define
the family of quasi-affine linearfilters f, associated with a

This contradicts the componentwise observability and provéesdback controy € G as

the first statement in (C3).
For the second equation in (C3), suppose that fok &l 0,
)

ﬁ = 0 for somey, say;j = 0. Define a new system

!
where@y = wo + ¢ and( is defined as before, antd; = w,

{fk+1 = AZy + Gy,

S={fs € F: (fo)u(V]) = LY} + Pulh + dy.,

Ly, Py, d), are real-valued matrices. (71)

Clearly, the Kalman filter is a quasi-affine linear filter for any
g € G. Suppose thaif® is the affine linear minimum error
entropy filter for the homogeneous system. Then, by Theorem
3.5, for anyg € G given, there is a filterf, such that (33)

for j # 0. Then, by linearity, we have similar to (49) that forand (34) hold. From (37), we know that this filtgy can be

all k > 0 and with A=1 4<f 1
T = xp + (AF1G)C

_ (67)
Vi =W + (0, 05,_1) G)C.

taken as

(e (V2) = £ (SK()) + 2, (37)
whereS, is the transformation such thag = Si()7). Since
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yr = yi — 77 from (20), we can write}}, = V¥ — ¥ with homogeneous system for (73)
Y9 L (g8, ... g2). Then, we have {a:k+1 = wy, 75)

Ue) = ROL=I0) +2000). 2 ST —

g g . . For this simple systeny, andwy have the same distribution,

From (D), we see that botl;, and 7 are linear functions then we can consider the outout equation
of zo andf{. Hence, from (72), we see thd}, is a quasi- put €q
affine linear filter associated with if and only if f is an yp =2k tok,  Vk=0. (76)
affine linear filter for the homogeneous system. Therefore, Hgre z;, is an i.i.d. sequence afni[—«, o] random variables
a consequence of Theorems 4.3 and 3.5 (or Corollary 3.6), which are independent af;. We derive different filters for

have the following result. (75) next.
Theorem 4.9:For the linear stochastic system The Kalman Filter: Since all the random variables have
Trsr = Azp + Bug + Gwy, L) zero mean, the Kalmf:lkp filter_is the linear minimum mean-
y = Cax + Duy, square filterk; (Y;) = 2%¥(Y;) given by
where zg € R",w; € R, andv; € R are independent . J
random vectors with independent components apnd= R. (V) = Zmi?ﬁ
:=0

A necessary and sufficient condition for the Statement (C)
given below to be true is thaD # 0, and (4,G,C) is Where them; are chosen so that the error covariaﬁr{;eij) =

componentwise observable and output reachable. Cov{z; — 2%V} is minimized. Sincer; = w; is indepen-
Statement (C): If there is a feedback contyok G and a dent of Vj—1, (76) yields
quasi-affine linear filterf, such that(g, f,) Cov{#h} = Cov{z; — moyo — -+ — myy;}
is a zero erro_r/observation information pair, = (1 — m;)*Cov(z;) + meov(vj)
then the basic random vectarg, w;, and i1
v; must be Gaussian for afl ¢ > 0. + Zm?COV(y]’).
Remark: The key idea of the above proof is that the i=0

condition D # 0 guarantees that for any fixed, there is Tnys, we see that; = 0 for{ < j—1 andm; = o? /(a2+43),
a k such thaty; is a function ofv; so thatv; will affect e

yr In a nontrivial way. Similarly, the output reachability a2

condition guarantees that for agiffixed, there is & such that V) =iy = o Y J=0,1,---.  (77)
yr 1S a (nontrivial) function ofw,;, and the componentwise N
observability condition guarantees that each compongnt
of the initial statezo will affect 4 in a nontrivial way, for
some time instank. This idea can be directly applied to the

proof of the multivariable case where in‘§Ly, v;, andw; (V) = E{zr | Vit
are all vectors, sayy, € R™,v; € R?, andw; € R® such
that v; and w; have independent components. In this cas
¢ = (cllv"'vdm)/ € R™™, G = (g1,7+-9s) € R™,
andD = (dy,---,d;) € R™*? are matrices. Without giving
a detailed proof, we claim that the necessary and suffici
condition for Statement (C) isd; # 0 for eachj, (4,¢;)
is componentwise observable for soiend for anyl given,
there is &k such that A4, g;, ¢ ) is output reachable. (Note that (g = 6)/2,

The Minimum Mean-Square FilterThe minimum mean-
square filter is given by

Ey the independence, it is easy to see thgt():) =
0 (yr) = E{xr | yi}. To determinez}’(yx), we have to
compute the conditional density functigiiz;, | yx) and then
eégrry out the integration. A direct computation yields, with
b=a—-pfande =a+j

if —e S Yk S _67

the componentwise observability is well defined fek, ¢; ) in ' (w) = § s it o<y <é (78)
an obvious way.) (e +0)/2, Fo<m<e
The Affine Linear Minimum Error Entropy FilterLet 2% =
V. EXAMPLE LYk +di = %1%y, + d;, denote an affine linear filter.

In this section, we present an example to illustrate some Bfien, the error entropy is given by
the results presented in the previous sections. k k

Example: Consider the scalar linear stochastic system h% (&) = h(ﬂ?k - Zlgk)yi - dk) (PIS)h<-Tk - Zé”?h)

1=0 1=0

g — 9
Tpyr = Uy + Wk ‘
{yi{ =y + vy, (73) Sincex — lff)yk is independent of; for j < k£ — 1, then

where g, w;, and v, are independent random variables witlpy (P6), we have
the uniform distributions k
hE (i) = h(m - Zzg’”yi) > h(ex — 1Py,
=0

Assume thatoe > g > 0 are constants. By the results ofHence, the affine linear minimum error entropy filter is given
Section IV, to derive the optimal filter(s), we consider they @L(yk) = ﬁ:fe(yk) = Ilyyx, Wherel, € R is chosen to

Zo,w; ~ uni[—a, af, vj ~ uni[—/3, f]. (74)
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minimize the error entropy we have the relations
hzy — lwyr) = Ilr€1171a1 hzy — lyp) = Ilr€1171€1 h((1 = Dxp — lwy,) COV(%Z’) < Cov(izk) < COV(.%L) (84)
= min h((1 — Dy, + vy (79) with equality if and only ifae = /3, and
IR '

~m ~1 ~k
The last equality follows the fact that, and v are inde- hFE) < h(2)) < h(T) 4
pendent andy, has a symmetric distribution about zero. After 0 < I(#F" ) < I(%?yk) < I(fk?yk)
some manipulation with densities and entropy, it can be showtith equality if and only ifa = 4.
that a global minimum is attained &t = I* = a/(a+3) and From (84) and (85), we see that there is no affine linear zero

the affine linear minimum mean-square filter is given by ~ error/observation information filter. System (73) apparently
T T a satisfies the condition of Theorem 4.9, and the basic random
L3 (Ve) = &) = myk (80)

variables are uniform rather than Gaussian. Also, we observe
From the above, we see that the (true) minimum meaW—

at in terms of all performance measures, the (true) minimum
square filterz? is a piecewise linear function ofy. In mean-square filter always has the bgst performance among
the case whem = 3, we havea?ﬁ — = xi _ these three_fllters. I_:o_r the error covariance, the_ Kalmar_1 filter
. i . the affine linear minimum mean-square filter) is superior to
yx/2. That is, the Kalman filter, the minimum mean-squar T . .
. . . L . the affine linear minimum error entropy filter. But, for the
filter, and the affine linear minimum entropy filter are the

error entropy (and error/observation information measures),

same linear function of;. To compare the performance Ofthe affine linear minimum error entropy filter is superior

these (optimal) filters according to different measures, 6 the Kalman filter. Hence, we expect that there will be
have to compute the error covariance, the error entrogyyqict or competition among these measures. One may
and the error/observation (mutual) information associated Wit \whether or not there is a nonlinear filtgr for the
each of them. The computation is straightforward but tedio%mogeneous system which will have a lower error entropy (or
and is omitted here. We present the results next. (Note th@for/observation) information measure when compared to the
the superscriptg:;, m, and / indicate the Kalman filter, the (true) minimum mean-square filter, or what is the true min-
minimum mean-square filter, and the minimum error entropshum error/observation information filter? We are unable to

(85)

filter, respectively.) answer these questions so far. Some simulation evidence sug-
For the error covariances, we have gests that for piecewise linear filters with one corner, no filter
T o232 will perform better than the minimum mean-square filt€t.
Cov (iy) = 3(a? + 2) Finally, from (72) and (20), we see that for any feedback
1 3 control ¢ € G, the optimal filter(s) for the inhomogeneous
Cov(z}) = 5[32 <1 - %> system (73), defined according to 1)-6) of Definition 2.1, is
given by
Cov(il) = 2073 81 ~g .9 | Adf,g g
ov(#y) = 3(a+ P2 (81) LTy = U + xk(yk-i—l —uj) (86)
For the error entropy, we have wherez¢(-) is the (piecewise) linear function defined in (77),
o a2 + 3 (78), and (80) ford = k,m,1, respectively.
h(i:ﬁ) =55~ log 9032 For a detailed discussion on systems with quantization and
(/ 4 af (ot BY? the application of the framework developed in this work to
& — 67 i
h( izl) _ T log(a — ) — o3 log(x + f3) this class of systems, the readers are referred to [10].
1 VI]. CONCLUDING REMARKS
+log(2af) + 2 A general framework for filtering and state estimation in
h(i:l) _ 1 _logoc—i—ﬁ 82) stochastic systems from an information theoretic point of
k 2 2a3 " view is proposed in this paper. Linear stochastic systems
It can be shown by direct computation thafz; | J,) = are studied in some detail, and it is shown that under some

log(28) — B/(2a). Then, fromI%(i; Vi) = k(i) — h(zy | reachability and observability conditions, the existence of an
Vi) for d = k,m, 1, the error/observation information mea-affine linear zero error/observation filter for the homogeneous
sures are given by system or a quasi-affine linear filter for the inhomogeneous
system is equivalent to having all the basic random variables

2 2 2 2

I(a?’,j;yk) - ¢ +7 — log o +p Gaussian. An example is given to illustrate some of the results
2ap af for linear stochastic systems. Reference [10] illustrates the

I(a?Z’;yk) _at p —log atp application of the proposed framework to quantized systems.
2a y @ We observe that, in general, there is conflict and competition

+ (a=p) a-p between the different performance criteria that can be used to
dof3 a+p design an estimator. For linear stochastic systems, we showed

I(f:i')ik) _ a+f _logoHrﬁ' 83) that a feedback control strategy has no probing effect in
" 20 o the sense of the mean-square error, the error entropy, and

It can be shown that for ang > 0 given, andx € [3,+00), the error/observation information measures. However, for a
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nonlinear system (e.g., the quantized system studied in [1Q])]
the choice of the feedback control can have a significant effect
on estimation in all of the senses considered in this paper. [1¢)

For future research, there are many problems that need to
be studied. The first and most important one is constructing[]zz]
realization of the minimum error entropy filter, or a realizationg;
of a suboptimal filter for a general linear stochastic system,
as a finite-dimensional dynamic system. We know that this”
realization should reduce to the Kalman filter for LG systemg0]
Apparently, this will involve an entropy optimization problem
Current results available in the literature may not be sufﬁciethI]
to accomplish this task. One problem is that the orthogonalit82]
condition which results in the Kalman filter is lacking. The,,
second interesting problem is to determine how far the results
developed in Section IV can be extended. In particular, und@f!
what conditions does there exist a zero error/observation filigg,
for the general class of stochastic systems? A third problem is
to determine under what circumstances the (true) minimuf$f!
mean-square filter is actually the minimum error entropygz
filter. We see that from the example given in Section V, the
(true) minimum mean-square filter associated with a feedbalék]
control is actually the minimum error entropy and minimung]
error/observation information filter associated with the same
control. Furthermore, the filtering error associated mnﬂ1tﬂgm
minimum mean-square filter has a density functipf), [31]
which is a piecewise linear, even, nonincreasing function
centered att = 0 whenz > 0. We wonder if this is the [3]
reason why the filters are equivalent.
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