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Stabilization of Continuous-Time Jump Linear
Systems

Yuguang FangSenior Member, IEEEBNnd Kenneth A. Lopardellow, IEEE

Abstract—in this paper, we investigate almost-sure and moment time intervals between jumps governed by an i.i.d. process.
stabilization of continuous time jump linear systems with a fi- They extended Bhuracha’s result and obtained necessary and

nite-state Markov jump form process. We first clarify the concepts g ficient conditions for second moment stability in terms of the
of 6-moment stabilizability, exponential §-moment stabilizability, <

and stochasticd-moment stabilizability. We then present results Kronecker_mat_rlx _p_roduct. Ladde alﬁi_ljak [17] formulated

on the relationships among these concepts. Coupled Riccatithe dynamic reliability problem for multiplexed control systems
equations that provide necessary and sufficient conditions for as a continuous-time jump linear system with a finite-state
mean-square stabilization are given in detail, and an algorithm Markov form process and then derived a sufficient condition for
for solving the coupled Riccati equations is proposed. Moreover, second moment stability. Srichander and Walker [16] studied

we show that individual mode controllability implies almost-sure ] : : ;
stabilizability, which is not true for other types of stabilizability.  2ult-Lolerant control systems using a jump linear system mode|

Finall, we present some testable sufficient conditions foré- with a form process which is not directly observable to model

moment stabilizability and almost-sure stabilizability. the failure events. Kats and Krasovskii [9] and Bertram and
Index Terms—Almost-sure stabilizability, coupled Riccati equa- Sarachik [10] used a stochastic VEI:S.IOI'I of Lyapunov's Se?Q”d
tions, §-moment stabilizability, jump linear systems. method to study almost-sure stability and moment stability.

Unfortunately, constructing an appropriate Lyapunov function
is difficult and this is a well known disadvantage of Lyapunov’s
second method. Also, in many cases, the criteria obtained from
ONSIDER the continuous-time jump linear system iithis method are similar to moment stability criteria and are often

I. INTRODUCTION

the form too conservative for practical applications. For certain classes
) of systems, such as (1.1) or (1.2), itis possible to obtain testable
#(t) = Alo(t))x(t) + Blo(t))u(t) (1.1) stability conditions. Fengt al.[18] and Jiet al.[11], [12] used
or its discrete counterpart Lyapunov’'s second method to study the stability of (1.1) or
(1.2) where{o(¢)} is a finite-state Markov chain. Necessary
z(t+1) = A(o(8))z(t) + Blo(t))u(t) (1.2) and sufficient conditions are obtained for second moment

where o(t) is a finite-state random step process, usually %{ability a_nd stabiliz_ability _of both continuous time (1.1) and
finite-state, time homogeneous, Markov process. The modgjscrete-time (1.2) jump linear systems. Fragoso and Costa
(1.1) and (1.2) can be used to analyze the closed-loop stabi[i_%g]’ [39] have stuqlled mean-square s'Fablhty of continuous-time
of control systems with communication delays [1], [2] or thin€ar systems with Markovian jumping parameters. In [38],
stability of control systems subject to abrupt phenomena suefcessary and suf_ﬂment condltlons are obtained when additive
as component and interconnection failures [3]. The stabiliffiSturbances are included in the system. In [39], necessary
analysis of (1.1) or (1.2) is therefore very important in th@”d sufﬁment conditions are obtained using a Imear matrix
design and analysis of a variety of control systems. Stabiliyeduality (LMI) approach when only partial information on
analysis of systems of this type can be traced back to the wdhe mode parameter is available to the controller. In general, the
of Rosenbloom [6] on moment stability properties. BellmaA€velopment of second moment stability or stabilization criteria
[4] was the first to study the moment stability of (1.2) with ar§or jump linear systems_ invqlves the simultaneous solution of
i.i.d. form process using the Kronecker matrix product. BergéhSYystem of coupled Riccati equations, [40]-[43]. In [44] and
[5] used a similar idea to study the moment stability propertié&°]; the authors develop necessary and sufficient conditions for
of the continuous time system (1.1) with a piecewise constdREan-square stabilization and consider the problem of obtaining
form process{(#)}. Later, Bhuracha [7] used Bellman's ided® ma>§|mal sglutlon of a system of coupled.algebralc Riccati
developed in [4] to generalize Bergen'’s results and studied béfuations using an LM! approach. L.Ml teqhmques havg proven
asymptotic stability of the mean and exponential stability ¢f P& useful in addressing computational issues associated with
the mean. Darkhovskii and Leibovich [8] investigated secorfifVeloping second moment stability criteria for jump linear
moment stability of (1.1) where(t) is a step process with the SYStems.
As Kozin [13] pointed out, moment stability implies al-
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Although Lyapunov exponent techniques may provide netet {r; & = 1, 2, ...} be the (discrete-time) Markov chain
essary and sufficient conditions for almost-sure stability [14dlefined on the state-spadéwith the one-step transition matrix
[15], [18], [24]-[26], it is very difficult to compute the top Lya- (p;;)y «x » and initial distributionip. This chain is referred to as
punov exponent or to obtain good estimates of the top Lyapuniie embedded Markov chaiof {+(¢)}. We have the following
exponent for almost-sure stability. Testable conditions are diffojourn time description of the procegs(t)} [34, p. 254].
cult to obtain from this theory. Let 7, k = 0, 1, ... be the successive sojourn times be-

Arnold et al. [15] studied the relationship between the topween jumps. Let, = E;:(} n fork = 1,2, ... be the
Lyapunov exponent and tilemoment top Lyapunov exponentyajting time for thekth jump with¢, = 0. Starting in state
for a diffusion process. Using a similar idea, Leizarowitz [25(}(0) = 4, the process sojourns there for a duration of time
obtained similar results for (1.1). A general conclusion wagat is exponentially distributed with parameter The process
that §-moment stability implies almost-sure stability. Thusihen jumps to the statg # i with probability p;, the sojourn
sufficient conditions for almost-sure stability can be obtaingghe in the statej is exponentially distributed with parameter
throughé-moment stability, which is one of the motivations forqﬁ and so on. The sequence of the states visited by the process
the study of-moment stability. There are many definitions forr; )1 denoted byiy, i, .. . is the embedded Markov chain
moment stability:5-moment stability, exponential-moment {'Tk; b= 1, 2, ...}. Conditioning oniy, 4, ..., the succes-

stability and stochasti€-moment s.tgbility. Jetal.[11] pro_ved sive sojourn times denoted Ky *)} are independent exponen-
that all second moment (= 2) stability concepts are equivalent,y gistributed random variables with parametegs Clearly,

for (_1_.2). Fenget al. [18] s_howed that all the second momen he joint procesg(rx, 7x): k = 0, 1, ...} is a time homoge-
stability concepts are equivalent for (1.1), and also proved tn?éous Markov process that completely characterizes the form

if;)r rigggtg::?cqus;oggrz\%rsé?nrgi ttr;e trr?eg'?gg?;m%?nglsr;aobs'lt'tzurprocess{ o(t)}. The following notations will be used throughout
- I 2 is paperF" = 2, Tk): 0 < k < n}is theo-algebra
stability as§ | 07T. This is tantamount to concluding tha bap ollre, m): 0 < k< ) -89

t .
b . - generated by{(rx, 7): 0 < k < n}. Foreachi € N, ¢;
almost-sure stability is equivalent @moment stability for denotes the initial distribution of(¢) concentrated at théth

sufficiently small 6. This |s a significant result because th% ate. Ifo(t) has a single ergodic class,denotes the unique
study of almost-sure stability can then be reduced to the stuI Variant distribution ofs(t). For a matrixB, \i(B) denotes

of §-moment stability. In [20] and [22], we generalized the ne of the eigenvalues @, and A (B) = max; (Reh(B))

results reported in [18]. We showed that fo_r_(l.l) or (1.2) W'tﬁnd)\mm(B) — min;(Re;(B)) denote the largest and smallest
a Markov form process, al-moment stability concepts are

equivalent and they all imply almost-sure (sample) stabilit{/eal parts of the eigenvalues Bf respectivelydet(A) denotes

We also showed that for sufficiently small > 0, §-moment he det_ermlnan_t_of a ma_ltrlxl_, A = B. (.A < B) _denotes that
i . . . — A is a positive semidefinite (definite) matrix and<. B
stability and almost-sure exponential stability are equivale

Henceforth, almost-sure stability can be inferred frémmo- QASTG f) otl_enottesﬁn elecrinetntV\r/]lset!nec:ug_lll_ty. bilit |
ment stability. Sufficient conditions fa-moment stability and . ochastic stability and stochastic stabiiizability are aways

almost-sure stability were developed. A refined estimate of gjgportant issues in the design and analysis of stochastic con-

§-moment Lyapunov exponent given in [25] was also obtaineHOI systems. Because the definitions for stochastic stability and
This paper addresses the stabilization problem for a cont abilizability can be confusing, we next present the definitions

uous time jump linear system. In Section II, some preliminari¢4at Will be used in this paper. _ -
and definitions are given. Section Il is devoted todhmoment ~ Definition 2.1: Let = denote the collection of probability
stabilization problem fors > 0, a necessary and sufficient™easures o’ and¥ C = be a nonempty subset & Con-
condition for second moment stabilizability £« 2) is given Sider the jump linear system
and some sufficient conditions for genefab 0 are presented.
In Section IV, the almost-sure stabilization problem is studied () = A(o(t)x(t) (2.1)
and a relationship between almost-sure stabilizability and indi-
wdual mode cqn_trollablhty _(stab|I|zab|I|ty) 1S |IIustrat§<_j alo.r.]gwhere{a(t)} is a finite-state Markov chain. Fér> 0, (2.1) is
with some sufficient conditions for almost-sure stabilizability. . -
Some illustrative examples are given in Section V. said to be the following:
asymptoticallyb-moment stablevith respect to (w.r.t.)Y, if
for anyxzq € R™ and any initial probability distributiony

[l. PRELIMINARIES AND DEFINITIONS ¥ of o(¢)
We first establish some preliminaries for a finite-state Markov
process{c(t)}. Let N = {1,2,..., N}. Foralli, j € N, flijgoE{llw(t, )|’} =0
define '
wherex(t, o) is a sample solution of (2.1) initial fromy €
P =0 R™. If 6 = 2, we say that (2.1) iasymptotically mean-square
G =—qii = Z Git stable w.r.t.¥; if § = 1, we say that (2.1) issymptotically
1 mean stable w.r.tb. If ¥ = =, we say simply that (2.1) is

_ Qij . asymptoticallyp-moment stableSimilar statements apply to
Pig =" (i # 7). the following definitions.

T
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the ergodic invariant distributiom, may not be a sufficient be-

Exponentiallys-moment stablevith respect tol, if for any

zo € R™ and any initial distribution) € = of o(¢), there

exist constants;, 5 > 0 independent of, and« such that
E{||lz(t, zo)[I’} < allzol’e™™ ¥z 0.

Stochasticallys-moment stablevith respect tol, if for any
xo € R™ and any initial distribution) € ¥ of o(¢)

[=S)
/t:O

Almost surely (asymptotically) stabléth respect tol, if for
anyxzo € R™ and any initial distribution) € ¥ of o(¢)

P{jim [lo(t, o)l = 0} = 1.

E{lla(t, zo)l} dt < +oc.
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This example shows that although transient states do not af-
fect almost-sure stability, an obvious statement that is consistent
with intuition, they do affect moment stability. One explanation
is that when the system sojourns in a transient unstable state for
too long, moment instability can occur.

The relationship among the stochastic stability concepts has
been studied by Fergg al.[18] for § = 2, the mean-square sta-
bility case. Fanget al.[19] generalized this result #®©moment
stability for > 0 for discrete-time jump linear systems. Fang
[21] also extended such results to the continuous-time jump
linear systems and obtained the following result.

Theorem 2.1:For anyé > 0 and any system (2.1) with a
finite-state Markov chain form procege(¢)}, 5-moment sta-
bility, 6-moment exponential stability and stochastic stability

In the aforementioned definitions, the initial probability disare equivalent, and each implies almost-sure stability. O
tribution of {o(¢)} plays a very important role. The stochastic Definition 2.2: The system (2.1) is said to babsolutely
stability definitions as given can be interpreted in the contegtableif it is stable in any sense in Definition 2.1 for any
of robust stability, i.e., robustness ti{structured) uncertainty finite-state form procesés(t)}.

of the initial distributions of the form process. As the Markov Remark: This definition may be impractical in applications,
procesy(x(t), o(t)) is the state of the system and in practicesowever, if the system can be shown to be absolutely stable,
the initial probability distribution of the form proceds (¢)}
is usually not exactly known, this is a reasonable requiremeptocesg o (t)).

Also, stability with respect to a single initial distribution, say, For stochastic stabilization, we give the following definition.

then stochastic stability of the system is independent of the form

Definition 2.3: Consider the jump linear control system

cause a perturbation tocan destroy the stability of the system.
The following example illustrates this point.
Example 2.1: Consider the one-dimensional (scalar) jump
linear system (2.1), wherd(1) = (1) and A(2) = a(2) < 0,

assumethdto(¢)} is atwo state Markov chain with infinitesimal
generatory = (

-1 1
00

(%)

If there exists a feedback contre(t) = —K(o(t))z(t) such
that the resulting closed-loop control system is stochasti-

A(o(£)x(t) + Blo(t))u(t). 2.2)

), and letP; andE denote the probability caly stable in the sense of Definition 2.1, then the control

measure and expectation with respect to the initial distributiefysiem (2.2) is said to be stochastically stabilizable in the

§. It is easy to show that the unique invariant measure ¢gresponding sense. If the resulting closed-loop system is
7 = (0, 1). Thus, from

x

(®)

2(0) exp < /0 tA(a(T)) dT> = zpexp < /0 ta(a('r)) dT>

we have for anyé > 0

Bl = ol exp ( / " @) dT)

= ||zo||® exp(da(2)t) == 0.

absolutely stable, then (2.2) is absolutely stabilizable. If the
feedback controK(s(¢)) = K is independent of the form
process, then (2.2) is simultaneously stochastically stabilizable
in the corresponding sense.

From Theorem 2.1, we can easily obtain the following result
on the relationship among the previous stabilization concepts.

Corollary 2.2: For (2.2) with a finite-state Markov form
process{os(t)} and with any§ > 0, &-moment stabilizability,
6-moment exponential stabilizability and stochagtimoment

This implies that (2.1) i$-moment stable with respect to thestabilizability are equivalent, and each implies almost-sure

initial condition # (the invariant measure). However, if thestabilizability.

in

itial distribution is £ = (1, 0), then

Ee|l=®)|l°

2 oo e (3 t 1) dr ) % Pilo(r) =1, 057 <

= |zo?® Dt P (a(T) =1, 0 < 7 < t0(0) = 1)
x Pe(0(0) =1)
_ |$0|666a(1)t6—t

|.’170|66(6a'(1)_1)t.

Hence, ifé > 0 anda(1) > 0 such thatéa(1) —1 > 0. Then
from the previous computation, we can obtain

tlim Eellz(®)|° = +oc

which implies that the system is nétmoment stable with
the initial distributioné = (1, 0).

O

Remark: From now on, we will usé-moment stabilizability
to denote any one of the aforementioned themoment stabi-
lizability concepts.

Itis easy to see that absolute stabilizability implies stochastic
stabilizability in any sense, and simultaneous stochastic stabi-
lizability implies stochastic stabilizability in the corresponding
sense. However, absolute stabilizability is too conservative to
be useful in applications. The simultaneous stochastic stabiliz-
ability problem has been studied in the current literature, how-
ever, simultaneous stabilizability is also too conservative. The
next example is illustrative along this line.

Example 2.2:(6-moment stabilizability does not imply
simultaneouss-moment stabilizability, and almost-sure sta-
bilizability does not guarantee simultaneous almost-sure
stabilizability).
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Let A(1) = a > 0, A(2) = b > 0, B(1) = 1 and subjectto (2.2), has finite cost. In particular, (2.2§immoment

B(2) = —1. The form procesgo(¢)} has infinitesimal gen- stabilizable if and only if the following optimal control problem:
erator@ = (71 _1), with unique invariant measure = o
(0.5, 0.5). If we chooseK (1) = ¢ +1andK(2) = —b — 1, min J{u] = / E(@T(#)a(t) + uT (Hu(t)/? dt

0

then A(o(t)) — B(o(t))K(o(t)) = —1, hence the closed-loop

system is deterministic and stable, and the jump linear systsmbject to (2.2), has finite cost.

(2.2) is absolutely stabilizablé;moment stabilizable, and al- Proof: Suppose that (2.2) i&-moment stabilizable, then

most surely stabilizable. there exist matrices((1), K(2), ..., K(N) such that the
However, we will show that the system cannot be simultgystem

neously almost surely stabilized, and from Corollary 2.2 this .

implies that the system cannot Benoment stabilized. For any #(t) = (Alo(t)) — Bla (1) K (o (1)) (t) (3.1)

K, using the feedback contra(t) = —Kx(t), the closed-l00p g s_moment stabilizable. Then, with the feedback control
system becomes
u(t) = —K(o(t))z(t)
it follows from Theorem 2.1 that
/ Ellz(0)| dt = / BT (#)a(t)/? dt < .
0 0

Thus, for the given control, we have

and its solution is given by

(t) = o exp < /0 t (A(o(r)) — B(a(r)K) dT> .

From this and theHer(g;)'('jic theorem, we obtain ] = /°° E( T (o (£ (t)
Jm Zl |g|;0|| ot ul (O R(o(£))u(t))/? dt
t _ T
= lim / (A(o(r)) = Bo(r)K) dr = / B ()@ ()
=1 (A(1) — B)K) + m(A(2) — B(2)K) +K Lo @) R(a()K (o (1)) (t)”* dt
=3(@-K+b0+K)=5(a+b)>0. SM‘V?/ E@T ()x()? dt < oo
0

Therefore, (2.2) cannot be simultaneously almost surgphere
stabilized.
M = max Amax(Q(6) + K (R()K(D))
[ll. 6-MOMENT STABILIZATION AND MEAN-SQUARE ) o
STABILIZATION and the optimal control problem has finite cost.

Conversely, suppose that the given optimal con-
Mean-square (second moment) stabilizability problems hayg, problem has a finite cost, then there exist ma-

been studied by many researchers in the current literatueé. Jjices K(1), K(2), ..., K(N) such that the solution of

al. [12] reduced the stabilization problem to solving a couplegle  ¢losed- loop system (3.1) with the feedback control
set of algebraic Riccati equations. Mariton [27], [28] appheg —K(o(t))x(t) satisfies the following:

homotopy theory to develop a numerical procedure for the

mean-squares(= 2) stabilization problem. From Corollary 2.2, ; ] / o (1))t () R(o(£))u(t)/? dt < s
5-moment stabilizability is equivalent #-moment stochastic -

stabilizability which involves a cost functional similar to I'nea'iherefore we have

quadratic optimal control systems design. Therefore, we may__ -

easily reduce thé-moment stabilization problem to an ap- E(xT(t)x(t))é/Q di < Mf/Q/
propriate optimal control problem. In this section, we obtairio N 0
necessary and sufficient conditions féimoment stochastic xE(a:T(t)Q(a(t))a:(t))‘S/Q dt < oo
stabilizability of a jump linear system when the mode process

is directly observable. These results might be extended to W{bere

clude noise disturbances to the systems which have partial M. — 1

observations of the mode process using the results of [38] L= B8 Amin(Q(2))

and [39]. . .
Theorem  3.1:Given  positive—definite ~ matrices grom Theorer;l_Z.lt;l (3:r1r)].|é-mon":ent Stﬁble’ h(fance (Z'é) S

Q(1), Q(2), ..., Q(N) and R(1), R(2), ..., R(N), moment stabilizable. This completes the proof.

It may seem that we have complicated the matter by reducing
the stabilizability problem to an optimal control problem. How-
ever, the optimal control problem continues to be studied and

. = T T 5/2 many numerical algorithms have been developed in the litera-
min Ju] /0 Ela” (0)Qo(®)ax(thu” (R(())u®)""dt 4,16 Thisis certainly the case for second moment stabilizability.

(2.2) is -moment stabilizable if and only if the following
minimization problem:
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Corollary 3.1 [12], [37]: Given positive—definite matrices are controllable, hence, (2.2) is individual mode controllable.
Q(1), Q(2), ..., QN) and R(1), R(2), ..., R(N), then However, for any positive matri¥ = (#'* '), we have
(2.2) is mean-square (second moment) stabilizable if and only
if the following coupled system of algebraic Riccati equations: A(1) = B()BT(1)P — % ol = <—1811 10 —0p12>
AT(D)P(i) + P()A(i) — P(8)B(i))R™* (i) BY (4) P(i)
N which is not stable. From Corollary 3.2, we can conclude

+ Z 0 P(j) = —Q(4), (t=1,2,...,N) (3.2) that(2.2)is not mean-square stabilizable. Notice also that the
i form processs(t) with infinitesimal generato€) is an ergodic
has a positive—definite solutiaB(1), P(2), ..., P(N). Markov chain!

In particular, (2.2) is mean-square stabilizable if and only if From Corollary 3.1, even though (2.2) is individual mode

the following coupled system of algebraic Riccati equations: controllable, the infinite-horizon linear quadratic optimal con-
trol problem does not have a solution.

AT(i)P(i) + P(i)A(7) — P(i)B(i)BT(i)P(i) The mean-square stabilizability problem has been reduced
to the solvability of a coupled Riccati equation (3.2) or (3.3)
—|—Zqijp(j) =1, (i=1,2,...,N) (3.3) anditis very difficult to solve these equations analytically.

; Wonham [37] gave a recursive procedure for solving a coupled
system of Riccati equations. Wonham'’s algorithm involved
é‘ltegranon over an infinite horizon, which makes the algo-

rithm computationally impractical. In order to obtain some

qualitative properties about the solution of the coupled sys-

tems of Riccati equations, we first consider coupled Lyapunov

A(d) — B()BT (i) P(i) — %qJ (i=1,2,...,N) equations. Coupled Lyapunov equations play a key role in
the study of mean-square stability (see [21] for details).

are stable. Consider the coupled system of Lyapunov equations
Proof: Suppose that (2.2) is mean-square stabilizable,

from Corollary 3.1, there exist positive—definite matrices = o ) ) )
P(1), P(2), ..., P(N) such that (3.3) holds. From (3.3), we A7 (DP() + P)AG@) +)_ 4 P(7) = -Q(i),  i€N
can easily obtain '

has a positive—definite solutiafi(1), P(2), ..., P(N).

Corollary 3.2: If (2.2) is mean-square stabilizable, then ther
exist positive—definite matrice® (1), P(2), ..., P(N) such
that

(3.4)

(A(1) = B@)BT()P(0) — 5 )" P() here N 2 N} Let vec(X) denote th

AL BT where N = ,2,..., N}. Let vec enote the

+ PO = BOBT L) - I). column vector expansion of a matriX, @ denotes the
=—1-> q;P(j) - P(H)B(i)B ( P (i) Kronecker product ands denotes the Kronecker sum, i.e.,

i A®eB=A®I+ B®I (see[35]). We have the following.

Theorem 3.2:For any matrices@(1), Q(2), ..., Q(N),
ﬁ .4) has a unique solution if and only if the mat#¥ shown
the bottom of the next page, is nonsingular, wheres the
infinitesimal generator of the finite-state Markov chdin(¢)}.
Proof: From (3.4), applying the vector expansion oper-
to both sides of (3.4) and using the propety( AX B) =
T © A)vec(X) (refer to [35]), we obtain

BecauseP(i) and + >3, ¢;; P(j) + P(i)B(i)BT (i) P(i)
are positive definite, from Lyapunov theory, we conclude th
(A(4) — B(1)BY (i) P(i) — (1/2)¢;I) is stable.

It is obvious that the mean-square stabilizability problem
is equivalent to the existence of a positive—definite solutlor[or
of the coupled system of Riccati equations, this does n
however, reduce the complexity of the problem considerably.
For a linear time-invariant system, controllability implies sta- AT(i))vec(P(3)) + (AT( ) ® I)vec(P(i))
bilizability. One natural question to ask is: does individua
mode controllability implys-moment stabilizability? Fof = 2, +Z gi;vec(P(5)) = —vec(Q(i))
Corollary 3.2 can be used to construct a simple example to
show that the answer to this question is no.

Example 3.1:(Individual mode controllability does not hence, we obtain
imply mean-square stabilizabilityLet

vec(P(1)) vec(Q(1))
A(1) = <0(')‘) 32) B(1) = <‘1)> B veC(1.3(2)) - vec(?(2))
_(05 0 _ (1 : :
1w=(1 ;) #@=(o) vec(P(V) vec(Q(V)
Q= <_1 _1) From this, we conclude that (3.4) has a unique solution if and
only if F' is nonsingular. O

whereQ is the infinitesimal generator of the two-state Markov From the result in [18] and Theorem 3.2, we easily obtain the
chaino(t). It is obvious that A(1), B(1)) and(A(2), B(2)) following result, also see [22].
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Theorem 3.3: The jump linear system(t) = A(o(¢))x(t) is (A(@) — B(i)F(z))Tﬁ(z) + P(i) (A(é) — B())K(1))
mean-square stable if and only if for any positive—definite ma- N
tricesQ(1), Q(2), ..., Q(N), the coupled system of Lyapunov + FT(i)F(i) + Z qi; P(j) = —1. (3.8)
equations (3.4) has a positive—definite solution, equivalently, if =1
and only if £ is Hurwitz stable. O

Corollary 3.3: Given positive—definite matrices Let E(i) = P(i) — P(i), subtracting (3.7) from (3.8) and using
Q(), Q(2), ..., Q(N), then the coupled system of Lya-the following identity:
punov equations (3.4) has a positive—definite solution

P(1), P(2), ..., P(N)ifand only if F is Hurwitz. O (A(1) — B())K ()T P(4)
Corollary  3.4: Given positive-semidefinite  matrices + P(i)(A(i) — BG)K (i) + KT (i) K (4)
Q(), Q(2), ..., Q(N), if F is Hurwitz stable, then the (A(i) — BGE )T PG) + PUYAG) — BGE®))

coupled system of Lyapunov equations (3.4) has a posi- _)' _ ). o 0

tive—semidefinite solutiod(1), P(2), ..., P(N). + KK (@) — (K(i) — K(1)" (K(5) — K(2))
Proof: Since@(¢) > 0, for anys > 0, Q(¢) + 81 > 0. i

If F is Hurwitz stable, then from Corollary 3.3, the coupled’€ can obtain

Lyapunov equation (A(i) - B(i)F(i))T E(i) + E()(A() — B(G)K (i)
N u
AT(@)P(i) + P()A®) + > ¢, P(j) = —(Qi) + BI), + EA: 0, () = (K(i) — K(1))"(K() - K(i)) . (3.9)
=1 =
i€ N (3.5) '

Becausel + K (i)K(i) and P(i) are positive—definite

has a unique solution, saf(1, ), ..., P(N, f3), and matrices, from (3.8) and Corollary 3.3 the matrix

vec(P(1, 3)) vec(Q(1) + AI) B .
vec(P(2, ) vec(Q(2) + BI) P =diag { (A(1) = B(HE(D))
. = : - (36) ® (A1) - BOE(), ...,
vec(P(N, 3)) vec(Q(N) + 8I) (A(N) - BINE(N)"
® (A(N) = BIVE(N)) }+QeT

Becausd' ! is a constant matrix, the right hand side of (3.6) is
a continuous function g#, and so is the left-hand side of (3.6).

: : . . is Hurwitz. From (3.9) and Corollary 3.£(¢) < 0,i.e.,P(i) <
Thus P(4, ) and)\mm(P(Lv p)) are c_ontmuousb functions of P(i). Switching the roles of’(i) and P(i), we conclude that
B. From Amin(P(7, 4)) > 0, we obtainAn,in(P(4, 0)) > 0, ;. . N T .
. R . o . . P(i) < P(i), hence P(¢) = P(i). This concludes the prodil
i.e., P(i, 0) is a positive—semidefinite solution of (3.4). This . )
Next, a recursive procedure for solving the coupled system of

completes the proof. iccati equations (3.3) is given
Next, we study the properties of the solutions of a COUpIe%JAlgoritﬂm' ' 9 '

system of Riccati equations. . . )
Theorem 3.4:1f the coupled system of Riccati equations Step 1) Suppose that there are no p05|t|ve—def|n_|te matrices
(3.3) has a positive—definite solution, then it is unique. That is, P(), P(2), ..., P(N) such that the matrices
(3.3) has at most one positive—definite solution. ) N T ) 1 )
Proof: Let P(¢) and P(i) (i € N) be two positive—def- A@) - BB ()P() — 3 ul, ieN (AD)
inite solutions of (3.3), le& (i) = —BT({)P(i) and K (i) =

—BT(i)P(4), then from (3.3), we have are all stable, then (2.2) is not mean-square stabi-

lizable, and the algorithm terminates. Otherwise, we

(A(D) — B K ()T P(i) + P(i)(A®i) — B(G)K(i)) find a set of such positive—definite matrices, denoted
N by Py(i) (4 € N) and letP(i) = Fy(i) in (Al).
+ KT (K@) + Z 4, PU) = —1 (3.7) Step 2) Suppose that at theh step in the algorithm we have
=1 found positive—definite matrice®, (i) (¢ € N),

ATy AT(1) — 1 q12d e ant
qo1d AT(2) @ AT(2) — qof - gonI
F =
gnid qnal o AT(NY @ AT(N) — gn T

diag{AT(1) @ AT(1), ..., AT(N) @ AT(N)}+ QoI
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the following Lyapunov equations are solved for thé&Jsing the solutions of (3.12) to initialize the algorithm, we ob-

positive—definite matrice®(:) (i € N): tain the following result.
- Theorem 3.5:If there exists positive—definite matrices
(A(7) = B())BT () Pu(i) — 2 qiI)" P(i) Q(), ..., QN ) such that the positive—definite solution
+ P(i) (A() — B@)BT (i) Pu(é) — L qi]) Fy(1), P (2) Fy(N) of (3.12) satisfies
= 1= ¢;;P()) — Pu())B()B" (i) P (i). ¥ (AD=BOBT ()R ()=(1/Da. DTt
JjF 0
Let P,y1(i) = P(z) (i € N). ) )
Step 3) Return to Step 2) with — % + 1 and solve for x 1+ Z ¢ Fo(7) — Q(1)
Piy2(3) (i € N). i

In order to establish the validity of this algorithm, we need x AO-BOBT(HP(H-1/DaDt gp <
to first show that in Step 2) a positive—definite solutif()
exists. This requires showing that if the solutiBg(i) at thekth  for any< € N, then the algorithm initialized with this solu-
iteration is positive—definite, ther (i) — B(:)BT(i)P,(i) — tionconverges and the coupled system of Riccati equations (3.3)
0.5¢;1 is stable. This then guarantees the existence ofhas a unique positive—definite solution and (2.2) is mean-square
positive—definite solutionP, 11 (¢). In fact, suppose thab,(;) stabilizable.
is the positive—definite solution at theth iteration, i.e., Proof: We only need to prove that the algorithm con-

verges. Subtracting (3.10) from (3.11), we obtain( 0)

(A() — B@)B () Puci (i) - S ad)” Puli)

+ Puli) (A(D) ~ BB ()Peca(i) — b ] (46) = BOBTOAM ~ § :1) " AP (i)
- E(jqz i1 (4) = Pie k( )B('L)BT?i)l)Dk—l(i) + APy (i) (A(0) = BOBT O P(E) — 5 i)
— =~ G AP() + ARB(@)BT()AP(), (3.13)
J#

from which we obtain the following:
from which we arrive at

AP (i)
_ / SAD=BOBT ()P (D)—=(1/2: 1)t
0

(A(6) = B@BT(6)Pu(i) = 3 q:1)" Puli)
+ Pu(i) (A(6) — BG)BT()Pu(i) — L i)

<I+ Y @iPeei (i) + Pu()B()BY () Fi(i)

i x {Z i APL(j) — APk(i)B(i)BT(i)APk(i)}
NB(NBT (4 ; ua
+ ARGBOBE(HAR "‘(L)) (3.10) (A =BOBT P =(1/2a: Dt gy
, < [T LAD-BOBT PG~/ e DT
where AP,(i) = Pu(i) — Pr_1(¢). BecausePy(¢) is = Jo
assumed to be positive—definite, from (3.10) the matrix
(A(i) — B(1)BT (i) P.(i) — (1/2)g;I) is stable and the Lya- Z 4i; APL(5)
punov equation poy
. . . . T . (A(D=B(@)BT () Px ()= (1/2)q: Dt
(A0 = BOBT ()AL = 3 l)" Pea () xe e (3.14)
+ Py (i) (A®) — B@)BT (1) Bi(i) — § ¢il) Thus, if Py(i) is the positive—definite solution of (3.12),
- _J_ Z qi;Pu(j) — PuB(i)BT (i)Py(i) (3.11) then AP (i) < 0 (¢ € N). Applying induction to (3.13),
por APyy1(7) < 0,i0.e.,0 < P1(d) < P(i). This implies
that the sequence’,(:¢) converges, and the algorithm is
has a positive—definite solutiaf, 1 (¢). convergent. O

Itis easy to see that if the algorithm converges, then the limit Remark: The condition given in Theorem 3.5 plays a role
of P(4) is the solution of (3.3) and (2.2) is mean-square stakiimilar to condition [37, (6.12)].
lizable. The next question is when does the algorithm converge®e have only discussed the mean-square stabilization

From Corollary 3.2, if system (2.2) is mean-square stallyroblem, which has been a central topic in the literature.
lizable, then(A(i) — (1/2)q;1, B(i)) is stabilizable, and for There are essentially no results fomoment stabilization for
any positive—definite matrice(1), ..., Q(V), the Riccati arbitrary § > 0. Even the mean-square stabilization results
equations in (3.12) have unique positive—definite solutiorge complicated and difficult to use. In [19] and [21], some
Po(1), ..., Po(N): §-moment stability criteria are given, these can be used to study

the 5-moment stabilization problem. This approach is studied

(AG) = S @) Po() + Po(i) (AG0) — 3 ai]) next.

—FPo($)B(¢ )BT( VPo (i) —Q( ), t€N. (3.12) We first give a result for mean-square stabilization.
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Theorem 3.6:The system (2.2) is mean-square stabilizable Theorem 3.8:Let ;(-) denote any induced matrix measure,
if and only if there exist matriceX’ (1), ..., K (V) such that define
the matrix

H =diag{(A()~ BOK(L) &(A1) - BOED)T, ...,
(A(N) = BIV)K (V)

® (AN) - BIMEN) Y +Qe 1 If there exist matriceds (1), ..., K(N) such that the matrix
U(§) is Hurwitz stable, then (2.2) i&moment stabilizable. In

) o articular, for a one-dimensional system, (2.2)-imoment sta-
Proof. Follows from the mean-square stability resulgilizable if and only if there exists matricds(1), ..., K(N)

obtained in [19] and [21]. I .such thatl/(6) is Hurwitz stable, in this casel/(§) =
Thus, the mean-square stabilization problem requires. | TA(L) — B)K(1) A(N) — BINYK(N)} + Q

choosing feedback matrices to stabilize one “larger” matrix. (%Droof' This can be7 '}c'n’/ed using tHemoment stabillit

Mariton [27] applied homotopy theory to the numerical com- ' P g Y

putation of the feedback matrice& (1), ..., K (V). Next, result given in [21] and Coppel's inequality [32]. B

o FA Theorem 3.8 generally depends on the choice of matrix
we present some similar results féfrmoment stabilizability. . . . .
: : : measure. Different choices of the induced matrix measure can
This requires the concept of a matrix measure.|lzetlenote a

. . . give more or less conservative testable conditiongfaroment
vector norm ofz on C™, and||4|| is the induced matrix norm o . o
. : stabilization. This was already observed femoment stability
of A given the vector nornj - |. The matrix measure off, lecti . X .
(4), is defined as in [21]. Se ecting an appropriate matrix measure to improve
A the testable condition is a challenging problem which requires
NEN' Il +6A| -1 further investigation.
nA) = gﬁ)ri 2 The matrix measure can also be used to obtain criterion
h is identi . ) ¢ ) for absolute stabilization, keeping in mind that absolute sta-
\fN erde.f IS identity matrix. PI’O[;);EI’UGS 0 mﬁtrlx mhea?u”re can bjizanility is very conservative. If the system is absolutely
ound in [31}-[33]. For generai > 0, we have the following stabilizable, the properties of the form process are not needed.

result. _ _ A preliminary result for absolute stabilizability is given next.
Theorem 3.7:Let p(-) be an induced matrix measure [32]. 11 corem 3.9-

U(6) = sdiag{u(A(1) — B)K(L)), ...,
A(N) = BIN)K(N))} + Q.

is Hurwitz (I is an identity matrix of appropriate dimension).

Define 5o 1) If there exists a matrix measurg(-) and matrices
A(d) = A@) — BO)K (i) + ———= pu(A®) — B)K ()] K(1), ...,_K(N) such thatu_(.A(i) — B(H)K(#)) < 0,
s 2 ) then (2.2) is absolutely stabilizable.
A(i) = A(i) — BGK(i) — —= (= A@) + BEK (), 2) If(2.2)is a.b'solutely stabilizable, then (2.2) is individual
) 2 mode stabilizable.
(te ). 3) Forone-dimensional systems, (2.2) is absolutely stabiliz-
Define able if and only if it is individual mode stabilizable.
o . Proof: 1) Follows from Coppel’s inequality; 2) for arye
diag {A (He AD), ..., N, choose anV state Markov chain such that tfith state is
—r —r absorbing and the rest of the states are transient, the result then
_ A" (N)e A (N)} +QeI, 622 follows directly; and 3) follows from 1) and 2). O
H(5)
diag {AT(1) ® A1), ...,
ngT{_ ( )@T_( ) IV. ALMOST-SURE STABILIZABILITY
AT (N)® A" (N I 6 < 2.
AT N) & A )} teel < It is considerably more difficult to obtain general criterion
If there exist matrice&’(1), ..., K(N)suchthatd(é)is Hur- for almost-sure stabilizability than for moment stabilizability.
witz, then (2.2) is5-moment stabilizable. Ezzine and Haddad [30] briefly discussed this problem, and

Proof: From [21], the5-moment top Lyapunov exponentpointed out some of the difficulties. In this section, we study

of (2.2) with the feedback contrelt) = — K (o(¢))x(¢) is less this topic in more detail.
than or equal to the largest real part of the eigenvalues of the mak is well known that controllability implies stabilizability
trix H(8). The proof of Theorem 3.7 is then straightforwart. for classical linear systems. However, as discussed earlier,

Remark: Whené = 2, Theorem 3.7 reduces to Theoremndividual mode controllability does not imply mean-square
3.6 and in this context, Theorem 3.7 is a general sufficient costabilizability. It is surprising that individual mode controlla-
dition for §-moment stabilizability. The homotopy procedurdility implies almost-sure stabilizability under fairly general
given in Mariton [27] can be used to numerically solve foconditions. This result is summarized next.
K(1), ..., K(N). When the dimension of the system and the Theorem 4.1:Assume that{c(¢)} is a finite-state ergodic
number of states of the finite-state Markov chain increase, thtarkov chain with invariant measure If there exists ani €
dimension of the matrixd{ (6) increases, so the above criterigV such that(A(z), B(¢)) is controllable andr, > 0, then
for 6-moment stabilization becomes increasingly complicate(?.2) is almost surely stabilizable. As a consequence, we con-
The next result gives a simpler and possibly more useful tedtide that individual mode controllability implies almost-sure
for 6-moment stabilization. stabilizability. O
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To prove this, we need the following lemma. assumptionimpliesth&ti(j), B(j))iscontrollable. Therefore,
Lemma 4.1:Consider a matrix in the following companionthere exists a nonsingular matri () such that
form:

0 1 0 . 0
0 1 0 - 0 o0 L0
° 0 nHANT = ¢ FF
A= 0 0 0 1
0o 0 o = 1 z1(j) x20) x3() - @)
T1 Lo T3z -+ Tp defl .
1 2 3 :AI(J)
with distinct-real eigenvalues;, ..., A, with |\; — ;| > 1 0
(¢t # j), then there exists a constalbf > 0 and a positive 0 det
integerk, both independent ofi, ..., \,, and a nonsingular (G)BG)= | 1 | = B10)
matrix 7" such that 0
1
k .\
7| < M < max |)\i|> T~ < M < max |)\i|> Let Ay, ..., A, be negative-real numbers satisfyingj, >
lsisn lsizn |A\; = X;| = 1 (i # j). Choose a matrix<;(j) such that
. . . odef —, .
and A(4) = BL() K1 (5 = A()
T—YAT = diag{\1, Ao, ..., An). has eigenvalues, ..., A, for any j € N. Now A(j) is in
ch e companion form and from Lemma 4.1, there exisfs > 0,
Proof of Lemma 4.1:Becaused has distinct real eigen- { > 0, which are independent ok, ..., A, and j, and

values,A can be diagonalized over the real field. The transfoROnsingular matriced>(j) (j € V) satisfying
mation matrix is given by

{
To ()| < ax [
T2 < My <1lg7jx<xnl>\z|)

1 1 1 e 1 .
T D e 1T ()l < Mo <“ 'Ai')
I D C RS ¢ Dt P ¢ -
T= ' 2 ° ’ such that
. ) : _ N . . . def .
el el et L T3 ()AG)G) = diag{h, .. AW} E D, (EN).
1 2 3 n
Choose the feedback contralt) = —K(o(t))z(t), where
andT AT = diag{\;, ..., \,}. To prove thatl’ satisfies ) ) ) ) L ) .
the required condition, we use therorm. Recall that all matrix (1) = K1()T1(),  T() =T (HT20), (JeN).

norms are equivalent over the real field. First Then the closed-loop system becomes

g A _ adi(D) i(t) = T(a () DT (a(1))a(1). (4.)
det(T) H ()\Z — )\J) ) . . . .
1<i<j<n From the choice off1(j) and 7> (j), there exists al/; > 0
andm > 0, both independent ok, ..., A, andj, such that
With |\ — X;| = 1, |77 < |ladj(T)||. All entries of T’ m
andadj(7") are polynomials o\, ..., \,, and there exists an 1T < Mo <1IE?<Xn |/\¢|>
M > 0 and a positive integek > 0, both independent of - m
A1, -+ ., A, Such that T2 < Mo <Inax |)\Z|> .
1<i<n
_ With A; < 0, let A = maxi;<;<» A;, then there exists an
. 1 . J <z<n M
Tl < M <1I§%,|Az|> 1=l = M <1I£%}i,,|)‘z|> ’ Ms > 0, independent of\;, ..., A, andj, such that
) Dt < At > )
This completes the proof. O lle™ ) < Mae™, (t20)
Now, we are ready to prove Theorem 4.1. From the sojourn time description of a finite-state Markov

~ Proofof Theorem 4.1 We first prove the second statemenighain, (4.1) is almost surely stable if and only if the state
i.e., the individual mode controllability implies the almost-surgansition matrix

stabilizability. Without loss of generality, we only prove the ; ; ;
singleinputcase. Foranye N, individual mode controllability B(t, 0) = M=) AT-1)Tho1 L pAl)™ 2%
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almost surely, whered(j) = T(j)DT~'(j) (j € N). A Therefore, we can conclude that the system is almost surely

straightforward computation yields stabilizable. This completes the proof of Theorem 4.1. O
Remark: It is possible to relax the ergodicity assumption on
1@(t, Ol =117 (ra)e” T (i) T(ri—1) the procesgo(t)}. In fact, what is required is that the average
x P T 1) - T ()P T ()| sojourn time of the processs(¢)} is positive for the mode in
<N TEDNEP NN T )| which the system is c_or_1tro||able. o
P < [Tl [T (o) One_ may wonder if in Theorem__4.1 _|_nd|V|duaI r_nO(_je_ con-
sy 20641) trollability can be relaxed tq stab|I|z_ab|I|Fy of the |nd|V|du§I
< [M2<max )\‘) } modes? The answer to this question is no. The following
- 1<i<n " example shows that individual mode stabilizability of a jump
x M?l)e-l-le)\(‘rk +7i—14+70) linear control system does not imply almost-sure stabilizability.
A k1 Example 4.1: (Individual mode stabilizability does not guar-
A |:Me>\((‘rk+‘rk71+~~~+‘ro)/(k+1)):| (4.2) antees-moment stabilizability and almost-sure stabilizabjlity
Let
whereM = (M>maxi<i<y, |Ni|)?M3. {o(¢)} is a finite-state
ergodic Markov chain and from the Law of Large Numbers, A1) = <—a 1 ) A(2) = <—a 0 )
there exists a nonrandom constant 0, the average sojourn 0 —a 1 —a
time, such that 0= <—q _q) B(1) = B(2) = <8>
Tt Tl 470 q q
klggo E+1 - as. L
wherea > 0 andg > 0 satisfyingl — a/q > 1/2. The system
Hence (2.2) is individual mode stabilizable, however, from Fang [21],
i MMt ir) /(1) the top Lyapunov exponent for this system is positive, hence,
b oo (2.2) is almost surely unstable for any control.
= Me™ < [My(N| + 20) 2 Mac™ Ao Example 4.2: (Almost-sure stabilizability does not imply in-

dividual mode stabilizability Let A(1) = 1, A(2) = 2, B(1) =
Thus, we can choos@\| sufficiently large so thaf/e?® < 1. 0, B(2) = 1andQ = (1 _1). Obviously,(A(1), B(1)) is

Then, from (4.2) not stabilizable. However, the system is almost surely stabiliz-
able. The invariant measure of the form proce$s) is = =
tli_}go @(¢, 0) =0, a.s. {1/2, 1/2}. A negative feedback control law with (1) = 0

andK(2) = 10, almost surely stabilizes the system.
i.e., (4.1) is almost surely stable. Therefore, (2.2) is almost|f we chooseA(2) = —10 andB(2) = 0 in example (4.2),

surely stabilizable. then the system is still aimost surely stabilizable, and none of
Next, we prove the first statement (i.e., the general casg)dividual modes are controllable.
Without loss of generality, we assume tha{1), B(1))iscon-  The matrix measure can also be used to derive testable condi-
trollable andn; > 0. We chooseX(2) = K(3) = --- = tjons for aimost-sure stabilization, some results in this direction
K(N) = 0, and choose{(1) and\ as in the first half of our are presented next.
previous proof. Then, there exists & > 0 andw, both inde-  Theorem 4.2:Let {o(¢)} be a finite-state ergodic Markov
pendent of\, such that chain with invariant measurer = {my, 7, ..., Tx}.
Al ot ) For any matrix measureu(-), if there exists matrices
e SMe*,  (i#1) K(1), K(2), ..., K(N) such that

LAW=BOKN| < py)A V>0

T (A1) = B(1)K (1)) + m2pu(A(2) — B(2)K(2)) + -
wherep()) is a polynomial with degree independentiofLet +rnp(A(N) — B(N)K(N)) <0

v+ denote the time occupied by state 1 during the time interval _ N

(0, t;) and let rylz denote the time occupied by the statethen (2.2) is almost surely stabilizable. Moreover, for one-

2, 3, ..., N during the interval0, ;). From the ergodicity of dimensional systems, the above condition is also necessary.
{o(t)} Proof: Follows from Coppel’s inequality and the ergod-
. ) icity of {o(¢)}. a
lim JE — 7. lim Tk _q _ . By specifying the matrix measupg-) in Theorem 4.2, we
k—oo tg k—oo tg can obtain many easy-to-use results for almost-sure stabiliza-
As in the first half of the proof, we obtain tion. For example, by using 1-norm, 2-norm (Euclidean norm),
andoo-norm, we can obtain the following.
1@ (ts, 0)]| < [(Mp()\))(k-i—l)/tk em;,/wraﬁ/n}t’“ Corollary 4.1: Suppose thafo(t)} is a finite-state ergodic
- Markov chain with invariant measure, let A(4) = A(%) —
and the term insidé - -] has the limit B(i)K (i) (i € N). The system (2.2) is almost surely stabiliz-

able if there exists matricds (1), K(2), ..., K(N) such that
(Mp(\)YeemMU=m)a g\ = —o0). one of the following conditions hold.
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1) There exists a positive—definite matiksuch that stabilizability for sufficiently smallé > 0, that is, system
(2.2) is almost surely stabilizable if and only if there exists a
6 > 0 such that (2.2§-moment stabilizable. Thus, almost-sure
stabilizability can be studied usingrmoment stabilizability.
From this idea, the following general sufficient condition for

Z Tidmax [PAG) P + A(D)T] < 0.

2) There exists positive numbers, ro, ..., ry suchthat  gmost-sure stabilizability is obtained.
‘ Theorem 4.3:Let A(i) = A(¢) — B(i) K (i) (¢ € N). Ifthere
exists matriced( (1), K(2), ..., K(IN) and positive—definite
Z Ty HAX @i(p) + ; @)l <0, matricesP(1), P((2)), ...(, ZD(N) suc(:h t)hat forany € N
of o1 [PGYAG) + AT (1)P()] «
Z mp max § @;;(p) + Z 5 |a“ <0 lizllomt aT P(i)x
= ! i
T i
where A(p) = (@;;(p)). + Z i log <$TPJ> <0 (4.3)
— T P(i)z
3) J#
then there exists & > 0 such that (2.2) i$-moment stabiliz-
Z Tp MAax < Gy (p) + Z la;;(p)| p <O able, hence it is also almost surely stabilizable.
‘ g Proof: This proof is similar to the proof of the al-
or most-sure stability results given in [21]. The Lyapunov function
V(z, o(t)) = (T P(o(t))x)?/? is used and > 0 is chosen to
o™ max q @;j (p)+ Y [@;(p)| p <0. be sufficiently small. O
= i#j Because this result does not require that the form process
4) is ergodic, Theorem 4.3 is likely to have more applications in
practice. The following result shows that Theorem 4.3 is very
general sufficient condition for almost-sure stabilizability.
Z T3 Amax + A( ) ] <0. Coronary 4.2:
1) If (2.2) is second moment stabilizable, then there ex-
0 ists matricesK (1), ..., K(N) and positive—definite

matricesP(1), ..., P(N) such that (4.3) is satisfied.

2) For a one-dimensional system, (2.2) is almost surely sta-
bilizable if and only if there exist& (1), ..., K(/N)and
positive number$’(1), ..., P(N) such that (4.3) holds.

3) If there exists matriced((1), ..., K(N) and posi-
tive—definite matrice’(1), ..., P(N) such that

Remarks: Conditions 3) and 4) are special cases of 2) and 1),
respectively, and may yield conservative results. As mentioned
previously, a similarity transformation is usually required before
Corollary 4.1 can be applied.

In order to use 2), the positive numbersg, r>, ..., rn
have to be chosen appropriately. Using the following fact from
M-matrix theory, a necessary condition for 2) can be obtaine P VT & P —1/.

If A= (a,;;) satisfiess;; < 0 (¢ # j), then there exists positive /q““" { [P(L)A(L) +4 (L)P(L)} o (L)}

numbersry, r2, ..., r, such thata;r; > 2, 7lai] +Z g3 log[P(/)P~1(3)] < 0, (i € N)
¢ = 1,2, ..., n) if and only if A is a Hurwitz matrix i

or equivalently, all principal minors ofA are positive. Let

U = (uij)nxn, Where then (2.2) is almost surely stabilizable with feedback con-

trol u(t) = —K (a(t))z(t).

B N B o Proof: Condition 1) can be proved by using the second
Wis = Z Tpii(p), iy = Z plai; (D) (J #1)- moment stabilizability result, 2) can be proved by calculating
p=1 the explicit solution, and 3) follows directly from (4.3). O

Then, if 2) is satisfied]/ is a Hurwitz matrix and all principal ~Remarks:
minors of —U are positive. From this, to apply 2), it is only 1) The necessary and sufficient condition 2) in Corollary 4.2

necessary to determinelifis Hurwitz. If not, then 2) can not be for one dimensional systems can be used to obtain some
satisfied. We conjecture that the stabilityléfs also a sufficient sufficient conditions for almost-sure stabilization for
condition for almost-sure stabilizability. higher dimensional systems. The idea is to use Coppel’s
It was shown in [21] that in the parameter space of the  inequality to reduce a higher dimensional system to a
system, the domain fos-moment stability monotonically one dimensional system.
increases and converges, roughly speaking, to the domair) Theorem 4.2 can be applied only if the form process
of almost-sure stability ag > 0 decreases to zero. This is ergodic, condition 2) in Corollary 4.2 may provide a
implies that almost-sure stability is equivalent &amoment more general sufficient conditions for almost-sure stabi-
stability for sufficiently smallé > 0. From this, we can also lizability. For one dimensional systems using 2) of Corol-

say that almost-sure stabilizability is equivalentétonoment lary 4.2, (2.2) is almost surely stabilizable if and only if
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there exists matrice& (1), ..., K(N) such that the fol- «; < 0 anda: < 0. From@), we see that the only uncertainty
lowing series of inequalities holdA(<. B or A <. B about the form process is the initial probability distribution.
are elementwise inequalities for the matrickand B)

V. ILLUSTRATIVE EXAMPLES

AP(i) >0, 243)+ ) gijlog 1;8 <0, (i€eN) In this section, some examples are given to show how the
g criteria developed in this paper can be used to study stochastic
o N stabilizability. We first begin with an example motivated by the
< 3P(i) >0, 2A(H)+ Y g,logP(j)<0, (i€N) studyofdynamic reliability of multiplexed control systems [17].
g=L Example 5.1: Let
Al v 0 0 0 10
A(2) Y2 A=1[15 0 15 B()y=|0 0
= 3yerY, y>0 o l+e| . [ <o (0 0 0) (0 1)

Theorem 4.4 formalizes this result.
Theorem 4.4:Let u(-) denote any induced matrix mea- A(2) =
sure, and lez = (u(A(1) — B(1)K(1)), ..., n(A(N) —
B(NYK(N)))T. If there exists matrices((1), ..., K(N)
such that the inequality + Qy <. 0 has a solutiory € RY, K(2) =
then (2.2) is almost surely stabilizable. Moreover, the solv-

ability of the inequalitya + Qy <. 0 is also a necessary 00 1 0
condition for almost-sure stabilizability for one-dimensional A(3) (1 5 0 0) B@3) = (0 0)
0 0 0 0 1

o OO
OHO
(&3
v
vy
~
[\]
S
[
N
= O O
v

systems.

Proof: Let n(-) be the matrix measure induced by the
vector norm|| - || and letz(¢) denote the sample solution of the
closed-loop systeni(t) = [A(a(t)) — B(o(t))K (o (t)]z(t).
From Coppel’s inequality

t
oo < leollexw | [ (Aot ar|. @)
0
Consider the system(t) = p[A(o(t))]2(¢) with initial con- K(4) =
dition z(0) = ||zo||- Then, the sample solutiof(t) is given
on the right-hand side of (4.4) and it follows thatift) = This models a first order system with two controllers (in-
u[A(a(t)]=(t) is almost surely stable, then from (4.4), (2_2):orporat_ing the re_dundancy principle for reliability) (see [17]
is almost surely stabilizable with the feedback contr@) = for details). The first mode (state 1) corresponds to the case
— K (o(t))z(t). Using the result for one dimensional system@here both controllers are good, and the second and third
completes the proof. modes (the states 2 and 3) correspond to the case where one

As stated earlier, by specifying the matrix measure usefei the controllers fails, and the fourth mode (the state 4) cor-
easy-to-use criteria for almost-sure stabilizability can be offSPONds to the case where both controllers fail. We assume
tained. Next, we want to show that Theorem 4.4 is more genef&ft Whenever a controller fails, it will be repaired. Suppose

than Theorem 4.2. In fact, in Fang [21], we showed tha® if that the failure rate is\ and the repair rate i%, and the

and 7 are the infinitesimal generator and invariant measu(r&”ure process and the repair process are b.Oth exponentially
respectively, of a finite-state ergodic Markov chain, then f istributed. Then the form process is a finite-state Markov

any vectora, the inequalitya + Qy <. 0 has a solutiony chain with infinitesimal generator

if and only if 7a < 0. Suppose thaf{s(¢)} is a finite-state —2A A A 0

ergodic Markov chain, from the above fact it follows that po A+ 0 A

Theorem 4.2 and Theorem 4.4 are equivalent. However, when Q= 0 D) A

the form procesgo(¢)} is not ergodic, then Theorem 4.2 can ” a

not be used, however, Theorem 4.4 can still be applied. This 0 H H —2n

is illustrated in the next example. In [17], Ladde andSiljak developed a sufficient condition for

Example 4.3:Let A(1) = a; andA(2) = a» denote two real second moment (mean-square) stabilizability and used this to
numbers and3(1) = B(2) = 0. Assume that the form processshow that whem\ = 0.4 andp = 0.55, k&, = 2.85 and

{o(t)} is a two state Markov chain with infinitesimal generatok, = 0.33, the controlleru(t) = —K(o(t))z(t) stabilizes
Q= (8 8). Itis obvious that the form process is not ergodic anithe jump linear system (2.2). In this approach, an appropriate

Theorem 4.2 can not be used. However, from Theorem 4.4, (2chpice of positive—definite matrices should be sought, which is
is almost surely stabilizable if and onlydf-Qy = a <. 0,i.e., verydifficult. However, using Theorem 3.8, we can easily check
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that in this case, the eigenvalues of the matdixn Theorem The system (2.2) with this data is individual mode controllable
3.8 have negative real parts afflis Hurwitz. It is also easy and from Theorem 4.1, (2.2) is almost surely stabilizable. We
to show that for the failure ratd = 0.4 and the repair rate want to find the feedback matricd§(1) and K(2) such that

p = 0.55, any controller with the parameteks and %, sat- the controk(t) = —K(o(t))x(¢) almost surely stabilizes (2.2).
isfying 0.1 < k; < 5and0.1 < k; < 5 can stabilize the Theorem 4.2 is used to solve this problem. First notice that
second moment of the jump linear system (2.2). Similarly, usitige invariant measure for the form procesgis= (1/2, 1/2).

the controller withk; = 4 andky = 0.55, for any failure rate Choosek (2) = (—100, 27),thenA(2) = A(2)—B(2)K(2) =

0.4 < X < 0.6 and repair rat®.4 < ;1 < 0.6, the second mo- 0, and for any matrix measure(-), #(A(2)) = 0. For the
ment of system (2.2) can be stabilized by this controller. Oriest mode, we can choose &(1) such that the eigenvalues
important fact is that even if the failure rate is greater than the ref A(1) — B(1)K(1) can be assigned, for example,+td and
pair rate, this controller can still stabilize the second moment ef3. This can be achieved by settidg(1) = (-2, 13), then

the system, i.e., the multiplexed control system is reliable. Thif(1) = A(1) — B(1)K(1) = (_5 _3). Then,

result is not readily apparent from [17]. From additional compu-

-1
taj[ions, whenever the r_gpair rate is greater than the failure ratg 471 — < 0 1) ’ whereT = < 1 1) )
this controller can stabilize the second moment of the system. -2 =3 -1 =3

Example 5.2:In this example, we study thé-moment Define the vector nornjlz||z = ||7z||2, the induced matrix
stabilization problem for genera > 0. Consider the one- measure is given by(A) = po(TAT™). From this, we can
dimensional jump linear system (2.2) with easily compute

A(l) = B(l)=b; A(2)= 1 0
o e ()
—q q
B(2)=b = .
@)=k @ <q—q) uT((Z) =0.
From Theorem 3.10, (2.2) smoment stabilizable if and only Thenmy pr (A(L))+m2 ( ( ) = (1/2)yx(-1)+(1/2)x0 =
if there existsk; andk, such that —-(1/2) < 0 nd from Theorem 4.2 the controller
S(ar — biky) <g wWt) = —K(o@)z() with K1) = (-2, 13) and
G K(2) = (—100, 27) almost surely stabilizes the system.
(5(@2 — kaQ) <q
; q - ; q s < 1. (5.1) REFERENCES
¢—8(ar —bik1) q—6(az —baka) [1] R. Krtolica, U. Ozgiiner, H. Chan, H. Goktas, J. Winkelman, and M.
i ic indivi Liubakka, “Stability of linear feedback systems with random communi-
1) If blt #Ilotz)ilndiﬁ i O,TIP':', thgksyStemh ![?] I:?I\”dll:a]l mode cation delays,” Ford Motor Co., Research Rep., Sept. 20, 1990.
controliable, then witlk, an 2 Su? ] aa; — b1k < ] [2] Y. Fang, K. A. Loparo, and X. Feng, “Modeling issues for the control
0 anday — boks < 0, (5.1) is satisfied, hence (2.2) is systems with communication delays,” Ford Motor Co., SCP Research
§-moment stabilized by such a controller. @ Eeg-rgﬁt- 1?(91/& <. Willskv. and b, Cast Diseretedtime M
- . . . J. Chizeck, A. S. Willsky, and D. Castanon, “Discrete-time Mar-
2) 2) If by 7'& 0 and b2. = 0, then (2.2) IS&fmoment stabi- kovian-jump quadratic optimal controllit. J. Control vol. 43, no. 1,
lizable if and only ifa; < ¢/é. Necessity follows from pp. 213-231, 1986.
the second inequality in (5.1). Suppose that< ¢/é, [4] R.Bellman, “Limiting theorems for noncommutative operatoByike
[5] A.R.Bergen, “Stability of systems with randomly time-varying param-
q(al + a2) — bajas eters,”IRE Trans, vol. AC-5, p. 265, 1960.
1k1 > [6] A. Rosenbloom, “Analysis of linear systems with randomly
bik
q — daz time-varying parameters,” inProc. Symp. Inf. Nets Brooklyn,

NY: Poly. Inst., 1954, vol. Ill, p. 145.

we can easily verify that (5.1) is satisfied for aky, [7] B.H. Bharucha, “On the stability of randomly varying systems,” Ph.D.

hence, (2.2) is stabilized by such controller. dissertation, Dept. Elec. Eng., Univ. Calif., Berkeley, CA, July 1961.
3) If by = 0 andbs 7& 0, then (2_2) i-moment stabilizable [8] B. S. Darkhovskii and V. S. Leibovich, “Statistical stability and output
if and onIy ifa; < q/6 signal moments of a class of systems with random variation of structure,”
P - . Automat. Rem. ContrpVol. 32, no. 10, pp. 1560-1567, 1971.
4) If by = by = 0, then (2.2) is--moment stabilizable if and (9] |.1. kats and N. N. Krasovskii, “On the stability of systems with random
only if parameters,Prkil. Met. Mek, vol. 24, p. 809, 1960.
[10] J. E. Bertram and P. E. Sarachik, “Stability of circuits with randomly
bay <q time-varying parameters,Trans. IRE, PGIT-5, Special Issup. 260,
1959.
baz <q [11] Y.Ji, H.J. Chizeck, X. Feng, and K. A. Loparo, “Stability and control of
q . q <1 discrete-time jump linear systemsControl Theory Adv. Technglvol.
q—ba, q—bas 7, no. 2, pp. 247-270, 1991.
[12] Y. Jiand H. J. Chizeck, “Controllability, stabilizability, and jump linear
The domain of(a;, az) for which (2.2) is -moment quadratic control, IEEE Trans. Automat. Confwvol. 35, pp. 777-788,
ili ici i July 1990.
stabilizable is illustrated in [18]' [13] F. Izozin, “A survey of stability of stochastic systemgitomaticavol.
Example 5.3: Let 5, pp. 95-112, 1969.

0 1 < 0 0 ) [14] L. Arnold and V. WihstutzLyapunov Exponents New York: Springer-

A(l) — A(2) _ Verlag, 1985, Lecture Notes in Math., p. 1186.
—4 10 —100 27 [15] L. Arnold, E. Oelieklaus, and E. Pardoux, “Almost sure and moment
0 -1 1
B(1) =B(2) = (1) Q= ( bl

stability for linear Ito equations,” iyapunov Exponents: Proceeding,
Bremen 1984L. Arnold and V. Whistutz, Eds. New York: Springer-
Verlag, 1986, Lecture Notes in Mathematics 1186.



FANG AND LOPARO: STABILIZATION OF CONTINUOUS-TIME JUMP LINEAR SYSTEMS 1603

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]
[27]
(28]
(29]

[30]

(31]
(32]
(33]
(34]
(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

R. Srichander and B. R. Walker, “Stochastic stability analysis for con-[45] M. A. Rami and L. ElGhaoui, “LMI optimizations for nonstandard
tinuous-time fault tolerant control systemé;t. J. Control vol. 57, no. Riccati equations arising in stochastic contrdEEE Trans. Automat.
2, pp. 433-452, 1993. Contr, vol. 41, pp. 1666-1671, Nov. 1996.

G. S. Ladde and D. DSiljak, “Multiplex control systems: Stochastic

stability and reliability,”Int. J. Control vol. 38, pp. 515-524, 1983.

X. Feng, K. A. Loparo, Y. Ji, and H. J. Chizeck, “Stochastic stability
properties of jump linear systemdEEE Trans. Automat. ContrpVol.
37, pp. 38-53, Jan. 1992.

Y. Fang, K. A. Loparo, and X. Feng, “Almost sure stability ahdno-
ment stability of jump linear systemdyit. J. Contro| vol. 59, no. 5, pp.
1281-1307, 1994.

——, “Stability of discrete time jump linear systems]”’ Math. Syst.,
Estimat., Contralvol. 5, no. 3, pp. 275-321, 1995.

Y. Fang, “Stability analysis of linear control systems with uncertai
parameters,” Ph.D. dissertation, Dept. Syst., Control, Ind. Eng., C
Western Reserve Univ., Cleveland, OH, Jan. 1994.

M. Mariton, “Almost sure and moment stability of jump linear systems,’
Syst. Control Lett.vol. 11, pp. 393-397, 1988. |
X. Feng and K. A. Loparo, “Almost sure instability of the random har Technology, Newark, NJ. Since May 2000, he has

monic oscillator,’SIAM J. Appl. Math.vol. 50, no. 3, pp. 744759, June been an Assistant Professor in the Department of Electrical and Computer

1990. ] . . itv of Florid : il - hi
A. Leizarowitz, “On the Lyapunov exponent of a harmonic oscillatangmeermg’ _Un:vz(sny 0 ||30r| a GaIEeSW et;.IHIS researc |nt(3rests shan
driven by a finite-state Markov processe&IAM J. Appl. Math, vol. many areas, including wireless networks, mobile computing, and automatic

49, no. 2, pp. 404419, 1989. ;gmrecile'r:li:as published over 80 papers in refereed professional journals and
——, “Estimates and exact expressions for Lyapunov exponents of sto- . . . . .
L A - 8 h Dr. Fang received the National Science Foundation CAREER Award in
iggztlc linear differential equationsStochasticsvol. 24, pp. 335-356, 2001 and the Office of Naval Research Young Investigator Award in 2002.
-“Exact results for the Lyapunov exponents of certain linear 't(ge is a Member of the ACM, and an Editor for the IEERANSACTIONS ON
! ) OMMUNICATIONS, the IEEE TRANSACTIONS ONWIRELESSCOMMUNICATIONS
a’sﬁgﬁbﬁﬁx\éép&' I(\j/le:]tgmv?CISS;Jnél O'O?érfs'sﬁlgr?];]ﬁg} 2932'55 éf(/)rmerly the IEEE ®URNAL ON SELECTED AREAS IN COMMUNICATIONS:
st&)chastics’ stemsl%t 3 ()./‘,ontrol vol 48pn0 6 9 2169-2178. 1988 IRELESS COMMUNICATIONS SERIES). He is also an Editor foACM Wireless
M. Mariton a);]d ) Bert.ra.nd N homdto ' al .Oi:iﬁ'ﬁ’\.’] for solvin éou Ie’(ﬁetworkand an Area Editor foACM Mobile Computing and Communications
S e S : py aig 9 p eview He has been actively involved with many professional conferences,
Riccati equations,Opt.Control Appl. Meth.vol. 6, pp. 351-357, 1985. such as ACM MobiCom'02. ACM MobiCom'01. IEEE INFOCOM'00

M. Mariton, Jump Linear Systems in Automatic ControNew York: INFOCOM'98, IEEE WCNC’02, WCNC'00 (Technical Program Vice-Chair),
Marcel Dekker, 1990. ,
antd WCNC'99.

J. Ezzine and A. H. Haddad, “On largest Lyapunov exponent assignmen
and almost sure stabilization of hybrid systems,Pioc. Amer. Control
Conf, 1989, pp. 805-810.

T. Strom, “On logarithmic norms SIAM J. Numer. Analvol. 12, no. 5,

pp. 741-753, 1975.

Yuguang Fang (S'92-M’'94-SM’'99) received the
Ph.D. degree from the Department of Systems,
Control, and Industrial Engineering, Case Western
Reserve University, Cleveland, OH, and the Ph.D.
degree from the Department of Electrical and
Computer Engineering, Boston University, Boston,
MA, in 1994 and 1997, respectively.

From July 1998 to May 2000, he was an Assistant
Professor in the Department of Electrical and
Computer Engineering, New Jersey Institute of

C. A. Desoer and M. Vidyasagdeedback Systems: Input—Output Prop-

erties New York: Academic, 1975. Kenneth A. Loparo (S'75-M'77-SM’'89-F'99)

W. A. Coppel,Stability and Asymptotic Behavior of Differential Equa- received the Ph.D. degree in systems and control
tions. Boston, MA: D.C. Heath, 1965. engineering from Case Western Reserve University,
S. Karlin and H. M. Taylor,A Second Course in Stochastic Pro- Cleveland, OH, in 1977.

cesses New York: Academic, 1981. He was an Assistant Professor in the Mechanical
R. Horn and C. Johnsoiippics in Matrix Analysis Cambridge, MA: Engineering Department at Cleveland State Uni-
Cambridge Univ. Press, 1991. versity, Cleveland, OH, from 1977 to 1979, and

R. Z. Has'minskii, Stochastic Stability of Differential Equa- he has been on the Faculty of The Case School
tions Amsterdam, The Netherlands: Sijthoff and Noordhoff, ¢ of Engineering, Case Western Reserve University,
1980. since 1979. He is Professor of Electrical Engineering
W. M. Wonham, “Random differential equations in control theory,” in and Computer Science, and holds academic appoint-
Probabilistic Methods in Applied MathematjcA. T. Bharucha-Reid, ments in the Department of Mechanical and Aerospace Engineering and the
Ed. New York: Academic, 1971, vol. 2. Department of Mathematics. He was Associate Dean of Engineering from
M. D. Fragoso and O. L. V. Costa, “A unified approach for mean squa994 to 1997, and Chair of the Department of Systems Engineering from 1990
stability of continuous-time linear systems with Markovian jumping pato 1994. His research interests include stability and control of nonlinear and
rameters and additive disturbances,”, LNCC Internal Rep. no. 11/9%tpchastic systems with applications to large-scale electric power systems,
1999. nonlinear filtering with applications to monitoring, fault detection, diagnosis
——, “Mean square stabilizability of continuous-time linear systemand reconfigurable control, information theory aspects of stochastic and

with partial information on the Markovian jumping parameters,” preguantized systems with applications to adaptive and dual control and the design

sented at the 2000 Amer. Control Conf., June 2000. of digital control systems, and signal processing of physiological signals with
T. Morozan, “Stability and control for linear systems with jump Markovapplications to clinical monitoring and diagnosis.
perturbations, Stoch. Anal. Appl.vol. 13, pp. 1015-1022, 1996. Dr. Loparo has received numerous awards, including the Sigma Xi Research

H. Abou-Kandil, G. Freiling, and G. Jank, “Solution and asymptotic beAward for contributions to stochastic control, the John S. Diekoff Award for
havior of coupled Riccati equations in jump systemiBEE Trans. Au- Distinguished Graduate Teaching, the Tau Beta Pi Outstanding Engineering and
tomat. Contr,. vol. 41, pp. 1631-1636, Aug. 1994. Science Professor Award, the Undergraduate Teaching Excellence Award and
J. B. R. do Val, J. C. Geromel, and O. L. V. Costa, “Solutions for théhe Carl F. Wittke Award for Distinguished Undergraduate Teaching. He has
linear quadratic control problem of Markov jump linear systends,” held numerous positions in the IEEE Control System Society, including Chair of
Optim. Theory Appl.vol. 203, pp. 283-311, 1999. the Program Committee for the 2002 IEEE Conference on Decision and Control,
O. L. V. Costa, J. B. R. do Val, and J. C. Geromel, “Continuous-tim¥ice Chair of the Program Committee for the 2000 IEEE Conference on Deci-
state-feedbacK . -control of Markovian jump linear systems via convexsion and Control, Chair of the Control System Society Conference (CSS) Audit
analysis,”Automaticavol. 35, pp. 259-268, 1999. and Finance Committees, Member of the CSS Board of Governors, Member of
L. EIGhaou and M. A. Rami, “Robust state-feedback stabilization ahe CSS Conference Editorial Board and Technical Activities Board, Associate
jump linear systems,Int. J. Robust Nonlinear Contrplvol. 6, pp. Editor for the IEEE RANSACTIONS ON AUTOMATIC CONTROL and thelEEE
1015-1022, 1996. Control Systems Society Magazine



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


