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Inequalities for the ’ h c e  of Matrix Product 

Yuguang Fang, Kenneth A. Loparo, and Xiangbo Feng 

Absrmct-In this note, a counterexample to the main result given in 
[l] is constructed. We generplize a well-known result and obtain better 
bounds for the trace of two nutrices. 

I. INTRODUCTION 

To obtain estimates of solutions of Lyapunov and Riccati equations 
which frequently occur in the stability analysis arid optimal control 
design in linear control theory, many researchers have attempted to 
determine upper and lower bounds for the product of two matrices 
in terms of the trace of one matrix and the eigenvalues of the other. 
Recently, Baksdary and Puntanen [ 11 claimed that they had obtained 
a better estimate for the trace of the product of two matrices. The first 
purpose of this note is to point out that their main result is incorrect 
and a counterexample is presented. We also present a counterexample 
to a “tempting” conjecture and then generalize a result of Mori given 
in [2]. 

To facilitate the discussion, notions and previous results are pre- 
sented next. Let R,,, denote the set of n x n real matrices; s, c 
R,,, is the set of n x n real symmetric matrices, and V, C S, is 
the set of n x n positive semidefinite matrices. Kleinman and Athans 
[3], in the context of design of suboptimal control systems, obtained 
that, for any A E Vn and B E Vn 

where Xi(A) is the ith largest eigenvalue of A. Wang et al. [4] 
proved that the inequality in (1) still holds if A E S,. Baksalary 
and Puntanen [l] claimed that “the two bounds in (1) hold also for 
any symmetric B, not necessarily nonnnegative definite” (Remark: 
from the context of [ 11, we can see that the nonnegative definiteness 
in [l] really means positive semidefiniteness). This is not true; for 
example, consider the matrices 

Then tr (AB) = 1, X1(A) = 1 and tr (B)  = 0, obviously, (1) is not 
valid for this case. Mori [2] generalized the above result to the case 
when A is any real matrix. 
Theorem 1: For any A E Rn,n and B E Y,, the following 

inequality holds 

An (a) tr ( B )  5 tr (AB) 5 XI (a) tr ( B )  (2) 

where a = ( A  + A f ) / 2 .  Baksalary and Puntanen [l] claimed that 
they obtained a better result than (2), especially for the case when 
A is indefinite. 

Proposition (Main Theorem in [ I ] ) :  Let A E %,n and B E Vn, 
and let a = $ ( A  + A‘). Further, let v*(x) and .*(a) denote the 
smallest and the largest negative eigenvalues of if they exist, and 
v*@) = v*@) = 0 otherwise; let n*(X) and .*(a) denote the 

- 

Manuscript received November 29, 1993. 
The authors m with the Department of Systems Engineering, Case Western 

IEEE Log Number 9405666. 
Reserve University, Cleveland, Ohio 44106 USA. 

smallest and the largest positive eigenvalues of 2 if they exist, and 
T*@) = .*(a) = o otherwise. Then 

[v*(a) + 7r*(a)]tr(B) 5 tr (AB) 5 [v*(a) +~*(a)]tr(B). (3) 

This result is incorrect; a counterexample is given next: Let 

then tr(AB) = 17, K*@) = 4, .*(a) = -3, and t r (B)  = 10, thus 
the second inequality in (3) does not hold for this example. Replacing 
A by -A, we can obtain a counterexample for the first inequality 
in (3). The problem with the main result in [l] occurs in the proof 
where the equalities Xn(A1) = n*(a), Xn(A2) = - v * ( a )  are used. 
According to the decomposition of 2, which is given, Xn(A1) = 0 
and X”(A2) = 0. 

II. MAIN RESULTS 
From Mori [2]. we know that X l ( 2 )  = pz(A),  where pZ(A) is 

the matrix measure of A induced by the 2-norm. Also from [5], we 
know that maxz ReX,(A) 5 pz(A),  it is tempting to conjecture the 
following. 

Conjecture: For any A E R,,, and B E V,, the following 
inequality holds 

tr(AB) = t r (aB)  5 maxReX,(A)tr(B). 
z 

Unfortunately, this is not true. For example, let 

-1 1 10 5 
A = ( o  -2) and B = ( 5  3)- 

Then a simple computation gives tr (AB)  = - 11, max, Re A, ( A )  = 
-1, and tr (B) = 13, and the conjecture is not true. One may attempt 
to obtain better estimates for tr (AB) ;  the following result shows that 
(2) given by Mori in [2] is the best estimate in a certain sense. 

Theorem 2: For A E R,?, fixed, if cy and p are any numbers 
satisfying 

(4) atr (B)  5 tr(AB) I Ptr(B) 

for any positive semi-definite matrix B, then a 5 A,@) and 
XI (a) 5 ,B, i.e., A, (a) and XI (3) are the tightest bounds for the 
inequality (4). Hence (2) is the best estimate of tr (AB) in this sense. 

Pro08 From (2), we know that h(a) satisfies (4), 
i.e., tr (AB) 5 Al(a)tr(B). It suffices to show that 
equality can be achieved by the proper choice of B E V,. 
Since 3 is symmetric, there exists a unitary matrix U, 
such that U”;iU diag { X I  (a), . . . , A, (x)}. Then choose 
B = Udiag{l,O,.--,O}U’, we have 

= 

tr(AB) = traB = tr(~Udiag(l ,O,.- . ,O}U‘) 

= tr(U’XVdiag(1, o,...,o}) = = Ai(X)tr(B). 

From this we can conclude that A1 (a) 5 p. A similar argument can 
be used to complete the proof. 

Remark: Baksalary and Puntanen [ 11 also claimed that the bounds 
of [2] cannot be attained unless a is a definite matrix. From T h e ”  
2, we observe that this statement is not correct. 
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All of the above inequalities are based on the assumption that B 
is positive semidefinite. When B is indefinite, (2 )  is no longer valid. 
The next result is similar to the result ( 2 )  for the case when B is 
symmetric, but not necessarily positive semidefinite. 

Theorem 3: For any matrix A E R,,,, and any symmetric B E 
S,, let 2 = ( A  + A’) /2 .  Then 

Prooj? Since l3 is symmetric, there exists a real cy such that 
B + nI is nonnegative definite. From (2), we obtain 

tr (A(B + n I ) )  = tr (X(B + Q I ) )  5 X l ( Z )  tr ( B  + 01) 
= (2) tr(L1) + n(nXI(A)). 

From this we have 

tr(AB) 5  XI(^) tr (B)  + u ( n X l ( 2 )  - tr(A)). (6) 

Now let (1 = -Xmin(B) = -X,(B) where X(X) represents any 
eigenvalue of the matrix X .  Since A ( B  + cyI) = X ( B )  - A,,, ( B )  2 
0, so this choice of 01 satisfies the required condition. From (6) we 
obtain the second inequality in (5) .  In a similar fashion, we can prove 
the first inequality in (5). This concludes the proof. 

Remark: For a positive definite matrix B ,  Theorem 3 improves 
the result by Mori. This can be seen from (5). When B is positive 
definite, X,(B) > 0, and 

nX1 (2) - tr ( A )  = T L X ~  (3) - tr (X) 
,L 

= C(X,(X) - A,@)) 2 0. 
< = I  

The upper bound given in (5) is tighter than the upper bound given 
in (2) for this case. A similar argument applies to the lower bound. 
Theorem 3 then generalizes the result of [2] and also gives a better 
estimate of the trace of the matrix product. This result can be used 
to obtain improved bounds for the solutions of Lyapunov and Riccati 
equations and will be presented in a subsequent paper. 

Several examples are given next. 
Example I :  Let 

From (2), we obtain 

-4 5 tr(AB) 5 -4 

but (5) yields 

-2 5 t r (AB) 5 2 

which is an improved estimate of the tr ( A B ) .  
Example 2: Let 

In this example, B is indefinite and (2 )  is not valid for this case. 

The result (5) gives 

-1 5 tr(AL3) 5 1. 

Indeed, tr ( A B )  = 1 which is equal to the upper bound! 

111. CONCLUSION 
A counterexample to a recent result on the inequality of the trace 

of matrix product is given. We show that Mori’s result given in [2] is 
the best possible in a certain sense. Then a generalization of Mori’s 
result is presented, and improved bounds for the trace of product of 
an arbitrary matrix and a nonnegative definite matrix are obtained. 
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Properties of the Entire Set of Hurwitz Polynomials 
and Stability Analysis of Polynomial Families 

Guang-Ren Duan and Min-Zhi Wang 

Abstract-It is proved in this note that all Hurwitz polynomials of order 
not less than n form two simply connected Bore1 cones in the polynomial 
parameter space. Based on this result, edge theorems for Hurwitz sta- 
bility of general polyhedrons of polynomials and boundary theorems for 
Hurwitz stability of compact sets of polynomials are obtained. Both cases 
of families of polynomials with dependent and independent coefficients 
are considered. Different from the previous ones, our edge theorems 
and boundary theorems are applicable to both monk and nonmonic 
polynomical families and do not require the convexity or the connectivity 
of the set of polynomials. Moreover, our boundary theorem for families of 
polynomials with dependent coefficients does not require the coefficient 
dependency relation to be affine. 
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