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that a major advantage of the feedback linearization technique is tR the Relationship Between the Sample Path and Moment

the feedback (10) provides the open-loop control that exactly steersthe  Lyapunov Exponents for Jump Linear Systems
system on a given path. This is normally of great help in motion plan-

ning problems. Yuguang Fang and Kenneth A. Loparo
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w(k+1) = Ara(k) «(0) =0 (1.1)

where{ A, }«>0 is a sequence af!(d, R)-valued random variables.
Here,Gl(d, R) is the general linear group of dimensidwover the real
field, R. Fixing coordinates, a representative elemenrfffd, R) is a
nonsingular! x d matrix overR. A sample trajectory of (1.1) is given
by the action of a random matrix product on a poipt € R?. Our
analysis is restricted to random matricesGi(d, R) because of the
importance ofegularity of (1.1) [3].

The asymptotic behavior of sample trajectories of system (1.1) have
been studied extensively by many researchers, most notably in the con-
text of random matrix products (see [3]). Furstenberg and Kifer [6] con-
sidered the Lyapunov exponents and the corresponding subspace filtra-
tion of the state space, and obtained an integrability condition. Arnold
[1] and Arnoldet al. [2] have been studying moment Lyapunov ex-
ponents for linear stochastic systems and discovered a formula that
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connects the (top or largest) Lyapunov exponent and the (top) nfer anyp € Z+
ment Lyapunov exponent for a class of linear stochastic systems where

1
the form process is a diffusion. Motivated by this previous work, it— log [|A(pm) ... A(a1)]| < —
is natural to ask whether this formula can be extended to linear dfé- 5_1
crete-time stochastic systems when the form process is a finte state A e
Og H J(J-‘rl)m s (O'Jerl)H

Markov process. The conjecture is thatdf, € {A(1),..., A(N)}
and{ A, } has certain properties, for examgld, } is an independent,
identically distributed (iid) matrix sequence, ¢r;} is an ergodic and forany= > 0 andes; > 0 from (2.2)
Markov process, then an Arnold-type formula also holds for (1.1). This

0

.
Il

note is in the spirit of our earlier work [9], where the relationship be- P <L log [|[A(opm) ... A(d1)]| > A+ e+ 61)
tween the domain of almost sure stability and thatafoment stability pm
was studied. 122
In this note, if{ A, } is a random process governed by a finite state <r P ZOIO“ Ao (ym) - A(‘UmH)H
=

Markov chain and if a certairegularity conditionis satisified, then we
show that an Arnold-type formula connecting sample path and moment
Lyapunov exponents holds. The proof of the main result of this note
uses the large deviation theorem given in [8] and [9].

Alom) ... A(o)|| + m=1 (2.3)

Using the large deviation theorem given in [9] , there existsatis-
II. RELATIONSHIP CONNECTING SAMPLE AND MOMENT LYAPUNOV  fying () < r, < 1 and anM; > 0 such that

EXPONENTS

In this section, a modified version of Arnold’s formula is derived to P 1 leoo- HA(J ) ) A(o; 1)“
illustrate the relationship between the sample and moment Lyapunov GHm m
exponents for the linear stochastic system (1.1). This reveals an im-
portant connection between sample stability and moment stability for
this class of linear stochastic systems. Although the results presented
in this note are restricted to a special class of linear stochastic systems,

> Exlog||A(om) ... Aloy)|| 4+ me,

the results may hold in a more general setting. This will be discussed < Myr) =M, (rl/"")pm
briefly later on in this note. _
Consider the discrete-time system From this and (2.3)
w(k+1) = Alor)a(k)  x(0) = xo 21) p <L log ||A(Gpm) .- A(c)|| > A +e+ 61)
pm

where{s} is a finite-state Markov chain form process with proba- 1\ P
<My ( ) (2.4)

bility transition matrixP = (p:;)nx~. In what follows, it is assumed

that{cs } isirreducible with ergodic probability measurend that the Define the sets

individual mode matricesi(1), A(2),..., A(N) are invertibleR**?
matrices. 1
=(w:—1 A(opm) ... A >A+=+4¢
Definition: The top (or largest) Lyapunov exponent and the top < pm og [l 4(orm) (o)ll 2 !

6-moment Lyapunov exponent of system (2.1) are defined, respec- 1
tively, as A= (w: p?logHA(a,)m) LA <A+ s+ ).

A(oyn) ... A(al)|| Then, onA°

A= lim 1 log
n—oo N

Alopm) ... Ao < P teter)

g(6) = lim 1 log E-||A(00)... A(c)]|°.
n—oo N

where|| - || is any suitable matrix norm. The exponeitandg(§) are and onA
also given by 1 Aopm) - Ala))|| < M
A= 1(11;32‘8 kll_I)IolQ & log ||x(k, zo)|| Thus

™

g(6) = max hm %logE lz(k, z0)||°
0F

x

Alopm) ... Ale)]|? :/||A(apm) o A(e)||P P(dw)
A

where x:(k, xo) is a sample solution of (2.1) with initial condition

2(0,2¢) = 0. +/ 14(01),,1)...A(01)||6
Theorem 2.1: For§ > 0, thes-moment Lyapunov exponents) is Ae
differentiable from the right at = 0 andg'(0+) = A. x P(dw)
Proof: From [9] <MP" P(A) + oBpm(Ateter)
1 - pm
lim o log ||[A(on)... A(o1)]| <M, (A[‘S 1/’“)
Spm(Ate+e
= lim —E log ||A(on)... A(o)|| = A + efpmtetan) (2.5)

. H ,/é,,l/m _ Hl/m . . )
almost surely. Thus, for any > 0, there exists am > 0 such that Whe_rf_%hm,s_o M°ry =" < 1 implies there ex|5tf/> 0
sufficiently small andp satisfyingd < p < 1, such thatw‘ﬁr1 <

E:log||A(om) ... A(a1)]| < mA + me. (22) p< 1.
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If A > 0, then for sufficiently largey, from (2.5) From this inequality
1 5
—logE, ||A(opm) ... A ° 1 )
S lo8 lA(Tpm) - .. A1)l P<%]og||A((Tp,,l)...x—1(al)|| < d>

< — 10{3,' |:."V[lppm —+ 66P"1(>\+8+51):|
pm

1 /1
< Llog [1 + egp"l(A+5+51)] <P < m <p Z]O‘f

A~ aj,,,+1)---fl1(0(;’+1)m)|>

pm
S L log |:2(35])777,(A+€+51):|
pm <d
log 2
= +6(A+e+e1).
pm p 1
Lettingp — oo, g((s‘)/(s‘ < X4+ =1 From [9]limg o+ g(8)/6 = Z{ Yojmi1) . AT (o Grnm) |
¢'(04) andg'(0+) > X, and it follows thaty' (0+) = A for A > 0.
If A < 0, select3 > —X and defineB(j) = A(j)e” (j =
1,2,...,N). Then <m(A—e1)— mbz>
lim 1 log||B(0y)...B(o1)||
n—oo p—1
= lim %log lA(gn). .. Ale)||+B8=A+3>0 < Z{ “Hogmrn) - AT G ||}
and
G(8) £ Tim_ llogEﬂ,rHB(Jn)...B(Ul)Hé = g(8) + 6. < Ex{~log|A  (o1)... A H(om)[[} = me >
§ = 0andG (0+) =+ d Becausei“ (8) = g'(8) +8,9(5)is  andp < 1 such that
differentiable from the right at = 0 andy’ (0+) = A. This completes 1
the proof. O P <— log ||A(opm) ... A(o1)]] < d) < MopP. (2.6)
In the proof of Theorem 2.1, the assumption that pm .
A(1), A(2),..., A(N) € GI(d, R) is not used. If4, is invertible for Bgcﬁa;usecl(l) ..... A(N) are invertible, there exist®/; > 0 such that
eachk, then the definition of thé-moment Lyapunov exponepts) 147 (@u)ll < M, , and foré < 0 ;
is well defined for all6 € R. Next, we study the differentiability of | A(0m) 4(01)“5 < (H Aoy A e )”71)6
g(6) até = 0 for the invertible case. Before giving the main result, B ’ A ’ !
the concept of regularity is introduced. <([[A (an)]|---]I- 4(%)”)76
Regularity Condition (RC):The system (2.1) is said to be regular if <M
and only if =
1 Following the same procedure as in the proof of Theorem 2.2, o0
. A—1, =1/ A—1 _
klgizlog|‘A4 (0’])‘4 (0’2)...:1 (O'k)” = - E||A(me)...A(01)||6
where) is the top Lyapunov exponent of system. < My pmé p <710g IA(Tpm) ... A(e)|| < d)
If system (2.1) is regular in the sense of [3], then the RC is also - P
satisfied. 4 edpmd

Theorem 2.2: Suppose thati(1),..., s A(N) are invertible, and that r/agf—mbé \p , _dpmé
RC holds, thery(§) is dlfferentl(atzle ab _(0 e)lndq "(0) = A. < MMy )" + e 2.7)
Proof: From Theorem 2.14(5) is differentiable from the rightat f A < 0, thend < 0 andéd > 0 and for|6| chosen sufficiently
5 = 0 andg'(0+) = \. Therefore, it is sufficient to prove thats) is Small andp chosen sufficiently large)(M; "p)” < 1. (Note:
differentiable from the left ang’(0—) = \. From [9] and RC lims—o M "*p = p < 1). From (2.7)

E||A(opm)... A Pttt L et
lim S log||4™" (01) ... A7 (7)) [A(Tpm) ... Ale)]|” < T+ e™™ < 2¢
noee and
= Jim - fE log [[A7" (1) AT ()]l = =X, 9(8) = lim ——log E[[A(cpm) ... A(e)]’
p—o0 P
Then, for anye; > 0, there exists am > 0 such that 1 P ‘
< lim —log (2e°P™° ) = dé.
m(X—e1) <Ex {=log | A7 (o1)... A" (om)||} ~ p—oo pm ( )
Because) < 0
<m(A+e1).
i ; 9(6) N
For anyzs > 0, letd = X\ — &1 — 5. Then, from the inequality s 2 d=X—¢1—¢ea.
1 —1 —1
L=l = [A(on) - Al) A7 (o1)... A7 (on)] Because; ands» are arbitrary ang(5) /4 is a nondecreasing function
<NJA(en) .. Ala)[[[A™ (1) ... A7 (00)]) [9], ¢'(0—) > Afor A < 0. From [9],g(6)/6 < X foré < 0, then
LERTORTON A g'(0—) = Afor A < 0.
pm 8 14¢opm) .. Alo)ll If A > 0, choosed > ) and consider the sequengB(s,,)} where
B(o,) = A(oy)e ?. Then
> . m . m . )
< Zlo [AT @jmt1) - AT O 1ym) ) Jim %]og||B(0k)...B(01)|| =A-4<0
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and

G(5) 2 Jim Tlog E|[Blox).... Bo)" = g(5) = 55,

Here,B(1), B(2),..., B(N) are invertible and (2.1) with the system

matrix B(o ) satisfies RC. From our previous resdi,(0—) = A— 3,
thereforeg’ (0—) = A. This completes the proof. O

The regularity condition can be difficult to check. The next result
provides the same conclusion as Theorem 2.2 without requiring RC,
and the proof follows directly from the the large deviation theorem

given in [4].

Proposition 2.3: Suppose thaf A} is an iid matrix sequence in

GI(d, R) and that there exists alf > 0 such thaf|Ax|| < M. If
Elog™ ||A1]] < +co (anintegrability condition) holds, then tlhemo-
ment Lyapunov exponent

g(6) = lim % log E||Ax ... Ay||°

is differentiable from the right at = 0 andg’ (0+) is equal to the top
Lyapunov exponent

.1
A= klgq;o % log | Ak ... A1

O
Remark: Let {45} be an iid random matrix sequenceGii(d, R)
that satisfies the integrability condition

/ [logJr
Q

If there exists anl/ > 0 andé > 0 such that
/ ST e l4dl gy = ¢
C

44.1 || + 1(){3;Jr

ATH|] P(dw) < +oc.

lim
k—oc

(H)

where

C= (w:%Zlog

=1

Al > M)

theng(6) is differentiable from the right at = 0 andg’ (0+) = .

1559

g/ Ay - Ay [P P(dw)
B
+/ | Apm - .. Ay ||® P(dw)
AnBe
+/ A - Ay ||* P(de)
A(‘

< / S 2T s 1441° P gy

B

+f
ANBe

+/,4 |Apm ... A1]]° P(dw).  (2.8)

CAY)° P(dw)

Apm - -

If w € B, then|| A, ... Ai]] < ™™, and the technique used in
the proof of Theorem 2.1 can be used to deal with the last two terms of
(2.8). The first term in (2.8) is dealt with by hypothesis (H). Although
we have not been able to prove that (H) follows from the iid and inte-
grability properties of the matrix sequengd,, }, the large deviation
theorem of [4] suggests that this might be true. We will investigate this
idea further in subsequent work.

Next, consider the continuous-time jump linear system

(t) = A(oe)a(t)

where{s,} is a finite-state Markov chain with infinitesimal generator
Q = (gij). Inwhat follows,{s. } is an irreducible finite-state Markov
chain with state spacé = {1,2,..., N} and with ergodic measure
T,

The (top) Lyapunov exponent and the (tégnoment Lyapunov ex-
ponent are defined, respectively, by

x(0) = w0 (2.9)

1
A =max Lim - log|z(f,z
max lim - log|lx(t,zo)
) — 1 5
9(8) —iﬂi’étlnﬁ,o 7108 Exlx(t, 20|

wherezx(t, x¢) is the solution of (2.9) with initial conditiom(0, 2¢) =
The following result can be proved using techniques similar to those
already presented and a sojourn description [11] of the random process

This result can be established from the following observations: Fér- _ o ) _ _
anym > 0 chosen in a manner similiar to the proof of Theorem 2.1, Theorem 2.5:Given{o } a finite-state irreducible ergodic Markov

define the sets
1
A= <w :—log||Apm ... A1]] > d)
pm

1
i —log||Apm ... A 1
etk g sl < )
1 pm
—w: —Slog ||l A > M
= (v oy s> )
pm

ZS’C:<W:L AZ'||<I\VI>.
pm =

> log
=1
EApm ... Ay :/A||A,4pm...,41||5p(dw)
+/ [ —k
A(‘
_/AmB
“/
ANB

+/ | Apm ... Ar]]° P(dw)
Ac

Then

AP P(dw)

Apm -

Appn - Ar]|° P(dw)

chain, thery($) is differentiable from the right & = 0 andg’ (0+) =
. Moreover, if (2.9) is regular [3], theg(§) is differentiable at = 0
andg'(0) = .

Remark: Using the sojourn description of the random process
o, the continuous-time jump linear system (2.9) is converted to a
discrete-time jump linear system. It is not necessary to require that
A(1),...,A(N) in the continuous-time jump linear system are
invertible because the exponential of these matrices is what appears
in the discrete-time system.

Although our results have been restricted to the top sample and
§-moment Lyapunov exponents, using the random spectrum theory
developed in [5] and [7], similar relationships can be obtained between
the sample and-moment Lyapunov exponents. The subspaEes
that define a filtration of the state space in the random spectrum theory
are invariant subspaces of the state space of (2.1). These and related
results, along with detailed proofs of Proposition 2.3 and Theorem
2.4, will be presented elsewhere.

[Il. CONCLUSION

This note has shown that Arnold’s formula, which connects sample
path stability and moment stability, as determined by the sign of the top
sample and moment Lyapunov exponents of linear stochastic systems,
can be extended to random matrix products (e.g., stochastic jump linear
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systems). It is also shown that the formula holds for a more genemaliltiple-input—-multiple-output (MIMO) plants, is limited. This NMP
class of stochastic systems under a regularity type condition preserigiitation appears when the plant has right-half plane (RHP) zeros,
in this note. pure delay, or if the plant is sampled. Classic examples of NMP plants
include flight control (afé. control to elevation, and throttle command

to elevation as measured close to the aircraft center of gravity) and the
inverted pendulum.
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It is well known that the benefit of feedback for nonminimum-phas,
(NMP) single-input-single-output (SISO) plants, as well as for NM
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