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vector norm )I . )I is defined by 

Detailed properties can be found in [2].  As in [I], let H denote the 
complex left-half plane divided by a line L ,  which intersects with the 
real axis at ( 0 . 0 )  and has an angle b’ with the imaginary axis, i.e., 

H = ( 2  = .r + j y  I y < a - ( t a n 0 ) s ) .  

The following theorem is the main result obtained by Wang and Lin 
[ll. 

Theorem 1: All the eigenvalues of the matrix ‘4 are located in the 
region H if 

where j = a. p p  denote the matrix measure induced by the 
p-norm and p = 1 or 2 or x. 

The following example illustrates the conservative nature of The- 
orem 1. 
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Example 1: Choose H to be the left-half plane (i.e., 0 = 0 and 
0 = 0). Then Theorem 1 reduces to a stability test result. Let 

= (-’ ’). It is obvious that -4 is stable (or its eigenvalues 

are in H ) .  Theorem 1, however, cannot be used to test the stability 
of =1. In fact, according to Table I in [I], we have 

MIT Press, 1971. 0 -1 

p1(-4) = 1. / /2(-4)  = 0. / Ix( -4)  = 1 

thus the conditions in Theorem 1 can not be satisfied. 

following result. 
To overcome this problem, we generalize Theorem 1 to the 

The Analysis of Eigenvalue Assignment Robustness 

Yuguang Fang 

Abstract-In this short note, we have shown that the results obtained 
recently in [l] are conservative. A new generalization which can overcome 
such conservatism is presented. 

In [l], Wang and Lin studied the robust eigenvalue assignment 
for systems with parameter perturbations via matrix measures. They 
used three special matrix measures to obtain testable conditions for 
robust eigenvalue assignment. In this short note, we will show how 
conservative their results are and derive a new generalization which 
overcomes the conservative nature of their approach. 

To facilitate the discussion, we first give the general concept of a 
matrix measure. Let C“ ( R ” )  denote all ordered n-tuples of complex 
(real) numbers and C r Z x ”  ( R 7 L X ’ 1 )  represent the set of all 12 x 7 1  

matrices with complex (real) entries. Let )I . 1 1  be any vector norm 
on C” and ((d(l denote the matrix norm of A induced by the vector 
norm ( 1  . ( 1 ,  the corresponding matrix measure of A induced by the 
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Theorem 2: All the eigenvalues of the matrix A are located in the 
region H if there exists a matrix measure / L  such that 

To prove this, we only need the following property of a matrix 

Lemma: For any matrix measure p .  any complex number c and 
measure. 

any matrix -4. we have 

/ / ( - A  + c1)  = / / ( A )  + W e )  

where R( c )  denotes the real part of c. 

/ ( ( z A  + = 
to show that p (d + b j 1 )  = / i  ( A ) .  In fact 

Pro08 If c is complex, let c = R(c) + b j ,  then we have 
+ b j 1 )  + Re(c), where j = a. So it suffices 

J i T m q r  + 

m l ( 1  + *’All - 1 

.-I - l+;:02 A O ’ l l  - 1 
= lini 

O l O +  b’ 

= P(A)  0 
= lini 

O l O +  

where we have used the fact that, as b’ 1 0+. O/( 1 + b 2 B L )  1 0’. 
0 This completes the proof of Lemma. 
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Using this lemma, we can easily prove Theorem 2. 
Proof of Theorem 2: Using the above lemma, we have 

p ( e - ” ( A  - c y l ) )  = p ( e - ” A  - ae-”l) 

= p(eC3‘A) + ?TZ(-cye-”) 

= p(e - -”A)  - a cos 0. 

Using a similar procedure as in [l], we can finish the proof. 
Now, we apply this result to the previous example. Choose the 

vector norm ((zll = ((TzII1, where T = (: :), then the induced 

matrix measure is given by 

hence from Theorem 2, we can conclude that A is stable. This illus- 
trates that Theorem 2 is an improvement over Wang and Lin’s result 
(Theorem 1) and can provide a way to overcome the conservatism 
of Theorem 1. 

Because all the rest of the results presented in [l] were derived 
from Theorem 1, they too can be modified in a similar manner. The 
following result is for the generalized stability of a perturbed system. 

Theorem 3: All the eigenvalues of A + E remain in the region 
H if there exists a matrix measure p (possibly depending on the 
perturbation E) such that 

can try to solve the minimization problem 

min p 2  (TAT-’)  
T € n i  

where N is the set of nonsingular real matrices. If the minimum is 
less than a COS 8, then all the eigenvalues will be in the region H .  
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Stability and Performance of a Simple 
Distributed Tracking Policy for Production 

Control of Manufacturing Systems 

Ali Sharifnia 
JJEJJ  < - p ( e - j 0 A )  + ct cos 0. 

It is observed that for any nonsingular matrix T and any vector 
norm (1 .  (1  with the induced matrix measure p,  the matrix measure p~ 
induced by the vector norm 1ITz() is given by ~ T ( A )  = p(TAT-’) .  
By specifying the matrix measure p and the transformation T, the 
conservative nature of the results presented in [l] can be overcome. 
Usually it is enough to choose p to be one of the matrix measures 
p 1 .  p~2 or pm.  and to choose the transformation T appropriately. We 
formalize this observation as a corollary. 

Corollary: For a nonsingular matrix T, define 

Then the following results are true: 
i) All the eigenvalues of the matrix A are located in the region H 

if there is a nonsingular matrix T such that for i = 1 or 2 or cc 

ii) All the eigenvalues of A + E remain in the region H if there is 
a nonsingular matrix T such that for i = 1 or 2 or 00 

How to appropriately choose the transformation T to achieve the 
best result is still open and currently under investigation. The general 
guideline is to solve a minimization problem. For example, for i), we 

Abstract-The objective of distributed tracking is to operate a pro- 
duction system as closely as possible to an idealized regime obtained by 
a continuous-flow relaxation of the actual (discrete) production control 
problem. The stability and performance of a large class of distributed 
tracking policies called “non-idling-non-exceeding (NINE)” were inves- 
tigated in an earlier paper. In this work we focus on the most natural 
tracking policy in this class and find a tight bound on its performance for 
a single machine and a sufficient condition for its stability for multiple- 
machine systems. This condition is considerably less stringent than the 
one available for general NINE policies. 

I. INTRODUCTION 
In a recent paper we have investigated the stability and per- 

formance of a large class of distributed tracking policies, called 
“non-idling-non-exceeding (NINE),” for real- time production control 
of manufacturing systems. These policies are guided by the solution 
of a continuous-flow relaxation model of the actual (discrete) pro- 
duction control problem [6].  This solution can be found efficiently 
and provides “ideal” production target trajectories for individual 
operations over time. A problem of special interest is the potential 
instability of distributed tracking due to the discreteness of the actual 
control space. If unstable, the tracking error can grow without limit 
over time. 

Manuscript received August 23, 1993; revised July 7, 1994. The work was 
supported in part by National Science Foundation Grants DDM-9215683 and 
DDM-9215368. 

The author is with the Department of Manufacturing Engineering, Boston 
University, Boston, MA 02215 USA. 

IEEE Log Number 9410786. 

0018-9286/95$04.00 0 1995 IEEE 


