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Stabilization of Continuous-Time Jump Linear
Systems

Yuguang Fang, Senior Member, IEEE,and Kenneth A. Loparo, Fellow, IEEE

Abstract—In this paper, we investigate almost-sure and moment
stabilization of continuous time jump linear systems with a fi-
nite-state Markov jump form process. We first clarify the concepts
of -moment stabilizability, exponential -moment stabilizability,
and stochastic -moment stabilizability. We then present results
on the relationships among these concepts. Coupled Riccati
equations that provide necessary and sufficient conditions for
mean-square stabilization are given in detail, and an algorithm
for solving the coupled Riccati equations is proposed. Moreover,
we show that individual mode controllability implies almost-sure
stabilizability, which is not true for other types of stabilizability.
Finally, we present some testable sufficient conditions for -
moment stabilizability and almost-sure stabilizability.

Index Terms—Almost-sure stabilizability, coupled Riccati equa-
tions, -moment stabilizability, jump linear systems.

I. INTRODUCTION

CONSIDER the continuous-time jump linear system in
the form

(1.1)

or its discrete counterpart

(1.2)

where is a finite-state random step process, usually a
finite-state, time homogeneous, Markov process. The models
(1.1) and (1.2) can be used to analyze the closed-loop stability
of control systems with communication delays [1], [2] or the
stability of control systems subject to abrupt phenomena such
as component and interconnection failures [3]. The stability
analysis of (1.1) or (1.2) is therefore very important in the
design and analysis of a variety of control systems. Stability
analysis of systems of this type can be traced back to the work
of Rosenbloom [6] on moment stability properties. Bellman
[4] was the first to study the moment stability of (1.2) with an
i.i.d. form process using the Kronecker matrix product. Bergen
[5] used a similar idea to study the moment stability properties
of the continuous time system (1.1) with a piecewise constant
form process . Later, Bhuracha [7] used Bellman’s idea
developed in [4] to generalize Bergen’s results and studied both
asymptotic stability of the mean and exponential stability of
the mean. Darkhovskii and Leibovich [8] investigated second
moment stability of (1.1) where is a step process with the
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time intervals between jumps governed by an i.i.d. process.
They extended Bhuracha’s result and obtained necessary and
sufficient conditions for second moment stability in terms of the
Kronecker matrix product. Ladde anďSiljak [17] formulated
the dynamic reliability problem for multiplexed control systems
as a continuous-time jump linear system with a finite-state
Markov form process and then derived a sufficient condition for
second moment stability. Srichander and Walker [16] studied
fault-tolerant control systems using a jump linear system model
with a form process which is not directly observable to model
the failure events. Kats and Krasovskii [9] and Bertram and
Sarachik [10] used a stochastic version of Lyapunov’s second
method to study almost-sure stability and moment stability.
Unfortunately, constructing an appropriate Lyapunov function
is difficult and this is a well known disadvantage of Lyapunov’s
second method. Also, in many cases, the criteria obtained from
this method are similar to moment stability criteria and are often
too conservative for practical applications. For certain classes
of systems, such as (1.1) or (1.2), it is possible to obtain testable
stability conditions. Fenget al. [18] and Jiet al. [11], [12] used
Lyapunov’s second method to study the stability of (1.1) or
(1.2) where is a finite-state Markov chain. Necessary
and sufficient conditions are obtained for second moment
stability and stabilizability of both continuous time (1.1) and
discrete-time (1.2) jump linear systems. Fragoso and Costa
[38], [39] have studied mean-square stability of continuous-time
linear systems with Markovian jumping parameters. In [38],
necessary and sufficient conditions are obtained when additive
disturbances are included in the system. In [39], necessary
and sufficient conditions are obtained using a linear matrix
inequality (LMI) approach when only partial information on
the mode parameter is available to the controller. In general, the
development of second moment stability or stabilization criteria
for jump linear systems involves the simultaneous solution of
a system of coupled Riccati equations, [40]–[43]. In [44] and
[45], the authors develop necessary and sufficient conditions for
mean-square stabilization and consider the problem of obtaining
a maximal solution of a system of coupled algebraic Riccati
equations using an LMI approach. LMI techniques have proven
to be useful in addressing computational issues associated with
developing second moment stability criteria for jump linear
systems.

As Kozin [13] pointed out, moment stability implies al-
most-sure stability under fairly general conditions, however,
the converse is not true. In practical applications, almost-sure
stability is usually the more desirable property because we
can only observe a sample path of the system and the moment
stability criteria can sometimes be too conservative to be
practically useful.
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Although Lyapunov exponent techniques may provide nec-
essary and sufficient conditions for almost-sure stability [14],
[15], [18], [24]–[26], it is very difficult to compute the top Lya-
punov exponent or to obtain good estimates of the top Lyapunov
exponent for almost-sure stability. Testable conditions are diffi-
cult to obtain from this theory.

Arnold et al. [15] studied the relationship between the top
Lyapunov exponent and the-moment top Lyapunov exponent
for a diffusion process. Using a similar idea, Leizarowitz [25]
obtained similar results for (1.1). A general conclusion was
that -moment stability implies almost-sure stability. Thus,
sufficient conditions for almost-sure stability can be obtained
through -moment stability, which is one of the motivations for
the study of -moment stability. There are many definitions for
moment stability: -moment stability, exponential-moment
stability and stochastic-moment stability. Jiet al. [11] proved
that all second moment ( ) stability concepts are equivalent
for (1.2). Fenget al. [18] showed that all the second moment
stability concepts are equivalent for (1.1), and also proved that
for a one dimensional system, the region for-moment stability
is monotonically converging to the region for almost-sure
stability as . This is tantamount to concluding that
almost-sure stability is equivalent to-moment stability for
sufficiently small . This is a significant result because the
study of almost-sure stability can then be reduced to the study
of -moment stability. In [20] and [22], we generalized the
results reported in [18]. We showed that for (1.1) or (1.2) with
a Markov form process, all -moment stability concepts are
equivalent and they all imply almost-sure (sample) stability.
We also showed that for sufficiently small , -moment
stability and almost-sure exponential stability are equivalent.
Henceforth, almost-sure stability can be inferred from-mo-
ment stability. Sufficient conditions for-moment stability and
almost-sure stability were developed. A refined estimate of the
-moment Lyapunov exponent given in [25] was also obtained.
This paper addresses the stabilization problem for a contin-

uous time jump linear system. In Section II, some preliminaries
and definitions are given. Section III is devoted to the-moment
stabilization problem for , a necessary and sufficient
condition for second moment stabilizability ( ) is given
and some sufficient conditions for general are presented.
In Section IV, the almost-sure stabilization problem is studied
and a relationship between almost-sure stabilizability and indi-
vidual mode controllability (stabilizability) is illustrated along
with some sufficient conditions for almost-sure stabilizability.
Some illustrative examples are given in Section V.

II. PRELIMINARIES AND DEFINITIONS

We first establish some preliminaries for a finite-state Markov
process . Let . For all ,
define

Let be the (discrete-time) Markov chain
defined on the state-spacewith the one-step transition matrix

and initial distribution . This chain is referred to as
theembedded Markov chainof . We have the following
sojourn time description of the process [34, p. 254].

Let , be the successive sojourn times be-
tween jumps. Let for be the
waiting time for the th jump with . Starting in state

, the process sojourns there for a duration of time
that is exponentially distributed with parameter. The process
then jumps to the state with probability , the sojourn
time in the state is exponentially distributed with parameter

, and so on. The sequence of the states visited by the process
, denoted by is the embedded Markov chain

. Conditioning on , the succes-
sive sojourn times denoted by are independent exponen-
tially distributed random variables with parameters. Clearly,
the joint process is a time homoge-
neous Markov process that completely characterizes the form
process . The following notations will be used throughout
this paper: is the -algebra
generated by . For each ,
denotes the initial distribution of concentrated at theth
state. If has a single ergodic class,denotes the unique
invariant distribution of . For a matrix , denotes
one of the eigenvalues of, and
and denote the largest and smallest
real parts of the eigenvalues of, respectively. denotes
the determinant of a matrix , ( ) denotes that

is a positive semidefinite (definite) matrix and
( ) denotes an elementwise inequality.

Stochastic stability and stochastic stabilizability are always
important issues in the design and analysis of stochastic con-
trol systems. Because the definitions for stochastic stability and
stabilizability can be confusing, we next present the definitions
that will be used in this paper.

Definition 2.1: Let denote the collection of probability
measures on and be a nonempty subset of. Con-
sider the jump linear system

(2.1)

where is a finite-state Markov chain. For , (2.1) is
said to be the following:

asymptotically -moment stablewith respect to (w.r.t.) , if
for any and any initial probability distribution

of

where is a sample solution of (2.1) initial from
. If , we say that (2.1) isasymptotically mean-square

stable w.r.t. ; if , we say that (2.1) isasymptotically
mean stable w.r.t. . If , we say simply that (2.1) is
asymptotically -moment stable. Similar statements apply to
the following definitions.
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Exponentially -moment stablewith respect to , if for any
and any initial distribution of , there

exist constants , independent of and such that

Stochastically -moment stablewith respect to , if for any
and any initial distribution of

Almost surely (asymptotically) stablewith respect to , if for
any and any initial distribution of

In the aforementioned definitions, the initial probability dis-
tribution of plays a very important role. The stochastic
stability definitions as given can be interpreted in the context
of robust stability, i.e., robustness to (-structured) uncertainty
of the initial distributions of the form process. As the Markov
process is the state of the system and in practice,
the initial probability distribution of the form process
is usually not exactly known, this is a reasonable requirement.
Also, stability with respect to a single initial distribution, say,
the ergodic invariant distribution, may not be a sufficient be-
cause a perturbation tocan destroy the stability of the system.
The following example illustrates this point.

Example 2.1:Consider the one-dimensional (scalar) jump
linear system (2.1), where and ,
assume that is a two state Markov chain with infinitesimal
generator , and let and denote the probability
measure and expectation with respect to the initial distribution
. It is easy to show that the unique invariant measure is

. Thus, from

we have for any

This implies that (2.1) is -moment stable with respect to the
initial condition (the invariant measure). However, if the
initial distribution is , then

Hence, if and such that . Then
from the previous computation, we can obtain

which implies that the system is not-moment stable with
the initial distribution .

This example shows that although transient states do not af-
fect almost-sure stability, an obvious statement that is consistent
with intuition, they do affect moment stability. One explanation
is that when the system sojourns in a transient unstable state for
too long, moment instability can occur.

The relationship among the stochastic stability concepts has
been studied by Fenget al. [18] for , the mean-square sta-
bility case. Fanget al. [19] generalized this result to-moment
stability for for discrete-time jump linear systems. Fang
[21] also extended such results to the continuous-time jump
linear systems and obtained the following result.

Theorem 2.1:For any and any system (2.1) with a
finite-state Markov chain form process , -moment sta-
bility, -moment exponential stability and stochastic stability
are equivalent, and each implies almost-sure stability.

Definition 2.2: The system (2.1) is said to beabsolutely
stable if it is stable in any sense in Definition 2.1 for any
finite-state form process .

Remark: This definition may be impractical in applications,
however, if the system can be shown to be absolutely stable,
then stochastic stability of the system is independent of the form
process .

For stochastic stabilization, we give the following definition.
Definition 2.3: Consider the jump linear control system

(2.2)

If there exists a feedback control such
that the resulting closed-loop control system is stochasti-
cally stable in the sense of Definition 2.1, then the control
system (2.2) is said to be stochastically stabilizable in the
corresponding sense. If the resulting closed-loop system is
absolutely stable, then (2.2) is absolutely stabilizable. If the
feedback control is independent of the form
process, then (2.2) is simultaneously stochastically stabilizable
in the corresponding sense.

From Theorem 2.1, we can easily obtain the following result
on the relationship among the previous stabilization concepts.

Corollary 2.2: For (2.2) with a finite-state Markov form
process and with any , -moment stabilizability,
-moment exponential stabilizability and stochastic-moment

stabilizability are equivalent, and each implies almost-sure
stabilizability.

Remark: From now on, we will use-moment stabilizability
to denote any one of the aforementioned three-moment stabi-
lizability concepts.

It is easy to see that absolute stabilizability implies stochastic
stabilizability in any sense, and simultaneous stochastic stabi-
lizability implies stochastic stabilizability in the corresponding
sense. However, absolute stabilizability is too conservative to
be useful in applications. The simultaneous stochastic stabiliz-
ability problem has been studied in the current literature, how-
ever, simultaneous stabilizability is also too conservative. The
next example is illustrative along this line.

Example 2.2: ( -moment stabilizability does not imply
simultaneous -moment stabilizability, and almost-sure sta-
bilizability does not guarantee simultaneous almost-sure
stabilizability).
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Let , , and
. The form process has infinitesimal gen-

erator , with unique invariant measure
. If we choose and ,

then , hence the closed-loop
system is deterministic and stable, and the jump linear system
(2.2) is absolutely stabilizable,-moment stabilizable, and al-
most surely stabilizable.

However, we will show that the system cannot be simulta-
neously almost surely stabilized, and from Corollary 2.2 this
implies that the system cannot be-moment stabilized. For any

, using the feedback control , the closed-loop
system becomes

and its solution is given by

From this and the ergodic theorem, we obtain

Therefore, (2.2) cannot be simultaneously almost surely
stabilized.

III. -MOMENT STABILIZATION AND MEAN-SQUARE

STABILIZATION

Mean-square (second moment) stabilizability problems have
been studied by many researchers in the current literature. Jiet
al. [12] reduced the stabilization problem to solving a coupled
set of algebraic Riccati equations. Mariton [27], [28] applied
homotopy theory to develop a numerical procedure for the
mean-square ( ) stabilization problem. From Corollary 2.2,
-moment stabilizability is equivalent to-moment stochastic

stabilizability which involves a cost functional similar to linear
quadratic optimal control systems design. Therefore, we may
easily reduce the -moment stabilization problem to an ap-
propriate optimal control problem. In this section, we obtain
necessary and sufficient conditions for-moment stochastic
stabilizability of a jump linear system when the mode process
is directly observable. These results might be extended to in-
clude noise disturbances to the systems which have partial
observations of the mode process using the results of [38]
and [39].

Theorem 3.1:Given positive–definite matrices
and ,

(2.2) is -moment stabilizable if and only if the following
minimization problem:

subject to (2.2), has finite cost. In particular, (2.2) is-moment
stabilizable if and only if the following optimal control problem:

subject to (2.2), has finite cost.
Proof: Suppose that (2.2) is-moment stabilizable, then

there exist matrices such that the
system

(3.1)

is -moment stabilizable. Then, with the feedback control

it follows from Theorem 2.1 that

Thus, for the given control, we have

where

and the optimal control problem has finite cost.
Conversely, suppose that the given optimal con-

trol problem has a finite cost, then there exist ma-
trices such that the solution of
the closed-loop system (3.1) with the feedback control

satisfies the following:

therefore, we have

where

From Theorem 2.1, (3.1) is-moment stable, hence (2.2) is
-moment stabilizable. This completes the proof.
It may seem that we have complicated the matter by reducing

the stabilizability problem to an optimal control problem. How-
ever, the optimal control problem continues to be studied and
many numerical algorithms have been developed in the litera-
ture. This is certainly the case for second moment stabilizability.
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Corollary 3.1 [12], [37]: Given positive–definite matrices
and , then

(2.2) is mean-square (second moment) stabilizable if and only
if the following coupled system of algebraic Riccati equations:

(3.2)

has a positive–definite solution .
In particular, (2.2) is mean-square stabilizable if and only if

the following coupled system of algebraic Riccati equations:

(3.3)

has a positive–definite solution .
Corollary 3.2: If (2.2) is mean-square stabilizable, then there

exist positive–definite matrices such
that

are stable.
Proof: Suppose that (2.2) is mean-square stabilizable,

from Corollary 3.1, there exist positive–definite matrices
such that (3.3) holds. From (3.3), we

can easily obtain

Because and
are positive definite, from Lyapunov theory, we conclude that

is stable.
It is obvious that the mean-square stabilizability problem

is equivalent to the existence of a positive–definite solution
of the coupled system of Riccati equations, this does not,
however, reduce the complexity of the problem considerably.
For a linear time-invariant system, controllability implies sta-
bilizability. One natural question to ask is: does individual
mode controllability imply -moment stabilizability? For ,
Corollary 3.2 can be used to construct a simple example to
show that the answer to this question is no.

Example 3.1: (Individual mode controllability does not
imply mean-square stabilizability). Let

where is the infinitesimal generator of the two-state Markov
chain . It is obvious that and

are controllable, hence, (2.2) is individual mode controllable.
However, for any positive matrix , we have

which is not stable. From Corollary 3.2, we can conclude
that (2.2) is not mean-square stabilizable. Notice also that the
form process with infinitesimal generator is an ergodic
Markov chain!

From Corollary 3.1, even though (2.2) is individual mode
controllable, the infinite-horizon linear quadratic optimal con-
trol problem does not have a solution.

The mean-square stabilizability problem has been reduced
to the solvability of a coupled Riccati equation (3.2) or (3.3)
and it is very difficult to solve these equations analytically.
Wonham [37] gave a recursive procedure for solving a coupled
system of Riccati equations. Wonham’s algorithm involved
integration over an infinite horizon, which makes the algo-
rithm computationally impractical. In order to obtain some
qualitative properties about the solution of the coupled sys-
tems of Riccati equations, we first consider coupled Lyapunov
equations. Coupled Lyapunov equations play a key role in
the study of mean-square stability (see [21] for details).

Consider the coupled system of Lyapunov equations

(3.4)

where . Let denote the
column vector expansion of a matrix , denotes the
Kronecker product and denotes the Kronecker sum, i.e.,

(see [35]). We have the following.
Theorem 3.2:For any matrices ,

(3.4) has a unique solution if and only if the matrix, shown
at the bottom of the next page, is nonsingular, whereis the
infinitesimal generator of the finite-state Markov chain .

Proof: From (3.4), applying the vector expansion oper-
ator to both sides of (3.4) and using the property

(refer to [35]), we obtain

hence, we obtain

...
...

From this, we conclude that (3.4) has a unique solution if and
only if is nonsingular.

From the result in [18] and Theorem 3.2, we easily obtain the
following result, also see [22].
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Theorem 3.3:The jump linear system is
mean-square stable if and only if for any positive–definite ma-
trices , the coupled system of Lyapunov
equations (3.4) has a positive–definite solution, equivalently, if
and only if is Hurwitz stable.

Corollary 3.3: Given positive–definite matrices
, then the coupled system of Lya-

punov equations (3.4) has a positive–definite solution
if and only if is Hurwitz.

Corollary 3.4: Given positive–semidefinite matrices
, if is Hurwitz stable, then the

coupled system of Lyapunov equations (3.4) has a posi-
tive–semidefinite solution .

Proof: Since , for any , .
If is Hurwitz stable, then from Corollary 3.3, the coupled
Lyapunov equation

(3.5)

has a unique solution, say, , and

...
...

(3.6)

Because is a constant matrix, the right hand side of (3.6) is
a continuous function of , and so is the left-hand side of (3.6).
Thus and are continuous functions of

. From , we obtain ,
i.e., is a positive–semidefinite solution of (3.4). This
completes the proof.

Next, we study the properties of the solutions of a coupled
system of Riccati equations.

Theorem 3.4:If the coupled system of Riccati equations
(3.3) has a positive–definite solution, then it is unique. That is,
(3.3) has at most one positive–definite solution.

Proof: Let and ( ) be two positive–def-
inite solutions of (3.3), let and

, then from (3.3), we have

(3.7)

(3.8)

Let , subtracting (3.7) from (3.8) and using
the following identity:

we can obtain

(3.9)

Because and are positive–definite
matrices, from (3.8) and Corollary 3.3 the matrix

is Hurwitz. From (3.9) and Corollary 3.4, , i.e.,
. Switching the roles of and , we conclude that

, hence, . This concludes the proof.
Next, a recursive procedure for solving the coupled system of

Riccati equations (3.3) is given.
Algorithm:

Step 1) Suppose that there are no positive–definite matrices
such that the matrices

(A1)

are all stable, then (2.2) is not mean-square stabi-
lizable, and the algorithm terminates. Otherwise, we
find a set of such positive–definite matrices, denoted
by ( ) and let in (A1).

Step 2) Suppose that at theth step in the algorithm we have
found positive–definite matrices ( ),

...
...

. . .
...
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the following Lyapunov equations are solved for the
positive–definite matrices ( ):

Let ( ).
Step 3) Return to Step 2) with and solve for

( ).
In order to establish the validity of this algorithm, we need

to first show that in Step 2) a positive–definite solution
exists. This requires showing that if the solution at the th
iteration is positive–definite, then

is stable. This then guarantees the existence of a
positive–definite solution . In fact, suppose that
is the positive–definite solution at theth iteration, i.e.,

from which we obtain the following:

(3.10)

where . Because is
assumed to be positive–definite, from (3.10) the matrix

is stable and the Lya-
punov equation

(3.11)

has a positive–definite solution .
It is easy to see that if the algorithm converges, then the limit

of is the solution of (3.3) and (2.2) is mean-square stabi-
lizable. The next question is when does the algorithm converge?

From Corollary 3.2, if system (2.2) is mean-square stabi-
lizable, then is stabilizable, and for
any positive–definite matrices , the Riccati
equations in (3.12) have unique positive–definite solutions

:

(3.12)

Using the solutions of (3.12) to initialize the algorithm, we ob-
tain the following result.

Theorem 3.5:If there exists positive–definite matrices
such that the positive–definite solution

of (3.12) satisfies

for any , then the algorithm initialized with this solu-
tion converges and the coupled system of Riccati equations (3.3)
has a unique positive–definite solution and (2.2) is mean-square
stabilizable.

Proof: We only need to prove that the algorithm con-
verges. Subtracting (3.10) from (3.11), we obtain ( )

(3.13)

from which we arrive at

(3.14)

Thus, if is the positive–definite solution of (3.12),
then ( ). Applying induction to (3.13),

, i.e., . This implies
that the sequence converges, and the algorithm is
convergent.

Remark: The condition given in Theorem 3.5 plays a role
similar to condition [37, (6.12)].

We have only discussed the mean-square stabilization
problem, which has been a central topic in the literature.
There are essentially no results for-moment stabilization for
arbitrary . Even the mean-square stabilization results
are complicated and difficult to use. In [19] and [21], some
-moment stability criteria are given, these can be used to study

the -moment stabilization problem. This approach is studied
next.

We first give a result for mean-square stabilization.
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Theorem 3.6:The system (2.2) is mean-square stabilizable
if and only if there exist matrices such that
the matrix

is Hurwitz ( is an identity matrix of appropriate dimension).
Proof: Follows from the mean-square stability result

obtained in [19] and [21].
Thus, the mean-square stabilization problem requires

choosing feedback matrices to stabilize one “larger” matrix.
Mariton [27] applied homotopy theory to the numerical com-
putation of the feedback matrices, . Next,
we present some similar results for-moment stabilizability.
This requires the concept of a matrix measure. Letdenote a
vector norm of on , and is the induced matrix norm
of given the vector norm . The matrix measure of ,

, is defined as

where is identity matrix. Properties of matrix measure can be
found in [31]–[33]. For general , we have the following
result.

Theorem 3.7:Let be an induced matrix measure [32].
Define

Define

If there exist matrices such that is Hur-
witz, then (2.2) is -moment stabilizable.

Proof: From [21], the -moment top Lyapunov exponent
of (2.2) with the feedback control is less
than or equal to the largest real part of the eigenvalues of the ma-
trix . The proof of Theorem 3.7 is then straightforward.

Remark: When , Theorem 3.7 reduces to Theorem
3.6 and in this context, Theorem 3.7 is a general sufficient con-
dition for -moment stabilizability. The homotopy procedure
given in Mariton [27] can be used to numerically solve for

. When the dimension of the system and the
number of states of the finite-state Markov chain increase, the
dimension of the matrix increases, so the above criteria
for -moment stabilization becomes increasingly complicated.
The next result gives a simpler and possibly more useful test
for -moment stabilization.

Theorem 3.8:Let denote any induced matrix measure,
define

If there exist matrices such that the matrix
is Hurwitz stable, then (2.2) is-moment stabilizable. In

particular, for a one-dimensional system, (2.2) is-moment sta-
bilizable if and only if there exists matrices
such that is Hurwitz stable, in this case,

.
Proof: This can be proved using the-moment stability

result given in [21] and Coppel’s inequality [32].
Theorem 3.8 generally depends on the choice of matrix

measure. Different choices of the induced matrix measure can
give more or less conservative testable conditions for-moment
stabilization. This was already observed for-moment stability
in [21]. Selecting an appropriate matrix measure to improve
the testable condition is a challenging problem which requires
further investigation.

The matrix measure can also be used to obtain criterion
for absolute stabilization, keeping in mind that absolute sta-
bilizability is very conservative. If the system is absolutely
stabilizable, the properties of the form process are not needed.
A preliminary result for absolute stabilizability is given next.

Theorem 3.9:

1) If there exists a matrix measure and matrices
such that ,

then (2.2) is absolutely stabilizable.
2) If (2.2) is absolutely stabilizable, then (2.2) is individual

mode stabilizable.
3) For one-dimensional systems, (2.2) is absolutely stabiliz-

able if and only if it is individual mode stabilizable.
Proof: 1) Follows from Coppel’s inequality; 2) for any

, choose an state Markov chain such that theth state is
absorbing and the rest of the states are transient, the result then
follows directly; and 3) follows from 1) and 2).

IV. A LMOST-SURE STABILIZABILITY

It is considerably more difficult to obtain general criterion
for almost-sure stabilizability than for moment stabilizability.
Ezzine and Haddad [30] briefly discussed this problem, and
pointed out some of the difficulties. In this section, we study
this topic in more detail.

It is well known that controllability implies stabilizability
for classical linear systems. However, as discussed earlier,
individual mode controllability does not imply mean-square
stabilizability. It is surprising that individual mode controlla-
bility implies almost-sure stabilizability under fairly general
conditions. This result is summarized next.

Theorem 4.1:Assume that is a finite-state ergodic
Markov chain with invariant measure. If there exists an

such that is controllable and , then
(2.2) is almost surely stabilizable. As a consequence, we con-
clude that individual mode controllability implies almost-sure
stabilizability.
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To prove this, we need the following lemma.
Lemma 4.1:Consider a matrix in the following companion

form:

...
...

...
. . .

...
...

with distinct-real eigenvalues with
( ), then there exists a constant and a positive
integer , both independent of , and a nonsingular
matrix such that

and

Proof of Lemma 4.1:Because has distinct real eigen-
values, can be diagonalized over the real field. The transfor-
mation matrix is given by

...
...

...
. . .

...

and . To prove that satisfies
the required condition, we use the-norm. Recall that all matrix
norms are equivalent over the real field. First

With , . All entries of
and are polynomials of , and there exists an

and a positive integer , both independent of
, such that

This completes the proof.
Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1:We first prove the second statement,
i.e., the individual mode controllability implies the almost-sure
stabilizability. Without loss of generality, we only prove the
single input case. For any , individual mode controllability

assumption implies that is controllable. Therefore,
there exists a nonsingular matrix such that

...
...

...
. . .

...
...

...

Let be negative-real numbers satisfying:
( ). Choose a matrix such that

has eigenvalues for any . Now is in
companion form and from Lemma 4.1, there exists ,

, which are independent of and , and
nonsingular matrices ( ) satisfying

such that

Choose the feedback control , where

Then the closed-loop system becomes

(4.1)

From the choice of and , there exists an
and , both independent of and , such that

With , let , then there exists an
, independent of and , such that

From the sojourn time description of a finite-state Markov
chain, (4.1) is almost surely stable if and only if the state
transition matrix
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almost surely, where ( ). A
straightforward computation yields

(4.2)

where . is a finite-state
ergodic Markov chain and from the Law of Large Numbers,
there exists a nonrandom constant , the average sojourn
time, such that

a.s.

Hence

Thus, we can choose sufficiently large so that .
Then, from (4.2)

a.s.

i.e., (4.1) is almost surely stable. Therefore, (2.2) is almost
surely stabilizable.

Next, we prove the first statement (i.e., the general case).
Without loss of generality, we assume that is con-
trollable and . We choose

, and choose and as in the first half of our
previous proof. Then, there exists an and , both inde-
pendent of , such that

where is a polynomial with degree independent of. Let
denote the time occupied by state 1 during the time interval

and let denote the time occupied by the states
during the interval . From the ergodicity of

As in the first half of the proof, we obtain

and the term inside has the limit

Therefore, we can conclude that the system is almost surely
stabilizable. This completes the proof of Theorem 4.1.

Remark: It is possible to relax the ergodicity assumption on
the process . In fact, what is required is that the average
sojourn time of the process is positive for the mode in
which the system is controllable.

One may wonder if in Theorem 4.1 individual mode con-
trollability can be relaxed to stabilizability of the individual
modes? The answer to this question is no. The following
example shows that individual mode stabilizability of a jump
linear control system does not imply almost-sure stabilizability.

Example 4.1: (Individual mode stabilizability does not guar-
antee -moment stabilizability and almost-sure stabilizability).
Let

where and satisfying . The system
(2.2) is individual mode stabilizable, however, from Fang [21],
the top Lyapunov exponent for this system is positive, hence,
(2.2) is almost surely unstable for any control.

Example 4.2: (Almost-sure stabilizability does not imply in-
dividual mode stabilizability). Let , ,
, and . Obviously, is

not stabilizable. However, the system is almost surely stabiliz-
able. The invariant measure of the form process is

. A negative feedback control law with
and , almost surely stabilizes the system.

If we choose and in example (4.2),
then the system is still almost surely stabilizable, and none of
individual modes are controllable.

The matrix measure can also be used to derive testable condi-
tions for almost-sure stabilization, some results in this direction
are presented next.

Theorem 4.2:Let be a finite-state ergodic Markov
chain with invariant measure .
For any matrix measure , if there exists matrices

such that

then (2.2) is almost surely stabilizable. Moreover, for one-
dimensional systems, the above condition is also necessary.

Proof: Follows from Coppel’s inequality and the ergod-
icity of .

By specifying the matrix measure in Theorem 4.2, we
can obtain many easy-to-use results for almost-sure stabiliza-
tion. For example, by using 1-norm, 2-norm (Euclidean norm),
and -norm, we can obtain the following.

Corollary 4.1: Suppose that is a finite-state ergodic
Markov chain with invariant measure, let

( ). The system (2.2) is almost surely stabiliz-
able if there exists matrices such that
one of the following conditions hold.
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1) There exists a positive–definite matrixsuch that

2) There exists positive numbers such that

or

where .
3)

or

4)

Remarks: Conditions 3) and 4) are special cases of 2) and 1),
respectively, and may yield conservative results. As mentioned
previously, a similarity transformation is usually required before
Corollary 4.1 can be applied.

In order to use 2), the positive numbers
have to be chosen appropriately. Using the following fact from

-matrix theory, a necessary condition for 2) can be obtained:
If satisfies ( ), then there exists positive
numbers such that
( ) if and only if is a Hurwitz matrix
or equivalently, all principal minors of are positive. Let

, where

Then, if 2) is satisfied, is a Hurwitz matrix and all principal
minors of are positive. From this, to apply 2), it is only
necessary to determine if is Hurwitz. If not, then 2) can not be
satisfied. We conjecture that the stability ofis also a sufficient
condition for almost-sure stabilizability.

It was shown in [21] that in the parameter space of the
system, the domain for -moment stability monotonically
increases and converges, roughly speaking, to the domain
of almost-sure stability as decreases to zero. This
implies that almost-sure stability is equivalent to-moment
stability for sufficiently small . From this, we can also
say that almost-sure stabilizability is equivalent to-moment

stabilizability for sufficiently small , that is, system
(2.2) is almost surely stabilizable if and only if there exists a

such that (2.2) -moment stabilizable. Thus, almost-sure
stabilizability can be studied using-moment stabilizability.
From this idea, the following general sufficient condition for
almost-sure stabilizability is obtained.

Theorem 4.3:Let ( ). If there
exists matrices and positive–definite
matrices such that for any

(4.3)

then there exists a such that (2.2) is -moment stabiliz-
able, hence it is also almost surely stabilizable.

Proof: This proof is similar to the proof of the al-
most-sure stability results given in [21]. The Lyapunov function

is used and is chosen to
be sufficiently small.

Because this result does not require that the form process
is ergodic, Theorem 4.3 is likely to have more applications in
practice. The following result shows that Theorem 4.3 is very
general sufficient condition for almost-sure stabilizability.

Corollary 4.2:

1) If (2.2) is second moment stabilizable, then there ex-
ists matrices and positive–definite
matrices such that (4.3) is satisfied.

2) For a one-dimensional system, (2.2) is almost surely sta-
bilizable if and only if there exists and
positive numbers such that (4.3) holds.

3) If there exists matrices and posi-
tive–definite matrices such that

then (2.2) is almost surely stabilizable with feedback con-
trol .

Proof: Condition 1) can be proved by using the second
moment stabilizability result, 2) can be proved by calculating
the explicit solution, and 3) follows directly from (4.3).

Remarks:

1) The necessary and sufficient condition 2) in Corollary 4.2
for one dimensional systems can be used to obtain some
sufficient conditions for almost-sure stabilization for
higher dimensional systems. The idea is to use Coppel’s
inequality to reduce a higher dimensional system to a
one dimensional system.

2) Theorem 4.2 can be applied only if the form process
is ergodic, condition 2) in Corollary 4.2 may provide a
more general sufficient conditions for almost-sure stabi-
lizability. For one dimensional systems using 2) of Corol-
lary 4.2, (2.2) is almost surely stabilizable if and only if
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there exists matrices such that the fol-
lowing series of inequalities hold: ( or
are elementwise inequalities for the matricesand )

...
...

Theorem 4.4 formalizes this result.
Theorem 4.4:Let denote any induced matrix mea-

sure, and let
. If there exists matrices

such that the inequality has a solution ,
then (2.2) is almost surely stabilizable. Moreover, the solv-
ability of the inequality is also a necessary
condition for almost-sure stabilizability for one-dimensional
systems.

Proof: Let be the matrix measure induced by the
vector norm and let denote the sample solution of the
closed-loop system .
From Coppel’s inequality

(4.4)

Consider the system with initial con-
dition . Then, the sample solution is given
on the right-hand side of (4.4) and it follows that if

is almost surely stable, then from (4.4), (2.2)
is almost surely stabilizable with the feedback control

. Using the result for one dimensional systems
completes the proof.

As stated earlier, by specifying the matrix measure useful
easy-to-use criteria for almost-sure stabilizability can be ob-
tained. Next, we want to show that Theorem 4.4 is more general
than Theorem 4.2. In fact, in Fang [21], we showed that if
and are the infinitesimal generator and invariant measure,
respectively, of a finite-state ergodic Markov chain, then for
any vector , the inequality has a solution
if and only if . Suppose that is a finite-state
ergodic Markov chain, from the above fact it follows that
Theorem 4.2 and Theorem 4.4 are equivalent. However, when
the form process is not ergodic, then Theorem 4.2 can
not be used, however, Theorem 4.4 can still be applied. This
is illustrated in the next example.

Example 4.3:Let and denote two real
numbers and . Assume that the form process

is a two state Markov chain with infinitesimal generator
. It is obvious that the form process is not ergodic and

Theorem 4.2 can not be used. However, from Theorem 4.4, (2.2)
is almost surely stabilizable if and only if , i.e.,

and . From , we see that the only uncertainty
about the form process is the initial probability distribution.

V. ILLUSTRATIVE EXAMPLES

In this section, some examples are given to show how the
criteria developed in this paper can be used to study stochastic
stabilizability. We first begin with an example motivated by the
study of dynamic reliability of multiplexed control systems [17].

Example 5.1:Let

This models a first order system with two controllers (in-
corporating the redundancy principle for reliability) (see [17]
for details). The first mode (state 1) corresponds to the case
where both controllers are good, and the second and third
modes (the states 2 and 3) correspond to the case where one
of the controllers fails, and the fourth mode (the state 4) cor-
responds to the case where both controllers fail. We assume
that whenever a controller fails, it will be repaired. Suppose
that the failure rate is and the repair rate is , and the
failure process and the repair process are both exponentially
distributed. Then the form process is a finite-state Markov
chain with infinitesimal generator

In [17], Ladde anďSiljak developed a sufficient condition for
second moment (mean-square) stabilizability and used this to
show that when and , and

, the controller stabilizes
the jump linear system (2.2). In this approach, an appropriate
choice of positive–definite matrices should be sought, which is
very difficult. However, using Theorem 3.8, we can easily check



1602 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

that in this case, the eigenvalues of the matrixin Theorem
3.8 have negative real parts and is Hurwitz. It is also easy
to show that for the failure rate and the repair rate

, any controller with the parameters and sat-
isfying and can stabilize the
second moment of the jump linear system (2.2). Similarly, using
the controller with and , for any failure rate

and repair rate , the second mo-
ment of system (2.2) can be stabilized by this controller. One
important fact is that even if the failure rate is greater than the re-
pair rate, this controller can still stabilize the second moment of
the system, i.e., the multiplexed control system is reliable. This
result is not readily apparent from [17]. From additional compu-
tations, whenever the repair rate is greater than the failure rate,
this controller can stabilize the second moment of the system.

Example 5.2: In this example, we study the-moment
stabilization problem for general . Consider the one-
dimensional jump linear system (2.2) with

From Theorem 3.10, (2.2) is-moment stabilizable if and only
if there exists and such that

(5.1)

1) If and , i.e., the system is individual mode
controllable, then with and such that

and , (5.1) is satisfied, hence (2.2) is
-moment stabilized by such a controller.

2) 2) If and , then (2.2) is -moment stabi-
lizable if and only if . Necessity follows from
the second inequality in (5.1). Suppose that ,
choosing such that

we can easily verify that (5.1) is satisfied for any,
hence, (2.2) is stabilized by such controller.

3) If and , then (2.2) is -moment stabilizable
if and only if .

4) If , then (2.2) is -moment stabilizable if and
only if

The domain of for which (2.2) is -moment
stabilizable is illustrated in [18].

Example 5.3:Let

The system (2.2) with this data is individual mode controllable
and from Theorem 4.1, (2.2) is almost surely stabilizable. We
want to find the feedback matrices and such that
the control almost surely stabilizes (2.2).
Theorem 4.2 is used to solve this problem. First notice that
the invariant measure for the form process is .
Choose , then
, and for any matrix measure , . For the

first mode, we can choose a such that the eigenvalues
of can be assigned, for example, to1 and

3. This can be achieved by setting , then
. Then,

where

Define the vector norm , the induced matrix
measure is given by . From this, we can
easily compute

Then
and from Theorem 4.2 the controller

with and
almost surely stabilizes the system.
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