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Correspondence

A New General Sufficient Condition for Almost (1) and obtained many sufficient conditions for both kinds of stability.
Sure Stability of Jump Linear Systems The relationship between almost sure stability &ndoment stability
was characterized using the large deviation theory. Inspired by this
Yuguang Fang relationship, we derive some less restrictive conditions for almost

sure stability.
This paper is the continuing research for the stochastic stability of
Abstract—in this paper, we study the almost sure stability of discrete- JUMP linear systems. We present a new sufficient condition for almost
time jump linear systems with a finite-state Markov-form process. A sure stability for jump linear systems with a finite-state Markov chain

general condition for almost sure stability, which is a necessary and process. From this general condition, we give a few simple testable
sufficient condition for (scalar) one-dimensional systems, is derived. Many qnditions for almost sure stability.

simpler testable sufficient conditions for almost sure stability are derived

from this sufficient condition.

Index Terms—AImost sure stability, jump linear systems, stochastic Il. ALMOST SURE STABILITY

stability. We concentrate on the discrete-time jump linear system given by

Ter1 = H(Jk‘)mk‘a k>0 (2
|. INTRODUCTION o . ) . . s
whereo, is either an finite-state independently identically distributed

ZI(.:Ihd.) process in the state spade= {1,2,---, N} with probability
distribution P{oy = j} = p; for j € N or a finite-state and time-
ﬁgmogeneous Markov chain with state spatdransition probability
matrix P = (p;;)~vx~, and initial distributiorp = (p1,---,pn~). Let

v = H(o )z, + Glo)u, teZT={0,1,--} (1) 7= (m, -+, my) be the unique invariant probability distribution of

{o} if it is an ergodic Markov chain. We will use the following

where{s,} is a finite-state Markov chain [5], [17], [18]. Therefore,notation in this paper. Letd” denote the matrix transpose. For
a significant effort has been devoted to the optimal control of jumgymmetric matricest and B, A < B denotes thal3 — A is pd. For
linear systems with a quadratic cost functional and to developigy matrices{ andY, X <. Y denotes the elementwise inequalities.
notions of controllability and observability for this class of systemd.et ||z||»- denote the Euclidean norm arfdi||> denote the induced
Many important results concerning the analysis and design of sutiatrix norm, which can be given by/Amax(AT A), Amax(:), and
systems have been obtained; see, for example, Ji and Chizeck [23};.(-) denote the largest and smallest eigenvalues, respecti(ely.
Mariton [18], and the references cited therein. denotes the spectral radius.

The stability of a dynamical system is one of the primary concernsDefinition 2.1: The jump linear system (2) with a Markovian
in the design and synthesis of a control system. The study foim process{s} as specified above is said to laémost surely
stability of jump linear systems has attracted considerable attentigasymptotically) stablgf for any zq € R"™ and any initial distribution
The earliest work can be traced back to Rosenbloom [19]. Bellmanof o
[1] and Bergen [2] studied the moment stability properties. Later, )

Bhuracha [4] used the idea developed in [1] to generalize Bergen’s P{khj{}@ |k (o, w)I| = 0} =1
results and studied both the asymptotic stability and the exponential . i
stability of the mean. Darkhovskii and Leibovich [7] investigated the | € following is one of our main results. _
second moment stability of systems whéra } is a semi-Markovian ' heorem 2.1:Suppose tha{o } is a finite-state Markov chain
process and obtained necessary and sufficient conditions for secWHE .transmon matrix” = (pi;). If there exist positive definite (pd)
moment stability in terms of the Kronecker matrix product. This jatricesP(1). P(2),---. P(N) such that
an extension of Bhuracha’s result. Kats and Krasovskii [16] and N o T T . .

; i : ) x (\)P(j)H (i
Bertram and Sarachik [3] used a stochastic version of Lyapunov’s sup < TP,
second method to study almost sure and moment stability. Recently, I*I2=1 j=1 @ Pl
Ji et al. [15] and Fenget al. [11] used Lyapunov’s second method,[hen (2) is almost surely stable.
Cost.g and Frago.so [6] .applled the Kronecker .operators, to study the Proof: Define the Lyapunov function
stability of (1) with a finite-state Markov chain form process and
obtained necessary and sufficient conditions for the second moment Vg, 0p) = (,r[P(gk)g;k)b/z,
stability. Costa and Fragoso [6] also obtained an interesting condition
for almost sure stability. Fangt al. [8] and [9] and Fang [10] Then, we have
systematically studied both almost sure anthoment stability for AV (z, 1)

Many practical systems which are subject to abrupt changes, s
as component and/or interconnection failure or random communi
tion delays in automobile vehicles, can be modeled by jump line
stochastic systems in the form

);r Pij
) <1, VieN ®3)

= E{(;lj{+1P(0k+1)J’k+1)6/2 |xr = @, 00 = i}
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N
=" pi; " H ()P(HH(i)e)"? — (27 P(i)a)*?

j=1

( P(7 5/2
N ’l,’T o i . Da 5/2
[Enferggy]

j=1

= (2" P(i)x)*?
2/6 5/2

N HY()WP()H()x
<jzlsz< I(TP((ZJ)J, ) ) -1

As 3-'_ pij = 1, we have from L’'Hospital's rule

& LTHT () PGYH ()
%Lné [Zp”( l‘lP(i)J ' )

j=1

_ 1y (2THT )P H (D"
N H < ' P(i)x ) ’ ©)

j=1

X

2/6

Suppose that (3) holds; there exigtsO0 < p < 1, such that

”sth1 H1 <r L (I)IDZD(EJ)?LH(Z) ) U< p< 1. (6)

Then, we can obtain that there existssa> 0 such that for any
x € R" satisfying||z|| = 1 and for anyi € N, the following holds:

N STHTOPGHHGONT
("

j=1

In fact, suppose that this is not true, then for @ny 0, there exists
i € N and =z satisfying||z|| = 1 such that

2

N SO PGEGON
S (22",

j=1

As N is a finite set andS™ £ {z|||z|| = 1} is compact, without

loss of generality, we can chooses N and a convergent sequence

6, satisfying 6, | 04 and a convergent sequenag satisfying

limg oo 2, = w9 and||zg|| = 1 such that
N e o 2/5%
S (L OPOEGO )T
Lt el P(i)as =
=1

For notational simplicity, let
2"HT () PGYH ()
T P(i)x
SinceM;;(x) is continuous orb™, for any= > 0, there existdy” > 0

such that whenever > K, we haveM;; (i) < M;;(zo) +2. From
(8), we obtain

N 26
<ZP1;(}L](7«O) + E)r%/Q) >

j=1

\Y%

From this and (5), we have
N
H(Mii —|—6)pij > p.

j=1

Letting £ go to zero, we obtain

N
H J\/[fjij (z0) > p-
j=1

This contradicts (6), thus the claim in (7) is proved.
Taking (7) into (4), we obtain

AV (i) < (2" P()2)* 2 (p"* = 1)
=—(1-p")E"PHa)?* <0

for any 2 # 0. From the stochastic version of Lyapunov’s second
method, we conclude that (2) ismoment stable, hence is almost
surely stable. This completes the proof. O
From this theorem, we can obtain the following criterion.
Corollary 2.2: Suppose tha{s;} is a finite-state Markov chain
with probability transition matrix® = (p;;). If there exist pd matrices
P(1),P(2),---, P(N) such that

N
[] Ao T (OPGHEGOP™ (D)5 <1, (i=1.2.---.N)

7=1

then (2) is almost surely stable.

Proof: Using the following fact, max., o ;;ﬁ; = Amax
(P7Y2QP7Y?) = Amax(QP~') and maximizing each term in
the product of (2), we can obtain the proof. (I

Next, we want to show that Theorem 2.1 provides a very general
sufficient condition for almost sure stability of (2). For a one-
dimensional system, the sufficient condition in Theorem 2.1 is also
necessary. And if (2) is second moment stable, then (3) is also
necessary.

Corollary 2.3: Suppose that (2) is a one-dimensional system with
[H(i)| £ ai #0 (i = 1,2,---,N) and that{o} is a finite-state
irreducible Markov chain with ergodic measure then a necessary
and sulfficient condition for (2) to be almost surely stable is that there
exist N positive numbers(1), P(2),---, P(N) such that (3) holds.

Proof: We only need to prove the necessity. We first prove that
Im(P—1I) = {z € RV : 7z = 0}, whereIm(4) denotes the
image of linear mapping!. In fact, Vu € Im(P — I), there exists a
v € R such thatu = (P — I)v, which implies, together with the
identity aP = x, thatru = n(P — I)v = (P — w)v = 0; hence

u € {z: wz = 0}, and this implies thatm(P —I) C {z : 7z = 0}.
However, 7 is the unique solution to the equation

n(P—1)=0
m(l,---, 1) =1

We obtain that rankP —T) = N — 1, sodim(Im(P—1)) = N — 1.
Moreover,dim({z : =7z = 0}) = N — 1, and we conclude that
Im(P —I) = {z : wz = 0}. Now let us choose

‘/:—a+ﬂ7rTERN

- rrl
wherea = (logai,logas,-++,logay)”. Sincenz = —wa + ma =
0,ie,z €{z:7mz = 0} = Im(P - I), there exists & € R”Y
such thatz = (P -y, ie.,

Ta T

(P-Dy+a=—7 . 9)

(iwiy

Suppose that (2) is almost surely stable. From [8] we hgVe:]?
caly < 1, e,

mloga; + mlogas + -+ wxlogany <0, orra < 0. (10)
Now chooseP(i) = ¢*¥: > 0 (i € N); from (9) and (10) we have
log \/P(lk) log ay
log \/P(2) log a>

(P-1) _ + <0

log /P(N) logan
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which is equivalent to
N

[PG) |+
o .. . ; ’/T
;pulog PO +;p,]logal<0, Vi e N.

Thus, we finally arrive at

N

11

7=1

P(j)
P(i)

N\ Pis
a§> <1, VYieN.

This completes the proof of the necessity. O

Corollary 2.4: If (2) is second moment stable, then there exist p

matricesP(1),---, P(N) such that (3) holds.

Proof: Suppose that (2) is second moment stable, then fro

[13], there exist pd matriceB(1), P(2),---, P(N) such that

N

S pi H ()PGYH () = Pli) = =1, i

j=1

1,2,---,N.

For anyz # 0, we have
N
ZlHl ; Npe — 2L P(D e — 2L
Dijx (OPHH(Dz=z Pli)z —x
7=1

or
Zp,,_xl HYOPGHH()x 1 llir

7=1
Using the inequality

ﬂi’flﬁsz L ,BKTN S al,ﬁl —|— 042,82 + e -l— OJN/SN./

N
<sz‘ > O,Z(}zi = 1)
=1

we obtain
ﬁ 2THT () PHH ()2 \" <1- el
P T P(i)x - T P(i)x

<1 = Amin(PH(0) < 1L

From this, we can conclude that (3) holds. O
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Corollary 2.6: If there exist pd matrice® (1), P(2),---, P(N)
such that
(Amax (H " (1) PG H ()P~ ()P < 1,

VieN (12)

—-

1

J

then (2) is almost surely stable.
Corollary 2.7: If there exists a nonsingular matri such that

P(log |MH(L)M ™ |2~ log |[MHE(N)M™"|2)" <. 0 (13)

glen the system (2) is almost surely stable.

Proof: Notice that for any nonsingular matri¥/, the matrix
norm ||A|| induced by||Mzx| is given by ||MAM . In (12),
PoosingP(1) = P(2) = --- = P(N) = M' M, we have

Amax(HT (j)P(j) H () P(i) ")
= Amax (H ()M " MH(GHM [ M)
= Nnax ([MHG)M ' [MH(G)M ™))
= [|MHG)M |3

Taking this into (12) and taking the logarithm on both sides, we obtain

N
S pilog [MHG)M 2 <0, i=1.2---.N.

j=1

From this, we can prove the corollary. (I

For more special cases #f(7), we can obtain simpler criteria. We
present one in the following.

Corollary 2.8: Suppose thaH (i) (i = 1,2,---,N) are all lower
triangular forms with spectral radil H(7)). Then (2) is almost surely
stable if

P(log p(H(1)),---,log p(H(N)))" <. 0. (14)
In particular, if H(1), H(2),---, H(N) pairwise commute, then (2)
is almost surely stable if (14) holds.

Proof: For lower triangular matriced (), in Corollary 2.7
choosing M to be a diagonal matrix with diagonal elements
1,e,---,e" ' we complete the proof. O

Remark: When the form processr. } is a finite-state i.i.d. process
or a finite-state ergodic Markov chain, Faeg al. [8] obtained a
similar result.

In the dirlvatllon.‘ef the p“’ff OfT?eoremé/ZQ'l’ we have used the As we dealt with the5>-moment stability in [8], we can transform
Lﬁ/apunO_v unction: bl(”“ﬁ) = (wy, (ng) I .blt Is easy to jet? the high-dimensional system into a one-dimensional system. Then
that z;. Is measurable with respect to thealgebra generated by o, o\ving our result for one-dimensional system, we can obtain the
09,01, -+,0,—1. ItiS reasonable to construct the Lyapunov funCt'Onfollowing

V(zg, 0k 1) = (2] P(or_1)ax)/?, as we observed before. Then Corollary 2.9:

; . If there exists a matrix nornf| - || satisfying the
we can obtain the following:

multiplicative property (i.e.||AB|| < ||A]|||B]|) such that
AV(w,i)=E{V(apt1,08)| apr=a,0p—1 =i} — V(x,1)

" /2 1 5/2 P(log|[H(D)||,- -, log || H(N)|)T + (P = D)y <. 0
x E{[ek H (o) P(or)H(or)2r]"*~ (2" P(i)2)"*}

(15)

N _has a solutiory, then (2)_ is almost surely stable. In particular, (2)

- Z]),“]‘[]"THT(]’)P(.)')H(.]')J?]E/2 — (2" P(i)x)*. is almost surely stable if
j=1

P(log||H(1)|.,---.log ||H(N)|D* <. 0. (16)
From this consideration, the following results can be achieved.

Theorem 2.5:If there exist pd matricesP(1), P(2),:--, P(N) Proof: Notice that the almost sure stability of (2) is implied by

such that the almost sure stability of the system, = ||H(o)||zx. Suppose

N o B that (15) has a solutiop, letting P(i) = ¢?¥¢, we can easily verify

i H ' H'(j)PG)H ()= \"" <1 VieN (1) that (12) holds withH (5) replaced byl H (;)||. From Corollary 2.6,
llp=1 T P(i)x ’ - the systen;1 = ||H(j)]||z» is almost surely stable. This completes

the proof of the first part. The second part is the special case of the
first part,y = 0. O
In [8], we have proved the following result férmoment stability.

then (2) is almost surely stable.
An easier testable condition is given by the following corollary.
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Theorem 2.10:Let D = diag{||HD)|*,|H2)|)*. -, ||H Example 3.1 [8]: Let H(1) = 1.9, H(2) = 0.5, and P =
(N)||°}, then fors > 0, (2) is &-moment stable if there exists a(g o). In [8], we showed that (2) is firstmoment stable from
matrix norm|| - || such thatp(PD) < 1. Theorem 2.10, hence it is almost surely stable. Here, we want to

This theorem can be used to give a sufficient condition for almospply Corollary 2.9. If we lety = (—0.3,0.3)”, we have
sure stability.

Corollary 2.11: Let D = diag{[|[H(D)|I*, |H2)I*, -, || H <0.1 O.9)<log1.9)+ Ko.l 0.9)_ <1 0)}(—0.3)
(N)||°}, then (2) is almost surely stable if there exists a matrix \0-8 0.2 /\log0.5 0.8 0.2 01 0.3

norm| - || and aé > 0 such thatp(PD) < 1. B <—0.0196) <O>

There is a subtle relationship between Corollary 2.9 and Theorem —0.1051 0

2.10. We use a special sufficient condition—the second part of

Corollary 2.9—to illustrate this relationship. We show that if (16From Corollary 2.9, (2) is almost surely stable. The general solution

holds, thenp(PD) < 1. In fact, from (16), we have for linear inequalities can be found by the successive approximation

algorithm. Since the procedsr.} is ergodic with ergodic measure

N By 7 = (8/17,9/17), Corollary 2.12 can also apply to this case. In fact,
[TnEGIFs <1, i=12.-. N A7) 1.9%/170.5°/17 = 0.9372 < 1.
7=l Example 3.2: Let

Foranyi € {1,2,---, N}, we have 0.5 1 10 0.4 0.6
s H(1>=<0 0.5)’ H@)= <0.1 1)* P:<0.8 0.2)'
N /¢ n
. né 1P
L <Zpif”H(J)H ) = [T1EmI. In Corollary 2.7, choosé/ = diag{1,5}. We have
Jj=1 Jj=1

, , MHMOM S MH2)M ™ )5° = 0.951

From this and (17), there existssa> 0 such that 1M H(1) 1”3 8|| (2) 1”5 ) 0.9519
IMEQ)M SN ME2)M ™ = 0.7075.

N 1/8

<Zp”»||H(j)||5> <1 From the above, we know that (13) is satisfied, so (2) is almost

surely stable.

Example 3.3: Let

j=1
From this, we can easily deduce that
0 1 o (00 _ (0.5 0.5
PD(1, 1, 1) <. (1,1,---,1)". H{)= <0 o)*H(z)— <1 0)"1)_ <0.5 0.5)‘

From [8, Lemma 3.1], we have(PD) < 1. This means that (16) In Theorem 2.5, choosB(1) = P(N) = I. We can easily obtain that
is a stronger condition for almost sure stability. Obviously, (16) is

easier to test. o 2 (THY(HYPGYH )\
Since an i.i.d. process is also a finite Markov chain, all sufficient llella=1 o 2T P(i)x
conditions developed above are almost valid for the systems with . ]f H1): (s
an i.i.d. finite-state process, and all sufficient conditions are much et [1H (L)ell2(| H (2)x]l2
simpler. For example, [9, Th. 3.5] can be obtained from Theorem ) 1
25 = max |[sinfcosf| == < 1.
e 0<6<2r 2

Notice that in deriving all above sufficient conditions, we do not
assume that the form proce&s; } is ergodic. If the form process is From Theorem 2.5, the system is almost surely stable. However, if
ergodic, simpler conditions can be obtained for almost sure stabilitye choose the Euclidean norm in Theorem 2.10, théR(1)|| =
The form process with the ergodic measure is just like a finite-stdtél (2)||. = 1, then for anyé > 0, p(PD) = p(P) = 1; hence we
i.i.d. process for the purpose of almost sure stability. (However, thignnot apply Theorem 2.10. The same problems happen for some of
is not true for moment stability as we showed in [8, Example 3.1]the other sufficient conditions.

We can easily obtain the following useful result.
Corollary 2.12: Suppose that the form proces&si} is a

- . ; . IV. CONCLUSION
finite-state ergodic Markov process with ergodic measure=

{71, 72, -, 7~ }. Then (2) is almost surely stable if there exists This paper address the almost sure stability problems for a class
a matrix norm|| - || such that of linear stochastic systems called jump linear systems. A new
general sufficient condition for almost sure stability is obtained.

|H O[T H )™ [|H(N)|™ < 1. (18) From this condition, many simpler testable conditions are derived.

However, this condition involves a minimax problem, which is still
Proof: Using the matrix norm to reduce (2) to a one-dimensiondifficult to solve. The numerical consideration for this problem will
system, then applying the necessary and sufficient condition for @ investigated in the future.
almost sure stability of one-dimensional systems, we can complete
the proof (see the similar proof in Corollary 2.9). (I ACKNOWLEDGMENT

Remark: This result can also be obtained from [6, Th. 4].
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IIl. TLLUSTRATIVE EXAMPLES for the improvement of this paper. Thanks are also due to K. Loparo

In this section, we present a few examples to show how to use #red X. Feng at Case Western Reserve University for their inspiring
criteria developed in this paper. discussions.
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M. Mariton, Jump Linear Systems in Automatic ControNew York: ~ Calculate the minimal dimensiokth-order robust servoregulator.

Marcel Dekker, 1990. The matrix in the k-fold exosystem is also the matrix of a

A. Rosenbloom, “Analysis of linear systems with randomly time-varyindinear differential operator, which arises in some related control
ﬁ?ramit&rs,” irProc. Symp. Inf. NefsPoly. Inst. Brooklyn, 1954, vol. hroplems such as nonlinear optimal control, nonlingag control,

P ' and feedback linearization. The result in this paper is believed to be
helpful to understand the nature of the approximate solutions to these
problems.

The rest of this paper is organized as follows. Section Il sum-
marizes the results on the nonlinear robust servomechanism theory
following the lines of [6]. Section Ill gives a characterization of the
minimal polynomial of the:-fold exosystem. In Section IV, we close
this paper with some remarks.
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