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New Estimates for Solutions of Lyapunov Equations

Yuguang Fang, Kenneth A. Loparo, and Xiangbo Feng

Abstract—In this paper, new results for estimating the solution of
differential and algebraic Lyapunov matrix equations are obtained, and
some of the well-known results are generalized.

Index Terms—Inequality, Lyapunov equations, matrix measure, trace.

I. INTRODUCTION

The Lyapunov matrix equation is very important for stability
analysis in control theory. Although the exact solution of the Lya-
punov equation can be found numerically, the computational burden
increases with the dimension of the system matrices. For some
applications such as stability analysis, it is often not necessary to
know the exact solution because an estimate of the solution is
sufficient. Also, if the parameters in the system matrices are uncertain,
it is not possible to obtain the exact solution for robust stability
analysis; therefore, it is necessary to find a reasonable estimate for
the solution of the Lyapunov equation to obtain some robust stability
results. In [7], we have used such an approach to study robust stability
and performance analysis for uncertain stochastic systems.

The estimation problem for the solution of the Riccati and Lya-
punov matrix equations has attracted considerable attention in the
past two decades. Mori and Derese [1] gave a very good summary
on this topic. In most works, the lower and upper bounds are
for the following quantities: the largest eigenvalue, the trace, the
determinant, the partial summation of eigenvalues, the partial product
of eigenvalues, and the solution itself. There are plenty of results for
obtaining the lower bounds for these quantities; however, in practical
applications, especially for stability analysis, the upper bounds for
the trace and the largest eigenvalue are desirable [7]. Recently,
Komaroff [2], [3], [9] used majorization techniques to obtain some
very excellent estimates for the partial summation and partial product
of the solution of Lyapunov matrix equations. Mrabti and Hmamed
[8] presented a unified approach using the delta operator technique to
obtain lower bound estimates for the solution of both continuous-time
and discrete-time Lyapunov matrix equations.

In most cases, the bounds that have been obtained are the best pos-
sible under some, unfortunately, restrictive assumptions. For example,
for most of these bounds, the common assumption is thatA+A0 is
negative definite. This is obviously restrictive, because the stability of
A does not guarantee this assumption. In this paper, we will remove
this assumption and provide some general estimates for continuous-
time Lyapunov matrix differential and algebraic equations. Because of
their importance in robust stability and performance analysis, special
attention will be given to upper bound estimates for the trace.

II. NOTATIONS AND PRELIMINARIES

In what follows, we will use the following notations:A is a
real n � n matrix, A0 denotes the matrix transpose,tr (A) is the
trace ofA; �i(A) is an eigenvalue ofA; (�i(A)) are arranged in
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nonascending order when they are real, i.e.,�1(A) � �2(A) �
� � � � �n(A);<�i(A) denotes the real part of�i(A); and(<�i(A))

are arranged in nonascending order, i.e.,<�1(A) � <�2(A) � � � � �
<�n(A). Let�(�) denote the matrix measure induced by some vector
or matrix norm and defined by the formula

�(A) = lim
�#0

jjI + �Ajj � 1

�
:

The matrix measure induced by the 2-norm (i.e., the Euclidean norm)
is denoted by�2(A) and�2(A) = 1

2
�1(A + A0): Properties of the

matrix measure can be found in [11] and [12].
Lemma 2.1: For any matrixA and any symmetric matrixB[6],

let A = (A + A0)=2, then we have

�n(A) tr (B)� �n(B)(n�n(A)� tr (A))

� tr (AB) � �1(A) tr (B)� �n(B)

� (n�1(A)� tr (A)):

In particular, for any positive semidefinite matrixB we have

�n(A) tr (B) � tr (AB) � �1(A) tr (B):

Lemma 2.2: Let �F (�) denote the matrix induced by the vector
norm jjxjj = p

x0Fx, whereF is a positive definite matrix. LetN
denote the set of positive definite matrices. Then for any matrixA;

we have

<�1(A) = max
1�i�n

<�i(A) = inf
F2N

�F (A):

Moreover, the matrix measure�F (A) is given by

�F (A) = 1

2
�1(FAF

�1
+A

0

) = �2(F
1=2

AF
�1=2

)

where the Euclidean norm-induced matrix measure is given by
�2(A) = 1

2
�1(A + A0):

Proof: The proof of this result is similar to [11, Th. 4].
Lemma 2.3 [10, p. 515]:For any matrixA; we have

tr (e
A
e
A
) � tr (e

A+A
):

III. M AIN RESULTS

Consider the differential Lyapunov matrix equation

_P (t) = A
0

P (t) + P (t)A+Q; P0 = P (t0) (1)

and the algebraic Lyapunov matrix equation

A
0

P + PA +Q = 0 (2)

whereQ is a constant positive semidefinite matrix andA is a constant
(Hurwitz) stable real matrix. The main objective of this paper is to
find estimates for the positive semidefinite solution matricesP (t)

andP for (1) and (2), respectively.
We first give an upper bound for the trace of the solutionP (t) of

the differential Lyapunov matrix equation (1).
Theorem 3.1: Suppose that the real matrixA is stable andA+A0

is nonsingular, then we have

tr (P (t)) ��1(P (t0)) tr (e
(A+A )(t�t )

)� �1(Q)

� tr ((A+ A
0

)
�1

) + �1(Q)

n

i=1

e� (A+A )(t�t )

�i(A+ A0)
:
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Proof: The solution of (1) can be expressed as

P (t) = e
A (t�t )

P (t0)e
A(t�t ) +

t

t

e
A (t�s)

Qe
A(t�s)

ds:

From this, we can obtain

tr (P (t)) = tr ((eA (t�t )
P (t0)e

A(t�t ))

+
t

t

tr (eA (t�s)
Qe

A(t�s))ds

=tr (P (t0)e
A(t�t )

e
A (t�t ))

+
t

t

tr (QeA(t�s)eA (t�s)) ds:

Applying Lemma 2.1 and Lemma 2.3 to the right side of the above
inequality, we have

tr (P (t)) ��1(P (t0)) tr (e
(A+A )(t�t )) + �1(Q)

�

t

t

tr (e(A+A )(t�s)) ds

=�1(P (t0)) tr (e
(A+A )(t�t )) + �1(Q)

�

t

t

n

i=1

e
� (A+A )(t�s)

ds

=�1(P (t0)) tr (e
(A+A )(t�t )) + �1(Q)

�

n

i=1

�
e� (A+A )(t�s)

�i(A +A0)

t

t

=�i(P (t0)) tr (e
(A+A )(t�t ))� �1(Q)

�

n

i=1

1

�i(A+A0)
+ �1(Q)

n

i=1

e� (A+A )(t�t )

�i(A+A0)

=�i(P (t0)) tr (e
(A+A )(t�t ))� �1(Q)

� tr ((A+ A
0)�1)

+ �1(Q)

n

i=1

e� (A+A )(t�t )

�i(A+A0)
:

This completes the proof.
From the proof, we can easily modify the first term on the right-

hand side of the inequality in Theorem 3.1 to obtain the following:
Theorem 3.2: Suppose that the real matrixA is stable andA+A0

is nonsingular, then we have

tr (P (t)) � tr (P (t0))�1(e
(A+A )(t�t ))� �1(Q)

� tr ((A+A
0)�1) + �1(Q)

n

i=1

e� (A+A )(t�t )

�i(A+ A0)
:

Another direct approach is to use Lemma 2.1 to obtain the
following result.

Theorem 3.3: We have following estimates for the trace of the
solution of (1):

z1(t) � tr (P (t)) � z2(t)

where z1(t) and z2(t) are the solutions of the following scalar
differential equations:

_z1(t) =�n(A+A
0)z1(t) + tr (Q); z1(t0) = tr (P (t0))

_z2(t) =�1(A+A
0)z2(t) + tr (Q); z2(t0) = tr (P (t0)):

Proof: Taking the trace on both sides of (1), withy(t) =
tr (P (t)) we obtain

_y(t) = tr ((A+A
0)P (t)) + tr (Q): (3)

Applying Lemma 2.1, we have

�n(A+ A
0) tr (P (t)) � tr ((A+A

0)P (t))

��1(A+ A
0) tr (P (t)):

Taking this into (3) and recalling thattr (P (t)) = y(t); we obtain

�n(A+ A
0)y(t) + tr (Q)

� _y(t) � �1(A+A
0)y(t) + tr (Q):

Using the Gronwall–Bellman lemma, the desired result is obtained
directly.

If �1(A + A0)< 0; we obtain an estimate for the trace of the
solution of the algebraic Lyapunov matrix equation (2) and we have
the following.

Corollary 3.1: If �1(A + A0)< 0; then the trace of the solution
of (2) has the following upper bound estimates:

tr (P ) ���1(Q) tr ((A+ A
0)�1) (4)

tr (P ) �
tr (Q)

��1(A+A0)
: (5)

Proof: In Theorem 3.1 or Theorem 3.2, lettingt go to infinity,
we can obtain (4). Similarly, (5) can be obtained from Theorem 3.3.

Remarks:

1) Theorem 3.3 is the exact result obtained by Moriet al. [5], but
the proof given here is much simpler than [5].

2) For the upper bound, it is hard to say whether Theorem 3.1,
3.2, or 3.3 is better. However, if we chooseQ = �I; our result
improves Moriet al.’s result. To illustrate this, we prove that
(4) is better than (5) for this case. In fact, if�1(A + A0)< 0;
then�i(A + A0)< 0; and from (4), we have

tr (P ) ���1(Q) tr ((A+A
0)�1)

=��
1

�1(A+A0)
+ � � �+

1

�n(A+ A0)

�
�n�

�1(A+A0)

from which we conclude that (4) is better than (5) forQ = �I:

From [8, (46)], we can also obtain (5). Therefore, our result also
improves the bound obtained in [8].

In Lemma 2.1, the first set of inequalities is better than the second
set of inequalities, and the latter is often used to obtain estimates for
solutions of algebraic Lyapunov equations in the literature; therefore,
we can expect that if the first set of inequalities in Lemma 2.1 is used,
a better estimate for the trace of the solution of (2) can be obtained.
This result is summarized in the next theorem.

Theorem 3.4: Suppose that�2(A)< 0 and Q is a positive
semidefinite matrix, then the solutionP has the following upper
bound estimate:

tr (P ) � �
tr (Q)

2�2(A)
+

�n(Q)(n�2(A)� tr (A))

2�2(A)�2(�A)
:

If A is only stable, then we have the following lower bound estimate:

tr (P ) �
tr (Q)

2�2(�A)
+

�n(Q)(tr (A) + n�2(�A))

2�22(�A)
:

Proof: From (2), we have

0 = 2 tr (AP ) + tr (Q): (6)
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Applying Lemma 2.1 to the first term in (6), we obtain

0 � 2�1(A) tr (P )� 2�n(P )(n�1(A)� tr (A)) + tr (Q)

i.e.,

�2�2(A) tr (P ) � �2�n(P )(n�2(A)� tr (A)) + tr (Q):

Since�2(A)< 0; from the above inequality, we have

tr (P ) �
tr (Q)

�2�2(A)
+
n�2(A)� tr (A)

2�2(A)
�n(P ): (7)

Notice thatn�2(A) � tr (A) = n�1(A)� tr (A) = �n

i=1 f�1(A �

�i(A)g � 0: We obtain

n�2(A)� tr (A)

2�2(A)
� 0: (8)

Let x be the eigenvector ofP associated with the eigenvalue�n(P ):
Then from (2), we can easily obtain

�n(P ) =
x0Qx

2x0(�A)x
�

�n(Q)

2�1(�A)
=

�n(Q)

2�2(�A)
:

Taking this into (7) with the aid of (8), we obtain the desired upper
bound estimate.

Using a similar method, we can prove the lower bound estimate.
This completes the proof.

Remark: From the proof, we observe that the second term of the
first inequality in Theorem 3.4 is nonpositive, so this bound is better
than Mori et al.’s [5], Mrabti et al.’s [8] and [2, eq. (18)]. However,
it is difficult to say whether Corollary 3.1 or Theorem 3.4 provides
the better result. Because the second term of the second inequality in
Theorem 3.4 is nonnegative, we have

tr (P ) �
tr (Q)

2�2(�A)
: (9)

This is better than some known results in the current literature, for
example, [8, eq. (47)]. There are some excellent lower bounds for the
solution of algebraic Lyapunov equations (see [3] and [8]).

Under the assumption that�2(A)< 0, i.e.,�1(A+A0)< 0; using
majorization techniques [13], Komaroff [9] was able to obtain an
excellent upper bound for the trace of the solution of (2). We state
it in the following.

Theorem 3.5 [9]: Assume that�1(A + A0)< 0; the trace of the
solution of (2) has the following upper bound:

tr (P ) � �
n

i=1

�i(Q)

�i(A+ A0)
:

Remark: If �1(A+A0)< 0; Theorem 3.5 is better than Corollary
3.1.

The assumption�2(A)< 0 is commonplace for obtaining upper
bounds (and some lower bounds) for the solution of the Lyapunov
equation (see Theorem 3.5). However, for some stable matrices, the
above assumption may be violated, hence the above upper bound
for the trace of the solution becomes meaningless. For example,
A = �1

0

2

�1
is a stable matrix, however,�1(A + A0) = 0: To

overcome this difficulty, we want to make the following modification.
From Lemma 2.2, we can see that for any stable matrixA; there exists
a positive definite matrixF such that�F (A)< 0: Let T =

p
F .

From (2), we obtain

(T
�1
PT

�1
)(TAT

�1
) + (T

�1
A
0

T )(T
�1
PT

�1
)

+ T
�1
QT

�1
= 0: (10)

Applying Lemma 2.1 and Theorem 3.4 to (10), we can easily obtain
the following theorem.

Theorem 3.6: Select a positive definite matrixF satisfying
�F (A)< 0; then we have

tr (P ) �
�1(F ) tr (F

�1Q)

�2�F (A)

+
�1(F )�n(F

�1Q)(n�F (A)� tr (A))

2�F (A)�F (�A)
:

Proof: Notice thattr (F�1P ) � tr (P )=�1(F ); then the proof
follows easily.

Corollary 3.2: Given a positive definite matrixF satisfying
�F (A)< 0; then

tr (P ) � �
�1(F ) tr (F

�1Q)

�1(FAF�1 + A0)
:

Applying Theorem 3.5 to (10), we can obtain the following
generalization.

Theorem 3.7: Let F be a positive definite matrix satisfying
�F (A)< 0; then

tr (P ) � ��1(F )
n

i=1

�i(F
�1Q)

�i(FAF�1 + A0)
:

Remark: WhenF = I we can obtain Theorem 3.5. The advantage
of Theorem 3.7 is that we do not use the assumption�1(A+A0)< 0.
The only assumption we have is the stability ofA; which is a
necessary and sufficient condition for the existence and uniqueness
of a positive definite solution of the Lyapunov matrix equation.

Following the same idea, we can obtain an upper bound for the
largest eigenvalue of the solutionP:

Theorem 3.8: Let F be a positive definite matrix satisfying
�F (A)< 0; then

�1(P ) �
�1(F )�1(F

�1Q)

�2�F (A)
:

In particular, if �2(A)< 0; then we have

�1(P ) �
�1(Q)

�2�2(A)
:

In Theorems 3.6 to 3.8, the matrixF is introduced to improve the
upper bound estimates. The selection ofF to obtain the tightest upper
bound estimates is an open question. Lemma 2.2 shows that ifA is
stable, there exists a matrixF such that�F (A)< 0: One procedure
to find such anF is given in the proof of [11, Th. 4]. From (10), we
observed the relationship betweenF and a similarity transformation
on the system matrixA: This provides a way of optimizing the upper
bounds given in this paper.

Next, we present an example to illustrate the generality of the
results obtained in this paper.

Example: Let

A =
�1 2

0 �1
; Q =

1 0

0 1
:

Since�2(A) = 0:5�1(A + A0) = 0; we cannot use Theorem 3.4
or Theorem 3.5.
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ChooseF = "
0

0

1
; where"> 0 is to be determined. We have

FAF
�1

+A
0

=
�2 �2"2

2 �2
:

Thus,�1(FAF�1) = �2(1 � ") and�2(FAF�1) = �2(1 + "):

Choose" = 0:5: Applying Theorem 3.7, we have

tr (P ) � �
1

�2(1� ")
+

"�2

�2(1 + ")
=

7

3
:

Using Corollary 3.2, we have

tr (P ) �
1 + 1="2

�2(1� ")
= 5:

From Theorem 3.6, we get

tr (P ) � 5� 2

3
= 13

3
:

From this example, Theorem 3.7 gives the best estimate. Applying
Theorem 3.8, we obtain�1(P ) � 4: However, the results in [1], [2],
[5], [8], and [9] cannot be used for this example.

It can be seen that using the modified Lyapunov equation (10), most
of the known results in the current literature can be generalized, and
better estimates can be obtained in this way. This is left to the readers.

IV. CONCLUSIONS

In this paper, new estimates for solutions of differential and
algebraic Lyapunov matrix equations are obtained, generalizing some
of the well-known results in the literature. Future research is directed
to the application of this new approach to differential and algebraic
Riccati equations.
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A Remark on the Stabilization of
Partially Linear Composite Systems

Abdelhak Ferfera and Abderrahman Iggidr

Abstract—In this paper, we study the global stabilization, by means
of smooth state feedback, of partially linear composite systems. We show
how to compute the stabilizing feedback thanks to a weak Lyapunov
function for a nonlinear subsystem instead of a strict one.

Index Terms—Feedback, global stabilization, Lyapunov function, non-
linear systems.

I. INTRODUCTION

Many recent papers (see [1], [2], [6], and the references therein)
addressed the problem of the global stabilization, by means of state
feedback, of nonlinear control systems of the form

_x = f(x; y)

_y = Ay +Bu
(1)

wherex 2 IRn; y 2 IRp; u 2 IRk; A 2Mp; p(IR); B 2 Mp; k(IR);

and f is a smooth vector field such that

h1) the pair(A; B) is stabilizable;
h2) the equilibriumx = 0 of _x = f(x; 0) is globally asymp-

totically stable (G.A.S). In [6], the authors assumed that the
dependence off(x; y) on y is of the following form;

h3) f(x; y) = f(x; 0) + G(x; y)Cy, with C 2 Mk; p(IR), and
both C andB are of full rank.

They proved that there exist a matrixK 2 Mk; p(IR) and a
symmetric positive definite matrixP 2 Mp; p(IR) satisfying the
following three conditions:

H1) P (A + BK) + (A + BK)TP = �Q, with Q symmetric
positive (T = transpose);

H2) (Q1=2; A + BK) detectable;
H3) BTP = C, if and only if, the linear subsystem

_y = Ay +Bu

~y = Cy; ~y 2 IRk (2)

is invertible, weakly minimum phase, and withCB symmet-
ric positive definite.

Using these conditions, they showed that (1) is globally asymptot-
ically stabilizable, and they gave the stabilizing feedback

u(x; y) = Ky � 1

2
G(x; y)

T
rV (x)

whereV is a smooth Lyapunov function satisfying

hrV; f(x; 0) i < 0 8x 2 IR
n
; x 6= 0: (3)
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