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Correspondence

A New General Sufficient Condition for Almost
Sure Stability of Jump Linear Systems

Yuguang Fang

Abstract—In this paper, we study the almost sure stability of discrete-
time jump linear systems with a finite-state Markov-form process. A
general condition for almost sure stability, which is a necessary and
sufficient condition for (scalar) one-dimensional systems, is derived. Many
simpler testable sufficient conditions for almost sure stability are derived
from this sufficient condition.

Index Terms—Almost sure stability, jump linear systems, stochastic
stability.

I. INTRODUCTION

Many practical systems which are subject to abrupt changes, such
as component and/or interconnection failure or random communica-
tion delays in automobile vehicles, can be modeled by jump linear
stochastic systems in the form

xt+1 = H(�t)xt +G(�t)ut; t 2 Z
+

= f0; 1; � � �g (1)

wheref�tg is a finite-state Markov chain [5], [17], [18]. Therefore,
a significant effort has been devoted to the optimal control of jump
linear systems with a quadratic cost functional and to developing
notions of controllability and observability for this class of systems.
Many important results concerning the analysis and design of such
systems have been obtained; see, for example, Ji and Chizeck [13],
Mariton [18], and the references cited therein.

The stability of a dynamical system is one of the primary concerns
in the design and synthesis of a control system. The study of
stability of jump linear systems has attracted considerable attention.
The earliest work can be traced back to Rosenbloom [19]. Bellman
[1] and Bergen [2] studied the moment stability properties. Later,
Bhuracha [4] used the idea developed in [1] to generalize Bergen’s
results and studied both the asymptotic stability and the exponential
stability of the mean. Darkhovskii and Leibovich [7] investigated the
second moment stability of systems wheref�tg is a semi-Markovian
process and obtained necessary and sufficient conditions for second
moment stability in terms of the Kronecker matrix product. This is
an extension of Bhuracha’s result. Kats and Krasovskii [16] and
Bertram and Sarachik [3] used a stochastic version of Lyapunov’s
second method to study almost sure and moment stability. Recently,
Ji et al. [15] and Fenget al. [11] used Lyapunov’s second method,
Costa and Fragoso [6] applied the Kronecker operators, to study the
stability of (1) with a finite-state Markov chain form process and
obtained necessary and sufficient conditions for the second moment
stability. Costa and Fragoso [6] also obtained an interesting condition
for almost sure stability. Fanget al. [8] and [9] and Fang [10]
systematically studied both almost sure and�-moment stability for
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(1) and obtained many sufficient conditions for both kinds of stability.
The relationship between almost sure stability and�-moment stability
was characterized using the large deviation theory. Inspired by this
relationship, we derive some less restrictive conditions for almost
sure stability.

This paper is the continuing research for the stochastic stability of
jump linear systems. We present a new sufficient condition for almost
sure stability for jump linear systems with a finite-state Markov chain
process. From this general condition, we give a few simple testable
conditions for almost sure stability.

II. A LMOST SURE STABILITY

We concentrate on the discrete-time jump linear system given by

xk+1 = H(�k)xk; k � 0 (2)

where�k is either an finite-state independently identically distributed
(i.i.d.) process in the state spaceN = f1; 2; � � � ; Ng with probability
distributionPf�0 = jg = pj for j 2 N or a finite-state and time-
homogeneous Markov chain with state spaceN , transition probability
matrixP = (pij)N�N , and initial distributionp = (p1; � � � ; pN). Let
� = (�1; � � � ; �N) be the unique invariant probability distribution of
f�kg if it is an ergodic Markov chain. We will use the following
notation in this paper. LetAT denote the matrix transpose. For
symmetric matricesA andB; A < B denotes thatB�A is pd. For
any matricesX andY; X <e Y denotes the elementwise inequalities.
Let kxk2 denote the Euclidean norm andkAk2 denote the induced
matrix norm, which can be given by �max(ATA); �max(�), and
�min(�) denote the largest and smallest eigenvalues, respectively.�(�)
denotes the spectral radius.

Definition 2.1: The jump linear system (2) with a Markovian
form processf�kg as specified above is said to bealmost surely
(asymptotically) stable, if for anyx0 2 Rn and any initial distribution
p of �k

P lim
k!1

kxk(x0; !)k = 0 = 1:

The following is one of our main results.
Theorem 2.1: Suppose thatf�kg is a finite-state Markov chain

with transition matrixP = (pij). If there exist positive definite (pd)
matricesP (1); P (2); � � � ; P (N) such that

sup
kxk =1

N

j=1

xTHT (i)P (j)H(i)x

xTP (i)x

p

< 1; 8i 2 N (3)

then (2) is almost surely stable.
Proof: Define the Lyapunov function

V (xk; �k) = x
T
k P (�k)xk

�=2
:

Then, we have

�V (x; i)

= E (x
T
k+1P (�k+1)xk+1)

�=2 j xk = x; �k = i

� (x
T
P (i)x)

�=2

= E (x
T
H

T
(�k)P(�k+1)H(�)x)

�=2 j �k = i

� (x
T
P (i)x)

�=2
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=

N

j=1

pij(x
T
H

T
(i)P (j)H(i)x)

�=2
� (x

T
P (i)x)

�=2

= (x
T
P (i)x)

�=2

�

N

j=1

pij
xTHT (i)P (j)H(i)x

xTP (i)x

�=2

� 1 (4)

= (x
T
P (i)x)

�=2

�

N

j=1

pij
xTHT (i)P (j)H(i)x

xTP (i)x

�=2 2=� �=2

� 1 :

As N
j=1 pij = 1, we have from L’Hospital’s rule

lim
�!0

N

j=1

pij
xTHT (i)P (j)H(i)x

xTP (i)x

�=2 2=�

=

N

j=1

xTHT (i)P (j)H(i)x

xTP (i)x

p

: (5)

Suppose that (3) holds; there exists�; 0 < � < 1, such that

sup
kxk=1

N

j=1

xTHT (i)P (j)H(i)x

xTP (i)x

p

< � < 1: (6)

Then, we can obtain that there exists a� > 0 such that for any
x 2 Rn satisfyingkxk = 1 and for anyi 2 N , the following holds:

N

j=1

pij
xTHT (i)P (j)H(i)x

xTP (i)x

�=2 2=�

< �: (7)

In fact, suppose that this is not true, then for any� > 0, there exists
i 2 N andx satisfyingkxk = 1 such that

N

j=1

pij
xTHT (i)P (j)H(i)x

xTP (i)x

�=2 2=�

� �:

As N is a finite set andSn fxjkxk = 1g is compact, without
loss of generality, we can choosei 2 N and a convergent sequence
�k satisfying �k # 0+ and a convergent sequencexk satisfying
limk!1 xk = x0 and kx0k = 1 such that

N

j=1

pij
xTkH

T (i)P (j)H(i)xk

xTk P (i)xk

� =2 2=�

� �: (8)

For notational simplicity, let

Mij(x) =
xTHT (i)P (j)H(i)x

xTP (i)x
:

SinceMij(x) is continuous onSn, for any" > 0, there existsK > 0

such that wheneverk > K, we haveMij(xk) �Mij(x0)+". From
(8), we obtain

N

j=1

pij(Mij(x0) + ")
� =2

2=�

� �:

From this and (5), we have
N

j=1

(Mij + ")
p

� �:

Letting " go to zero, we obtain

N

j=1

M
p

ij (x0) � �:

This contradicts (6), thus the claim in (7) is proved.
Taking (7) into (4), we obtain

�V (x; i) � (x
T
P (i)x)

�=2
(�
�=2

� 1)

= �(1� �
�=2

)(x
T
P (i)x)

�=2
< 0

for any x 6= 0. From the stochastic version of Lyapunov’s second
method, we conclude that (2) is�-moment stable, hence is almost
surely stable. This completes the proof.

From this theorem, we can obtain the following criterion.
Corollary 2.2: Suppose thatf�kg is a finite-state Markov chain

with probability transition matrixP = (pij). If there exist pd matrices
P (1); P (2); � � � ; P (N) such that

N

j=1

�max[H
T
(i)P (j)H(i)P

�1

(i)]
p

< 1; (i = 1; 2; � � � ; N)

then (2) is almost surely stable.
Proof: Using the following fact, maxx 6=0

x Qx

x Px
= �max

(P�1=2QP�1=2) = �max(QP
�1) and maximizing each term in

the product of (2), we can obtain the proof.
Next, we want to show that Theorem 2.1 provides a very general

sufficient condition for almost sure stability of (2). For a one-
dimensional system, the sufficient condition in Theorem 2.1 is also
necessary. And if (2) is second moment stable, then (3) is also
necessary.

Corollary 2.3: Suppose that (2) is a one-dimensional system with
jH(i)j ai 6= 0 (i = 1; 2; � � � ; N) and thatf�kg is a finite-state
irreducible Markov chain with ergodic measure�, then a necessary
and sufficient condition for (2) to be almost surely stable is that there
existN positive numbersP (1); P (2); � � � ; P (N) such that (3) holds.

Proof: We only need to prove the necessity. We first prove that
Im(P � I) = fz 2 RN : �z = 0g, where Im(A) denotes the
image of linear mappingA. In fact,8u 2 Im(P � I), there exists a
v 2 RN such thatu = (P � I)v, which implies, together with the
identity �P = �, that�u = �(P � I)v = (�P � �)v = 0; hence
u 2 fz : �z = 0g, and this implies thatIm(P � I) � fz : �z = 0g.
However,� is the unique solution to the equation

�(P � I) = 0

�(1; � � � ; 1)T = 1:

We obtain that rank(P �I) = N �1, sodim(Im(P �I)) = N �1.
Moreover,dim(fz : �z = 0g) = N � 1, and we conclude that
Im(P � I) = fz : �z = 0g. Now let us choose

z = �a+
�a

��T
�
T
2 R

N

wherea = (log a1; log a2; � � � ; log aN )T . Since�z = ��a+ �a =

0, i.e., z 2 fz : �z = 0g = Im(P � I), there exists ay 2 RN

such thatz = (P � I)y, i.e.,

(P � I)y + a =
�a

��T
�
T
: (9)

Suppose that (2) is almost surely stable. From [8] we havea
�
1
a
�
2

� � � a
�
N < 1, i.e.,

�1 log a1 + �2 log a2 + � � �+ �N log aN < 0; or �a < 0: (10)

Now chooseP (i) = e2y > 0 (i 2 N); from (9) and (10) we have

(P � I)

log P (1)

log P (2)
...

log P (N)

+

log a1
log a2

...
log aN

< 0
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which is equivalent to

N

j=1

pij log
P (j)

P (i)
+

N

j=1

pij log ai < 0; 8i 2 N:

Thus, we finally arrive at

N

j=1

P (j)

P (i)
a
2

i

p

< 1; 8i 2 N:

This completes the proof of the necessity.
Corollary 2.4: If (2) is second moment stable, then there exist pd

matricesP (1); � � � ; P (N) such that (3) holds.
Proof: Suppose that (2) is second moment stable, then from

[13], there exist pd matricesP (1); P (2); � � � ; P (N) such that

N

j=1

pijH
T
(i)P (j)H(i)� P (i) = �I; i = 1; 2; � � � ; N:

For anyx 6= 0, we have

N

j=1

pijx
T
H

T
(i)P (j)H(i)x= x

T
P (i)x� x

T
x

or

N

j=1

pij
xTHT

(i)P (j)H(i)x

xTP (i)x
= 1�

xT x

xTP (i)x
:

Using the inequality

�
�
1 �

�
2 � � � �

�
N � �1�1 + �2�2 + � � �+ �N�N ;

�i � 0;

N

i=1

�i = 1

we obtain

N

j=1

xTHT
(i)P (j)H(i)x

xTP (i)x

p

� 1�
xTx

xTP (i)x

� 1� �min(P
�1

(i)) < 1:

From this, we can conclude that (3) holds.
In the derivation of the proof of Theorem 2.1, we have used the

Lyapunov function:V (xk; �k) = (xTk P (�k)x)
�=2. It is easy to see

that xk is measurable with respect to the�-algebra generated by
�0; �1; � � � ; �k�1. It is reasonable to construct the Lyapunov function,
V (xk; �k�1) = (xTk P (�k�1)xk)

�=2, as we observed before. Then
we can obtain the following:

�V (x; i)=EfV (xk+1; �k)j xk=x; �k�1= ig � V (x; i)

�E x
T
kH

T
(�k)P(�k)H(�k)xk

�=2
� (x

T
P (i)x)

�=2

=

N

j=1

pij [x
T
H

T
(j)P (j)H(j)x]

�=2
� (x

T
P (i)x)

�=2
:

From this consideration, the following results can be achieved.
Theorem 2.5: If there exist pd matricesP (1); P (2); � � � ; P (N)

such that

max
kxk =1

N

j=1

xTHT
(j)P (j)H(j)x

xTP (i)x

p

< 1; 8i 2 N (11)

then (2) is almost surely stable.
An easier testable condition is given by the following corollary.

Corollary 2.6: If there exist pd matricesP (1); P (2); � � � ; P (N)

such that

N

j=1

(�max(H
T
(j)P (j)H(j)P

�1
(i)))

p
< 1; 8i 2 N (12)

then (2) is almost surely stable.
Corollary 2.7: If there exists a nonsingular matrixM such that

P log kMH(1)M
�1
k2; � � � ; log kMH(N)M

�1
k2

T
<e 0 (13)

then the system (2) is almost surely stable.
Proof: Notice that for any nonsingular matrixM , the matrix

norm kAk induced bykMxk is given by kMAM�1k. In (12),
choosingP (1) = P (2) = � � � = P (N) = MTM , we have

�max(H
T
(j)P (j)H(j)P(i)

�1
)

= �max(H
T
(j)M

T
MH(j)M

�1
[M

�1
]
T
)

= �max([MH(j)M
�1

]
T
[MH(j)M

�1
])

= kMH(j)M
�1
k
2

2:

Taking this into (12) and taking the logarithm on both sides, we obtain

N

j=1

pij log kMH(j)M
�1
k2 < 0; i = 1; 2; � � � ; N:

From this, we can prove the corollary.
For more special cases ofH(i), we can obtain simpler criteria. We

present one in the following.
Corollary 2.8: Suppose thatH(i) (i = 1; 2; � � � ; N) are all lower

triangular forms with spectral radii�(H(i)). Then (2) is almost surely
stable if

P (log �(H(1)); � � � ; log �(H(N)))
T
<e 0: (14)

In particular, ifH(1);H(2); � � � ; H(N) pairwise commute, then (2)
is almost surely stable if (14) holds.

Proof: For lower triangular matricesH(i), in Corollary 2.7
choosing M to be a diagonal matrix with diagonal elements
1; �; � � � ; �n�1, we complete the proof.

Remark: When the form processf�kg is a finite-state i.i.d. process
or a finite-state ergodic Markov chain, Fanget al. [8] obtained a
similar result.

As we dealt with the�-moment stability in [8], we can transform
the high-dimensional system into a one-dimensional system. Then
applying our result for one-dimensional system, we can obtain the
following.

Corollary 2.9: If there exists a matrix normk � k satisfying the
multiplicative property (i.e.,kABk � kAkkBk) such that

P (log kH(1)k; � � � ; log kH(N)k)
T
+ (P � I)y <e 0 (15)

has a solutiony, then (2) is almost surely stable. In particular, (2)
is almost surely stable if

P (log kH(1)k; � � � ; log kH(N)k)
T
<e 0: (16)

Proof: Notice that the almost sure stability of (2) is implied by
the almost sure stability of the systemzk+1 = kH(�k)kzk. Suppose
that (15) has a solutiony, letting P (i) = e2y , we can easily verify
that (12) holds withH(j) replaced bykH(j)k. From Corollary 2.6,
the systemzk+1 = kH(j)kzk is almost surely stable. This completes
the proof of the first part. The second part is the special case of the
first part,y = 0.

In [8], we have proved the following result for�-moment stability.
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Theorem 2.10:Let D = diagfkH(1)k�; kH(2)k�; � � � ; kH
(N)k�g, then for � > 0, (2) is �-moment stable if there exists a
matrix normk � k such that�(PD) < 1.

This theorem can be used to give a sufficient condition for almost
sure stability.

Corollary 2.11: Let D = diagfkH(1)k�;kH(2)k�; � � � ; kH
(N)k�g, then (2) is almost surely stable if there exists a matrix
norm k � k and a� > 0 such that�(PD) < 1.

There is a subtle relationship between Corollary 2.9 and Theorem
2.10. We use a special sufficient condition—the second part of
Corollary 2.9—to illustrate this relationship. We show that if (16)
holds, then�(PD) < 1. In fact, from (16), we have

N

j=1

kH(j)kp < 1; i = 1; 2; � � � ; N: (17)

For any i 2 f1; 2; � � � ; Ng, we have

lim
�!0

N

j=1

pijkH(j)k�
1=�

=

n

j=1

kH(j)kp :

From this and (17), there exists a� > 0 such that

N

j=1

pijkH(j)k�
1=�

< 1:

From this, we can easily deduce that

PD(1; 1; � � � ; 1)T <e (1; 1; � � � ; 1)
T
:

From [8, Lemma 3.1], we have�(PD) < 1. This means that (16)
is a stronger condition for almost sure stability. Obviously, (16) is
easier to test.

Since an i.i.d. process is also a finite Markov chain, all sufficient
conditions developed above are almost valid for the systems with
an i.i.d. finite-state process, and all sufficient conditions are much
simpler. For example, [9, Th. 3.5] can be obtained from Theorem
2.5.

Notice that in deriving all above sufficient conditions, we do not
assume that the form processf�kg is ergodic. If the form process is
ergodic, simpler conditions can be obtained for almost sure stability.
The form process with the ergodic measure is just like a finite-state
i.i.d. process for the purpose of almost sure stability. (However, this
is not true for moment stability as we showed in [8, Example 3.1].)
We can easily obtain the following useful result.

Corollary 2.12: Suppose that the form processf�kg is a
finite-state ergodic Markov process with ergodic measure� =

f�1; �2; � � � ; �Ng. Then (2) is almost surely stable if there exists
a matrix normk � k such that

kH(1)k� kH(2)k� � � � kH(N)k� < 1: (18)

Proof: Using the matrix norm to reduce (2) to a one-dimensional
system, then applying the necessary and sufficient condition for the
almost sure stability of one-dimensional systems, we can complete
the proof (see the similar proof in Corollary 2.9).

Remark: This result can also be obtained from [6, Th. 4].

III. I LLUSTRATIVE EXAMPLES

In this section, we present a few examples to show how to use the
criteria developed in this paper.

Example 3.1 [8]: Let H(1) = 1:9, H(2) = 0:5, and P =

(
0:1 0:9
0:8 0:2

). In [8], we showed that (2) is first-moment stable from
Theorem 2.10, hence it is almost surely stable. Here, we want to
apply Corollary 2.9. If we lety = (�0:3; 0:3)T , we have

0:1 0:9

0:8 0:2

log 1:9

log 0:5
+

0:1 0:9

0:8 0:2
�

1 0

0 1

�0:3

0:3

=
�0:0196

�0:1051
<e

0

0
:

From Corollary 2.9, (2) is almost surely stable. The general solution
for linear inequalities can be found by the successive approximation
algorithm. Since the processf�kg is ergodic with ergodic measure
� = (8=17; 9=17), Corollary 2.12 can also apply to this case. In fact,
1:98=170:59=17 = 0:9372 < 1.

Example 3.2: Let

H(1) =
0:5 1

0 0:5
; H(2) =

1 0

0:1 1
; P =

0:4 0:6

0:8 0:2
:

In Corollary 2.7, chooseM = diagf1; 5g. We have

kMH(1)M
�1k0:42 kMH(2)M

�1k0:62 = 0:9519

kMH(1)M
�1k0:82 kMH(2)M

�1k0:22 = 0:7075:

From the above, we know that (13) is satisfied, so (2) is almost
surely stable.

Example 3.3: Let

H(1) =
0 1

0 0
; H(2) =

0 0

1 0
; P =

0:5 0:5

0:5 0:5
:

In Theorem 2.5, chooseP (1) = P (N) = I. We can easily obtain that

max
kxk =1

2

j=1

xTHT
(j)P (j)H(j)x

xTP (i)x

p

= max
kxk =1

kH(1)xk2kH(2)xk2

= max
0���2�

jsin� cos �j =
1

2
< 1:

From Theorem 2.5, the system is almost surely stable. However, if
we choose the Euclidean norm in Theorem 2.10, thenkH(1)k =

kH(2)k2 = 1, then for any� > 0; �(PD) = �(P ) = 1; hence we
cannot apply Theorem 2.10. The same problems happen for some of
the other sufficient conditions.

IV. CONCLUSION

This paper address the almost sure stability problems for a class
of linear stochastic systems called jump linear systems. A new
general sufficient condition for almost sure stability is obtained.
From this condition, many simpler testable conditions are derived.
However, this condition involves a minimax problem, which is still
difficult to solve. The numerical consideration for this problem will
be investigated in the future.
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Calculation of the Minimal Dimension
th-order Robust Servoregulator

Wei Kang and Jie Huang

Abstract—The design of a minimal dimensionkth-order robust ser-
voregulator requires calculation of the minimal polynomial of a class
of matrices defined by the given exosystem. A characterization of the
minimal polynomial of this class of matrices was given recently in [8]
when the given exosystem is semisimple. This paper will further provide
a characterization of this class of matrices in the general case. This result
leads to a straightforward and efficient procedure to calculate the minimal
dimension kth-order robust servoregulator.

Index Terms—Linear algebra, nonlinear control, robust nonlinear ser-
vomechanism.

I. INTRODUCTION

Feedback design for the servomechanism problem can be chal-
lenging when a system is highly nonlinear. Methods of finding the
kth-order approximate solution of the problem for nonlinear systems
with or without uncertainty are introduced in [9] and [6]. The notion
of kth-order robust control was proposed in [6] to approximately
solve the robust nonlinear servomechanism problem (or robust output
regulation). Later it is shown that thekth-order robust control can
actually solve the robust nonlinear servomechanism problem under
additional assumptions [7], [3].

It was shown that thekth-order robust nonlinear servomechanism
problem can be solved by a linear controller that contains an internal
model of a dynamic system calledk-fold exosystem, a nonlinear
analog of the well-knowninternal model principleof linear regulation
theory. Therefore, the design of a minimal dimensionkth-order robust
controller requires the calculation of the minimal polynomial of thek-
fold exosystem. Thek-fold exosystem is a linear autonomous system
generated by the linearized exosystem. A characterization of the
minimal polynomial of thek-fold exosystem was given recently in
[8] where the given exosystem is semisimple. This paper will further
provide a characterization of thek-fold exosystem in the general
case. This result leads to a straightforward and efficient procedure to
calculate the minimal dimensionkth-order robust servoregulator.

The matrix in the k-fold exosystem is also the matrix of a
linear differential operator, which arises in some related control
problems such as nonlinear optimal control, nonlinearH1 control,
and feedback linearization. The result in this paper is believed to be
helpful to understand the nature of the approximate solutions to these
problems.

The rest of this paper is organized as follows. Section II sum-
marizes the results on the nonlinear robust servomechanism theory
following the lines of [6]. Section III gives a characterization of the
minimal polynomial of thek-fold exosystem. In Section IV, we close
this paper with some remarks.
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