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that a major advantage of the feedback linearization technique is that
the feedback (10) provides the open-loop control that exactly steers the
system on a given path. This is normally of great help in motion plan-
ning problems.
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On the Relationship Between the Sample Path and Moment
Lyapunov Exponents for Jump Linear Systems

Yuguang Fang and Kenneth A. Loparo

Abstract—In this note, we study the relationship between the sample
and moment Lyapunov exponents for jump linear systems. Using a large
deviation theorem, a modified version of Arnold’s formula for connecting
sample path and moment Lyapunov exponents for continuous-time linear
stochastic systems is extended to discrete-time jump linear systems. Sample
path stability properties of linear stochastic systems are determined by the
top Lyapunov exponent and relating sample and moment Lyapunov expo-
nents may be useful for developing computationally efficient methods for
determining the almost-sure (sample path) stability of linear stochastic sys-
tems.

Index Terms—Finite-state Markov chain, large deviation, linear
stochastic systems, Lyapunov exponents, moment Lyapunov exponents.

I. INTRODUCTION

Determining the stability of a linear stochastic system is an
important problem. In general, the most useful stability criteria
involve sample-path or almost-sure stability of the system. Necessary
and sufficient conditions for sample-path stability often require
a difficult computation of the top Lyapunov exponent. Although
moment stability calculations, e.g., stability of the mean or the second
moment, only require the stability analysis of a deterministic system,
the results might not be useful in practice. In particular, for a linear
stochastic system, it is well known that second-moment stabilty
implies sample-path stability, but often times second moment stability
criteria are too conservative to be useful in applications [11]. In this
note, we investigate extending Arnold’s formula relating sample and
moment Lyapunov exponents for continuous-time linear stochastic
systems with diffusion-type processes to discrete-time linear systems
with random jump processes. The eventual goal is to use the relation-
ship between sample and moment Lyapunov exponents to develop
computationally efficient procedures for evaluating the sample-path
stability of discrete-time jump linear systems.

Consider the discrete-time system

x(k + 1) = Akx(k) x(0) = x0 (1.1)

wherefAkgk�0 is a sequence ofGl(d;R)-valued random variables.
Here,Gl(d;R) is the general linear group of dimensiond over the real
field, R. Fixing coordinates, a representative element ofGl(d;R) is a
nonsingulard� d matrix overR. A sample trajectory of (1.1) is given
by the action of a random matrix product on a pointx0 2 Rd. Our
analysis is restricted to random matrices inGl(d;R) because of the
importance ofregularity of (1.1) [3].

The asymptotic behavior of sample trajectories of system (1.1) have
been studied extensively by many researchers, most notably in the con-
text of random matrix products (see [3]). Furstenberg and Kifer [6] con-
sidered the Lyapunov exponents and the corresponding subspace filtra-
tion of the state space, and obtained an integrability condition. Arnold
[1] and Arnoldet al. [2] have been studying moment Lyapunov ex-
ponents for linear stochastic systems and discovered a formula that
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connects the (top or largest) Lyapunov exponent and the (top) mo-
ment Lyapunov exponent for a class of linear stochastic systems where
the form process is a diffusion. Motivated by this previous work, it
is natural to ask whether this formula can be extended to linear dis-
crete-time stochastic systems when the form process is a finte state
Markov process. The conjecture is that ifAk 2 fA(1); . . . ; A(N)g
andfAkg has certain properties, for examplefAkg is an independent,
identically distributed (iid) matrix sequence, orfAkg is an ergodic
Markov process, then an Arnold-type formula also holds for (1.1). This
note is in the spirit of our earlier work [9], where the relationship be-
tween the domain of almost sure stability and that of�-moment stability
was studied.

In this note, iffAkg is a random process governed by a finite state
Markov chain and if a certainregularity conditionis satisified, then we
show that an Arnold-type formula connecting sample path and moment
Lyapunov exponents holds. The proof of the main result of this note
uses the large deviation theorem given in [8] and [9].

II. RELATIONSHIP CONNECTING SAMPLE AND MOMENT LYAPUNOV

EXPONENTS

In this section, a modified version of Arnold’s formula is derived to
illustrate the relationship between the sample and moment Lyapunov
exponents for the linear stochastic system (1.1). This reveals an im-
portant connection between sample stability and moment stability for
this class of linear stochastic systems. Although the results presented
in this note are restricted to a special class of linear stochastic systems,
the results may hold in a more general setting. This will be discussed
briefly later on in this note.

Consider the discrete-time system

x(k + 1) = A(�k)x(k) x(0) = x0 (2.1)

wheref�kg is a finite-state Markov chain form process with proba-
bility transition matrixP = (pij)N�N . In what follows, it is assumed
thatf�kg is irreducible with ergodic probability measure� and that the
individual mode matricesA(1); A(2); . . . ; A(N) are invertibleRd�d

matrices.
Definition: The top (or largest) Lyapunov exponent and the top

�-moment Lyapunov exponent of system (2.1) are defined, respec-
tively, as

� = lim
n!1

1

n
log kA(�n) . . .A(�1)k

g(�) = lim
n!1

1

n
logE�kA(�n) . . .A(�1)k

�
:

wherek � k is any suitable matrix norm. The exponents� andg(�) are
also given by

� =max
x 6=0

lim
k!1

1

k
log kx(k; x0)k

g(�) =max
x 6=0

lim
k!1

1

k
logE�kx(k; x0)k

�

wherex(k; x0) is a sample solution of (2.1) with initial condition
x(0; x0) = x0.

Theorem 2.1:For� � 0, the�-moment Lyapunov exponentg(�) is
differentiable from the right at� = 0 andg0(0+) = �.

Proof: From [9]

lim
n!1

1

n
log kA(�n) . . .A(�1)k

= lim
n!1

1

n
E� log kA(�n) . . .A(�1)k = �

almost surely. Thus, for any" > 0, there exists anm > 0 such that

E� log kA(�m) . . .A(�1)k < m�+m": (2.2)

For anyp 2 Z+

1

pm
log kA(�pm) . . .A(�1)k �

1

pm

�

p�1

j=0

log A(�(j+1)m . . .A(�jm+1)

and for any" > 0 and"1 > 0 from (2.2)

P
1

pm
log kA(�pm) . . .A(�1)k � �+ "+ "1

� P
1

p

p�1

j=0

log A(�(j+1)m) . . .A(�jm+1)

� E� log kA(�m) . . .A(�1)k+m"1 (2.3)

Using the large deviation theorem given in [9] , there existsr1 satis-
fying 0 � r1 < 1 and anM1 > 0 such that

P
1

p

p�1

j=0

log A(�(j+1)m) . . .A(�jm+1)

� E� log kA(�m) . . .A(�1)k+m"1

�M1r
p
1 = M1 r

1=m
1

pm

:

From this and (2.3)

P
1

pm
log kA(�pm) . . .A(�1)k � �+ "+ "1

�M1 r
1=m
1

pm

: (2.4)

Define the sets

A = ! :
1

pm
log kA(�pm) . . .A(�1)k � �+ "+ "1

Ac = ! :
1

pm
log kA(�pm) . . .A(�1)k < �+ "+ "1 :

Then, onAc

kA(�pm) . . .A(�1)k < e
pm(�+"+" )

and onA

kA(�pm) . . .A(�1)k �M
pm
:

Thus

E� kA(�pm) . . .A(�1)k
� =

A

kA(�pm) . . .A(�1)k
�
P (d!)

+

A

kA(�pm) . . .A(�1)k
�

� P (d!)

�Mpm
P (A) + e

�pm(�+"+" )

�M1 M
�
r
1=m
1

pm

+ e
�pm(�+"+" ) (2.5)

where lim�!0M
�r

1=m
1 = r

1=m
1 < 1 implies there exists� > 0

sufficiently small and� satisfying0 � � < 1, such thatM �r
1=m
1 �

� < 1.
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If � � 0, then for sufficiently largep, from (2.5)

1

pm
logE� kA(�pm) . . .A(�1)k

�

�
1

pm
log M1�

pm + e�pm(�+"+" )

�
1

pm
log 1 + e�pm(�+"+" )

�
1

pm
log 2e�pm(�+"+" )

=
log 2

pm
+ �(�+ "+ "1):

Letting p ! 1, g(�)=� � � + " + "1. From [9], lim�#0 g(�)=� =
g0(0+) andg0(0+) � �, and it follows thatg0(0+) = � for � � 0.

If � < 0, select� > �� and defineB(j) = A(j)e� (j =
1; 2; . . . ; N ). Then

lim
n!1

1

n
log kB(�n) . . .B(�1)k

= lim
n!1

1

n
log kA(�n) . . .A(�1)k+ � = �+ � > 0

and

G(�) lim
n!1

1

n
logE�kB(�n) . . .B(�1)k

� = g(�) + ��:

Using the result for� � 0, G(�) is differentiable from the right at
� = 0 andG0(0+) = � + �. BecauseG0(�) = g0(�) + �, g(�) is
differentiable from the right at� = 0 andg0(0+) = �. This completes
the proof.

In the proof of Theorem 2.1, the assumption that
A(1); A(2); . . . ; A(N) 2 Gl(d;R) is not used. IfAk is invertible for
eachk, then the definition of the�-moment Lyapunov exponentg(�)
is well defined for all� 2 R. Next, we study the differentiability of
g(�) at � = 0 for the invertible case. Before giving the main result,
the concept of regularity is introduced.

Regularity Condition (RC):The system (2.1) is said to be regular if
and only if

lim
k!1

1

k
log A�1(�1)A

�1(�2) . . .A
�1(�k) = ��

where� is the top Lyapunov exponent of system.
If system (2.1) is regular in the sense of [3], then the RC is also

satisfied.
Theorem 2.2:Suppose thatA(1); . . . ; A(N) are invertible, and that

RC holds, theng(�) is differentiable at� = 0 andg0(0) = �.
Proof: From Theorem 2.1,g(�) is differentiable from the right at

� = 0 andg0(0+) = �. Therefore, it is sufficient to prove thatg(�) is
differentiable from the left andg0(0�) = �. From [9] and RC

lim
n!1

1

n
log A�1(�1) . . .A

�1(�n)

= lim
n!1

1

n
E� log A�1(�1) . . .A

�1(�n) = ��:

Then, for any"1 > 0, there exists anm > 0 such that

m(�� "1) �E� � log A�1(�1) . . .A
�1(�m)

�m(�+ "1):

For any"2 > 0, let d = �� "1 � "2. Then, from the inequality

1 = kIk = A(�n) . . .A(�1)A
�1(�1) . . .A

�1(�n)

� kA(�n) . . .A(�1)k A�1(�1) . . .A
�1(�n)

1

pm
log kA(�pm) . . .A(�1)k

� �
1

m

1

p

p�1

j=0

log A�1(�jm+1) . . .A
�1(�(j+1)m) :

From this inequality

P
1

pm
log kA(�pm) . . .A(�1)k < d

� P �
1

m

1

p

p�1

j=0

log A�1(�jm+1) . . .A
�1(�(j+1)m)

< d

= P
1

p

p�1

j=0

� log A�1(�jm+1) . . .A
�1(�(j+1)m)

< m(�� "1)�m"2

� P
1

p

p�1

j=0

� log A�1(�jm+1) . . .A
�1(�(j+1)m)

< E�f� log A�1(�1) . . .A
�1(�m) g �m"2 :

Using the large deviation theorem from [9], there exists anM2 > 0
and� < 1 such that

P
1

pm
log kA(�pm) . . .A(�1)k < d �M2�

p: (2.6)

BecauseA(1); . . . ; A(N) are invertible, there existsM1 > 0 such that
kA�1(�k)k � M1, and for� < 0

kA(�n) . . .A(�1)k
� � A�1(�1) . . .A

�1(�n)
�1 �

� A�1(�1) . . . A�1(�n)
��

�M�n�
1 :

Following the same procedure as in the proof of Theorem 2.1, for� < 0

E kA(�pm) . . .A(�1)k
�

�M�pm�
1 P

1

pm
log kA(�pm) . . .A(�1)k < d

+ edpm�

�M2(M
�m�
1 �)p + edpm�: (2.7)

If � < 0, thend < 0 and �d > 0 and for j�j chosen sufficiently
small andp chosen sufficiently large,M2(M

��
1 �)p < 1. (Note:

lim�!0M
�m�
1 � = � < 1). From (2.7)

EkA(�pm) . . .A(�1)k
� � 1 + edpm� � 2edpm�

and

g(�) = lim
p!1

1

pm
logE kA(�pm) . . .A(�1)k

�

� lim
p!1

1

pm
log 2edpm� = d�:

Because� < 0

g(�)

�
� d = �� "1 � "2:

Because"1 and"2 are arbitrary andg(�)=� is a nondecreasing function
[9], g0(0�) � � for � < 0. From [9],g(�)=� � � for � < 0, then
g0(0�) = � for � < 0.

If � � 0, choose� > � and consider the sequencefB(�n)gwhere
B(�n) = A(�n)e

��. Then

lim
k!1

1

k
log kB(�k) . . .B(�1)k = �� � < 0
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and

G(�) lim
k!1

1

k
logE kB(�k) . . .B(�1)k

� = g(�)� ��:

Here,B(1); B(2); . . . ; B(N) are invertible and (2.1) with the system
matrixB(�k) satisfies RC. From our previous result,G0(0�) = ���,
thereforeg0(0�) = �. This completes the proof.

The regularity condition can be difficult to check. The next result
provides the same conclusion as Theorem 2.2 without requiring RC,
and the proof follows directly from the the large deviation theorem
given in [4].

Proposition 2.3: Suppose thatfAkg is an iid matrix sequence in
Gl(d;R) and that there exists anM > 0 such thatkAkk � M . If
E log+ kA1k < +1 (an integrability condition) holds, then the�-mo-
ment Lyapunov exponent

g(�) = lim
k!1

1

k
logEkAk . . .A1k

�

is differentiable from the right at� = 0 andg0(0+) is equal to the top
Lyapunov exponent

� = lim
k!1

1

k
log kAk . . .A1k:

Remark: Let fAkg be an iid random matrix sequence inGl(d;R)
that satisfies the integrability condition




log+ kA1k+ log+ kA�11 k P (d!) < +1:

If there exists anM > 0 and� > 0 such that

lim
k!1 C

e
� log kA k

P (d!) = 0 (H)

where

C = ! :
1

k

n

i=1

log kAik �M

theng(�) is differentiable from the right at� = 0 andg0(0+) = �.
This result can be established from the following observations: For

anym > 0 chosen in a manner similiar to the proof of Theorem 2.1,
define the sets

A = ! :
1

pm
log kApm . . .A1k � d

Ac = ! :
1

pm
log kApm . . .A1k < d

B = ! :
1

pm

pm

i=1

log kAik �M

Bc = ! :
1

pm

pm

i=1

log kAik < M :

Then

E kApm . . .A1k
� =

A

kApm . . .A1k
�
P (d!)

+
A

kApm . . .A1k
�

=
A\B

kApm . . .A1k
�
P (d!)

+
A\B

kApm . . .A1k
�
P (d!)

+
A

kApm . . .A1k
�
P (d!)

�
B

kApm . . .A1k
�
P (d!)

+
A\B

kApm . . .A1k
�
P (d!)

+
A

kApm . . .A1k
�
P (d!)

�
B

e
� log kA k

P (d!)

+
A\B

kApm . . .A1k
�
P (d!)

+
A

kApm . . .A1k
�
P (d!): (2.8)

If ! 2 Bc, thenkApm . . .A1k � epmM , and the technique used in
the proof of Theorem 2.1 can be used to deal with the last two terms of
(2.8). The first term in (2.8) is dealt with by hypothesis (H). Although
we have not been able to prove that (H) follows from the iid and inte-
grability properties of the matrix sequencefAng, the large deviation
theorem of [4] suggests that this might be true. We will investigate this
idea further in subsequent work.

Next, consider the continuous-time jump linear system

_x(t) = A(�t)x(t) x(0) = x0 (2.9)

wheref�tg is a finite-state Markov chain with infinitesimal generator
Q = (qij). In what follows,f�tg is an irreducible finite-state Markov
chain with state spaceS = f1; 2; . . . ; Ng and with ergodic measure
�.

The (top) Lyapunov exponent and the (top)�-moment Lyapunov ex-
ponent are defined, respectively, by

� =max
x 6=0

lim
t!+1

1

t
log kx(t; x0)k

g(�) =max
x 6=0

lim
t!+1

1

t
logE�kx(t; x0)k

�

wherex(t; x0) is the solution of (2.9) with initial conditionx(0; x0) =
x0 6= 0.

The following result can be proved using techniques similar to those
already presented and a sojourn description [11] of the random process
�t.

Theorem 2.5:Givenf�tg a finite-state irreducible ergodic Markov
chain, theng(�) is differentiable from the right at� = 0 andg0(0+) =
�. Moreover, if (2.9) is regular [3], theng(�) is differentiable at� = 0
andg0(0) = �.

Remark: Using the sojourn description of the random process
�t, the continuous-time jump linear system (2.9) is converted to a
discrete-time jump linear system. It is not necessary to require that
A(1); . . . ; A(N) in the continuous-time jump linear system are
invertible because the exponential of these matrices is what appears
in the discrete-time system.

Although our results have been restricted to the top sample and
�-moment Lyapunov exponents, using the random spectrum theory
developed in [5] and [7], similar relationships can be obtained between
the sample and�-moment Lyapunov exponents. The subspacesLi
that define a filtration of the state space in the random spectrum theory
are invariant subspaces of the state space of (2.1). These and related
results, along with detailed proofs of Proposition 2.3 and Theorem
2.4, will be presented elsewhere.

III. CONCLUSION

This note has shown that Arnold’s formula, which connects sample
path stability and moment stability, as determined by the sign of the top
sample and moment Lyapunov exponents of linear stochastic systems,
can be extended to random matrix products (e.g., stochastic jump linear
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systems). It is also shown that the formula holds for a more general
class of stochastic systems under a regularity type condition presented
in this note.
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Crossover Frequency Limitations in MIMO Nonminimum
Phase Feedback Systems

Oded Yaniv and Per-Olof Gutman

Abstract—This note investigates limitations and design tradeoffs of the
closed-loop sensitivity/performance of linear-time-invariant nonminimum-
phase uncertain multiple-input–multiple-output plants, with inputs and

outputs, where . It is shown that if rows . . . of the plant
transfer function form a nonminimum phase transfer matrix, and if
the design is such that the sensitivity gain of 1 rows among the rows

. . . of the closed-loop transfer function is low, then by necessity the
sensitivity gain of the remaining row is high. This sensitivity constraint is
quantified with the help of the crossover frequency restriction of a specially
constructed single-input–single-output transfer function that includes the
right half plane zeros and poles of the transfer matrix.

Index Terms—Feedback control, linear systems, multivariable systems,
nonminimum phase, sensitivity.

I. INTRODUCTION

It is well known that the benefit of feedback for nonminimum-phase
(NMP) single-input–single-output (SISO) plants, as well as for NMP
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multiple-input–multiple-output (MIMO) plants, is limited. This NMP
limitation appears when the plant has right-half plane (RHP) zeros,
pure delay, or if the plant is sampled. Classic examples of NMP plants
include flight control (aft�e control to elevation, and throttle command
to elevation as measured close to the aircraft center of gravity) and the
inverted pendulum.

The SISO case has been investigated widely in the literature. Ref-
erence [14] and [25] presented an optimal robust synthesis technique
to design a feedback controller for an uncertain NMP plant to achieve
a given closed-loop performance, providing the designer with insight
into the tradeoffs between closed-loop performance and bandwidth,
and also defining an implicit criterion for determining whether a so-
lution exists. Reference [26] developed a criterion to estimate the max-
imum bandwidth of a sampled plant for given gain and phase margin,
assuming an open loop of the ideal Bode characteristics form and using
asymptotic approximations. Reference [12] extended this technique to
stable plants with several RHP zeros, showing how to achieve a large
open-loop gain in several frequency ranges, although there would al-
ways be some frequency ranges which are determined by the RHP
zeros, in which the open-loop gain must be less than 0 dB. This known
fact was proven in [6] and [7] showing that for NMP plants, a small sen-
sitivity in one frequency range forces a large sensitivity in the comple-
mentary range. References [7] and [8] developed several constraints on
the closed-loop sensitivity of NMP and/or unstable plants in the form
of weighted integrals of the sensitivity on all frequencies or on a fre-
quency range where the open-loop gain is much less than one. Refer-
ence [21] used their results to provide a bandwidth limitation on NMP
and/or unstable plants. For crossover frequency limitations assuming a
given slope of the open-loop amplitude around the crossover frequency,
see [1].

The MIMO case is quite different from the SISO case. Reference
[5] showed that the RHP transmission zeros of a MIMO plant are also
transmission zeros of the plant output in any closed-loop stable struc-
ture. Reference [13] was the first to discuss the sensitivity of each ele-
ment of the sensitivity transfer function of a MIMO plant showing that
the MIMO quantitative feedback theory (QFT) design method can be
applied to NMP plants where the cost is high sensitivity of at least all
the elements of one row of the sensitivity transfer function, whereby
the row can be chosen by the designer. This moving effect of the RHP
zeros to a specific output was discussed in [27, Ch. 6.5]. Reference
[30] showed explicitly the limitations of NMP plants in the LTR pro-
cedure, while [22] developed performance limitations of NMP MIMO
systems measured by the cheap quadratic functional. The main result
is a quantitative measure for the degree of difficulty in solving the ser-
vomechanism problem for NMP systems which is related to1=�i

where�i is a RHP zero of the plant. Reference [2] developed sensi-
tivity integral relations by which the sensitivity tradeoff in different
frequency ranges as a function of the RHP poles and zeros were ex-
tended to continuous-time MIMO plants, and in [4] extended to dis-
crete-time MIMO plants. For a multivariable system with RHP zeros,
[3] developed for its singular values an integral relation, akin to Bode’s
phase-gain relation, as well as an integral sensitivity relation. Refer-
ence [10] presented integral constraints, in the form of inequalities, for
the sensitivity of unstable or nonminimum-phase MIMO feedback sys-
tems, giving insight into the sensitivity tradeoffs and the cost of decou-
pling in multivariable design. For time domain interpretations, see [19].
The discrete-time multivariable case was also discussed in [11], where
analytic constraints for the sensitivity and mixed sensitivity functions
were given using coprime factorization and state space representation.
Reference [24] contains many of the integral results previously men-
tioned for SISO and MIMO continuous-time and discrete-time plants.
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