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Abstract: In this paper, we study the stability of interval dynamical systems. A sufficient condition for the stability of a polytope of 
matrices, which is shown to be necessary and sufficient for a certain class of matrices, is obtained. The results developed can also be 
applied to the stability of a positive cone of matrices and sufficient conditions for the stability of interval dynamical systems are obtained. 
A relationship between real parts of eigenvalues and matrix measures is also presented. 
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1. Introduction 

The stability of interval dynamical systems has attracted considerable interest since the publication of 
Kharitonov's paper [12]. The formulation is simple: suppose that a dynamical system is described by a set of 
linear differential or difference equations with a corresponding set of parameters. If the parameters are not 
exactly known, but the boundary of the parameter set is known, the problem is to determine if the stability of 
the system can be determined from the stability of the system when the parameters are at the boundary values 
of the admissible set. In his short paper, Kharitonov [12] proved that the stability of dynamical systems 
whose parameter uncertainty is restricted to a rectangular domain is guaranteed by the stability of properly 
chosen dynamical systems whose parameters take values at the vertices of the parameter domain. This work 
stimulated active research in this area, and the results which have been reported are closely related to the 
robustness properties of dynamical systems. Jury [I 1] presented a comprehensive survey summarizing the 
research results, especially for discrete time dynamical systems. 

Given a linear state space model of a dynamical system, stability is determined by the eigenvalues of the 
system matrix. When the parameters in the system matrix are uncertain, we are interested in the stability of 
the matrix given this uncertainty, i.e., the robust stability of the dynamical system with respect to these 
parameter variations. The most interesting case is when the uncertainty in each parameter in the system 
matrix is modeled by an interval, i.e., the lower and upper bounds are known. A natural conjecture would be 
that the family of system matrices is stable if and only if all the vertex matrices are stable. Bialas [4] claimed 
that this is true. But it turned out to be false, Barmish and Hollot [3] constructed a counterexample. 
Similarly, Jiang [10] attempted to prove the above conjecture for the discrete case, which is also not true as 
pointed out by Soh [18]. Sufficient conditions have been obtained and for special vertices in the parameter 
domain, it is desirable to obtain necessary and sufficient conditions for robust stability. Heinen [7] used an 
extension of Gershgorin's circle theorem to obtain a simple sufficient condition for the stability of the family 
of system matrices, which is too conservative. Argoun [1] also used Gershgorin's theorem to obtain sufficient 
conditions, which are incorrect [23]. Soh [20] corrected Argoun's approach and obtained a set of sufficient 
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conditions. However, Soh's result depends on the diagonalizability of the arithmetic average of the vertex 
matrices, and for this reason it may find limited applications. Jiang [9] and Mansour [14, 15] obtained 
a more general set of sufficient conditions. For  a special class of vertices, it is possible to obtain a necessary 
and sufficient condition for the stability of the matrix family. Mori and Kokame [16] presented a necessary 
and sufficient condition for a family of matrices whose vertices have norm less than 1. Xu [22] and Liao [13] 
studied the matrix family whose vertices are M-matrices and obtained necessary and sufficient conditions. 
Shi and Gao [17] and Soh [19] proved that for a matrix family whose vertices are symmetric, the 
corresponding interval dynamical systems are stable if and only if the vertex matrices are stable. Wang [21] 
generalized this result to the case of normal vertex matrices. Barmish et al. [2] presented some counter- 
examples to plausible conjectures relating to the stability of interval dynamical systems. 

In this paper, we will prove a very general sufficient condition for a matrix family such that stability of the 
vertices guarantees stability of the convex hull and positive cone of the matrix family. This result implies the 
results in [1, 2, 9, 14, 15, 17, 19, 20]. For a certain class of vertices, the condition becomes necessary and 
sufficient. From this, a sufficient condition for stability of interval dynamical systems is obtained. We also 
obtain a formula which illustrates the relationship between the real parts of eigenvalues and the matrix 
measure. 

2. Main results 

Consider a convex hull (polytope) of matrices in the set ~" ×" of n x n matrices described by 

P = A I A  = o~iAi, o~ i ) O, Z °~i = 1 . 
i = l  i = 1  

We say the matrix A is stable if its eigenvalues have negative real parts. We say that P is S-stable if each 
matrix in P is stable. As we know, the stability of some interval dynamical systems can be reduced to 
S-stability [2]. In what follows, we use Re to denote the real part of a complex number and 2(A) or ,~i(A) to 
denote the eigenvalue of matrix A. 

To state the sufficient conditions some definitions are required, which are given next. 
Let ix] denote a vector norm of x on C", and let ]1A II be the induced matrix norm of A given the vector 

norm I" ]- #(A) is the matrix measure of A defined as 

#(A)~ lim ([[I + OAJ[ - 1)/0, 
0 ~ 0  ÷ 

where I is identity matrix. The matrix measure gives an upper bound for the magnitude of the solution of 
a differential equation ~(t) = A( t )x ( t ) ,  i.e., the following well-known Coppel inequality [5]: 

( ; )  Jlx(t)ll ~< [IX(to)ll exp #(A(z))dz , 
o 

which renders it suitable for stability investigations. 

Lemma 1 (Desoer [5]). #(A) is well  defined for  any norm and has the fo l lowin9  properties: 
(a) # is convex  on C "×", i .e . , for any  atj ~ 0 (1 <~j ~ k), and k ~ j  = l~J = l,  and any  matrices  A j  (1 ~ j ~ k), we 

have 

j = 1  j = l  

(b) For  any  norm, and any  A,  we have 

- JiA[I ~< - # ( - A )  ~< Re)t(A) ~</a(A) ~< NAIl. 
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n (c) For the 1-norm [xh = ~ =  ~ Ix~l, the induced matrix measure pl is given by 

/zl(A) = max IRe(a j j )+  ,~j[a, j l l ;  

for the 2-norm Ix 12 = ( ~ =  1 [xilZ)l/2, the induced matrix measure P2 is given by 

p2(A) = max[2,(A + A*)/2]; 

for the oo-norm [xl~o = max1 <.i<. n Ix, l, the induced matrix measure is given by 

I, too(A) = max [Re(a , )  + ~i 'a i j l  ] • 

(d) For any nonsingular matrix T and any vector norm II " II with the induced matrix measure lt, II Zx I[ defines 
another vector norm and its induced matrix measure #r  is given by 

pr(A) = p ( T A T -  1). 

Theorem 1. I f  there exists a norm such that #(Aj) < 0 (I <~ j <~ m), then P is S-stable. 

t n  m Proof. Let A be any matrix in P, then there exist ~tj >~ 0 and y,j=laj = 1, so that A = ~=I~jA~. From the 
convexity of # and the assumption that A s P, we obtain 

#(A) ~< ~ triP(A j) < 0. 
j = l  

Then using Lemma l(b), we have ReA~(A) ~</~(A) < 0, which means that A is stable. Therefore, P is S-stable. 
This completes the proof. [] 

In fact, we can generalize this result to the case where A is in a positive cone. Let 

j = l  

be a cone of matrices, which is referred to as a positive cone. We say that Q is S-stable if each nonzero matrix 
in Q is stable. Then we have the following theorem. 

Theorem 2, I f  there exists a matrix measure p such that #(Aj) < 0 (1 ~ j <~ m), then Q is S-stable. 

Proof. Using the following two properties of the matrix measure [5]: 
(i) p(A + B) <~ I~(A) + I~(B) for any two matrices A and B, 

(ii) I~(cA) = c~(A) for any A and c ~> 0, 
the proof of Theorem 2 follows from the proof of Theorem 1. [] 

Although the conditions of Theorems 1 and 2 are only sufficient, for a certain class of vertices the condition 
is also necessary. Let • denote the complex conjugate transpose operation, and let U be a set of matrices. We 
say that U is .-closed if A* ~ U for any A e U. This leads to the following theorem. 

Theorem 3. Let V be the set of  vertex matrices for a polytope P, and let V be ,-closed. Then P is S-stable if and 
only if there exists a matrix measure p such that Iz(A) < O for any A ~ II. 

Proof. The sufficiency follows from Theorem I. To prove the necessity, we choose the vector 2-norm. For 
any A ~ V, we have A* e Vsince Vis .-closed. From the S-stability of P, we obtain that (A + A*)/2 is stable, 
i.e., maxi2i(A + A*)/2 < 0. From Lemma l(c), we obtain #2(A) < 0. This completes the proof. [] 
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Next, we show that the previously available results can be obtained as corollaries of the main results of this 
paper. In the following, we always use V to denote the set of vertex matrices. 

Corollary 1 (Wang [21]). I f  the vertex matrices are normal, then P is S-stable if and only if V is S-stable. 

Proof (Sufficiency). For any A ~ V, since A is normal, from Theorem 2.5.4 of [8, p. 101], we know that A can 
be diagonalized using a unitary transformation, i.e., there exists a unitary matrix U such that A = UDU- 
Using the 2-norm, which is invariant under a unitary transformation, the induced matrix measure is also 
invariant, and we have 

Itz(A) = I t 2 ( U D U -  1 ) = I t 2 ( D )  = max Re 2~(D) = max Re 2i(A). 
i i 

Hence, if A is stable, then #2(A) < 0 for any A e V, and from Theorem 1 we conclude that P is S-stable. 
The proof of necessity is trivial. This completes the proof. [] 

Corollary 2 (Shi and Gao  [17] and Soh [19]). I f  the vertex matrices are symmetric, then P is S-stable if and 
only if V is S-stable. 

Proof. This is a direct application of Theorem 3. [] 

Corollary 3 (Jiang [9] and Mansour  [14, 15]). IfJor any A ~ V, (A + AT)~2 is stable, then P is S-stable. 

Proof. We choose the vector 2-norm; the proof follows from Theorem 1. [] 

A more general case than Corollary 3 is the following result. 

Corollary 4. I f  there exists a positive matrix S such that SA + ATS is stable for any A ~ V, then P is S-stable. 

Proof. If S is positive definite, let S ---- H 2 where H is also positive definite, then, when we use the norm 
fl x [[ = [1Hx [I 2, the induced matrix measure Itn is given by 

#n(A) = #2(HAH-1) = miaxRe)~,CHAH-I +-2-H-TAT HT ) 

= max Re 2 , ( H - '  S A + A T S H - 1 )  maxi2 i (SA+ATS)  
2 ~< 2ct(S,A) ' 

where ~(S,A)= maxi2i(S) if SA + ATS is negative semidefinite and ~(S,A)= miniAi(S) if SA + ATs is 
positive semidefinite. I fSA + ATS is stable for any A ~ V, then it is negative definite; hence, Itn(A) < 0 for any 
A s V. From Theorem 1 we conclude that P is S-stable. [] 

Corollary 5 (Argoun [1] and Soh [20]). Let Po = ~i"= ~Ai/m, and let there exist a nonsingular T such that 
TPoT -1 is diagonal. Then, if there exists a matrix measure it such that It(TAIT -1) < 0 (1 <~i <~ m), P is 
S-stable. 

Proof. Given any vector norm I" [, with Tnonsingular,  we choose a new norm p(x) = q Tx[. The new induced 
matrix measure is pp(A) = I t (TAT- 1), from Theorem 1, and the proof is complete. [] 

Remark 1. Theorem 1 implies that we do not need to use a similarity transformation which diagonalizes Po- 
Suppose that Po is not diagonalizable, then Soh's criterion fails. For example, let 

(1 i) Aa = A2 = 0 -- ' 
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then Po = A t is not diagonalizable and Soh's result is not applicable. However, an easy computat ion gives 
p2(At) = #2(A2) = - 0.5 < 0, and Theorem 1 can be applied. Theorem 1 can be interpreted as a generaliz- 
ation of Soh's result. 

Using the vector 1-norm and the vector c~-norm, we can obtain Heinen's I7] result, which is considered to 
be too conservative. Xu's [22] and Liao's 1-13] results are also related to this type of criteria. 

The above criteria can be applied to the stability of interval matrices. Let L = (llj), U = (uij) and A = (aij) 
be real matrices, and let L ~< A ~< U hold elementwise. Define K = { A l L  <~ A <~ U} = {(aij) ll~# <~ aij <~ u~#}, 
and V = {A I a~j = I~j or a~j = u~j}, i.e., V is the set of vertex matrices of K. Then from Theorem 1 we have the 
following result. 

Corollary 6. K is S-stable i f  there exists a matrix measure Iz such that Iz(A) < O for  any A ~ V. [] 

It may seem that the criteria developed in this paper  are conservative because the matrix measure is only 
an upper bound of the real parts of the eigenvalues of a matrix. The following theorem derives the 
relationship between the real parts of the eigenvalues and the matrix measure. This shows that if we properly 
choose the matrix measure, we can obtain criteria for stability which are equivalent to testing the real parts of 
the eigenvalues for negativity. 

Theorem 4. Let  JV be the set o f  all vector norms on C"; for  any p ~ Jff , the correspondin9 matrix measure is 
denoted as #a. Then for  any matrix in C "×", we have 

max Re2 i (A)=  in fpp(A) .  
l ~i<<.n O 

Proof. Let J be the Jordan form of A, Then from Jordan's  theorem, there exists a nonsingular matrix T such 
that 

J =  T A T  -1 = D +  U, 

where D is diagonal, and U is a matrix whose diagonal elements are zeros and off-diagonal elements are the 
same as J. Let A & d i a g { 1 , e - l , e  -2 . . . . .  e -~"-1)} for any positive real e, then 

A J A - 1  = D + eU. 

Define a new norm of C" by Ix[ = IATxl2. Then the corresponding matrix norm o f / +  OA, where I denotes 
the identity matrix, and 0 is any positive number, is 

HI + OA[[ = max [(I + OA)xl = max [AT(I  + Oa)x[2. 
rx[=l  IATxI2= I 

Note that, if we let z Z~ A Tx, then we have A T(I  + OA)x = A T(I  + OA) T - 1 A -  l z = I + O(D + eU )z , so the 
corresponding matrix measure of A is 

/~(A) = lim f[I + OAI[ -- I = lim maxlzJ~=l Iz + O(D + e U ) z h  - 1 
o~o 0 o,o 0 

~< lim maxlzt~=l (l(I + OD)z[2 + eOlUz[2) - 1 
0.,0 0 =/z2(D) + elUI2 <~ max Re 2 i ( A ) i  + e. 

This means that for any positive real e, there exists a norm p such that 

/~p(A) < max Re2i(A) + e 
l <~i~n 

and the proof  of Theorem 4 is complete. [] 
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This theorem suggests that in order to obtain the tightest stability bounds, the norm in Theorem 1 must 
be chosen properly. One possible choice is the class given by the norms IXlr = [Tx[2 for any nonsingular 
matrix T. The induced matrix measure is #r(A) = #2(TAT- ~ ). This relates to the representation problem for 
the matrix A. For the stability of interval polynomials, it is interesting to note that the stability of the system 
depends on finding a suitable state space realization so that the results of Theorem 1 can be applied. This is 
an interesting observation and will be investigated later. Next, we state an obvious corollary of Theorem 4. 

Corollary 7. A is stable if and only if there exists a matrix measure # such that #(A) < O. [] 

The robustness of the stability property of time-invariant linear systems with parameter variations for 
unmodeled dynamics is also of special interest. Using the concept of the matrix measure, we can obtain the 
following result. 

Theorem 5. Suppose that the dynamical system is described by 

£(t) = (A + AA)x(t), 

where AA represents the unmodeled dynamics, then the system is stable if the unmodeled dynamics satisfies the 
following conditions: 

#(AA) < - #(A), 

where # is a certain matrix measure. 

Proof. Using the property #(A + B) ~ #(A) + #(B), the proof follows directly. [] 

Wang 1-21] remarked that his results cannot be used to test the polytope of triangular vertex matrices. 
However, our results can be applied to this case, which shows that our criteria are really more general results. 
As an illustration, we present a proof (although it can be proved easily from a different approach). 

Corollary 8. I f  the vertex matrices can be simultaneously transformed by a similarity transformation to upper (or 
lower) triangular form, then a necessary and sufficient condition for P to be S-stable is that the vertex matrices 
are stable. 

Proof. Without loss of generality, we assume that all vertex matrices A~, A2 . . . . .  Am are upper triangular. 
Let Ak = (akj) (k = 1, 2 . . . .  , m) and R = diag{rl, r2 . . . . .  rn}. Let # denote the matrix measure induced by the 
vector norm LI R-  1 x hi o~. Since 

(r2/rOak2 . . .  (r,/rOagx, \ 

... ) 
" . .  . ' 

a~n / 

R-1Ak R = 

we obtain from Lemma 1 (c) and (d) 

k = 1 , 2 , . . . , m ,  

small positive number, Define M = 

J I 

Let r~= eJ ( j = 0 , 1  . . . . .  n - 1 ) ,  where e is a sufficiently 
a,~l. max~ ~k~mmaxi.jl Then we have 

#(Ak)~<maxfRe(a~;+  M ~  rffr,)]<~max[akl] +nMe .  
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Thus, if Ak is stable, then we can choose e > 0 sufficiently small, so that ~(Ak) < 0 for any k = 1,2 . . . . .  m. 
From Theorem 1 we conclude that P is S-stable. The necessity is trivial. [] 

Corollary 9. I f  the vertex matrices commute, then a necessary and sufficient condition for  P to be S-stable is that 
the vertex matrices are stable. 

Proof. We use Theorem 2.3.3 of [8, p. 81]. If a family of matrices commute, then they can be simultaneously 
transformed to upper triangular form, and Corollary 8 provides the desired result. [] 

Corollary 10. I f  the vertex matrices can be simultaneously transformed to Jordan form, then a necessary and 
sufficient condition for  P to be S-stable is that the vertex matrices are stable. 

3. Examples 

Example 1. Let 

A I = (  0 

Then 

A2 = ( -  12 - 4 35)' T =  ( - 2 1 - 1 ) "  

0 -- ' T A 2 T - 1  = - 

Define the vector norm rx[ = ]Txl2. Then the induced matrix measure is /~(A)= # 2 ( T A T - I ) .  Thus, 
#(A0 = - 1 < 0 and #(A2) = - 7.382 < 0 and from Theorem 1 we see that P is S-stable. 

Remark 2. Since At is not normal, we cannot use Wang's result [21]. Since p2(A~) = 0.081 > 0, we cannot 
use Jiang's results [9] or Mansour's [14, 15] results. Since 

TPoT-1  = T(A1 + A2) T-1 /2  = 0 - ' 

which is a Jordan block, Po cannot be diagonalized; hence, we cannot use Soh's result [20]. 
Note that for any R = diag{rl,  r2}, / ~ ( A ) =  I~o(R- IAR) ,  which is the induced matrix measure by the 

vector norm Ir R -  ~ II ~. Then for any positive numbers rl and r2, 

#R(A2) = !~®(R-1A2R) = 4(r l / r2)  + 5 > O. 

Heinen's [7] results fail the stability test. 

Example 2. Consider the interval dynamical system 

2(0  = Ax(t) ,  

where 

A ~ A , = ( [ - 5 , - 3 ]  [1,2] "~ 
[4, 53 [ - 6, - 4] J" 

Since 

:)) 7 - = ½( - 7 + > o ,  
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the criterion by using the 2 -norm matr ix  measure  developed in [9, 14, 15] cannot  be used to study the robust  
stability of AI. 

Choose  R = diag { 1, 0,5}. Then  

RAxR_ I = ( [ - 5, - 3] [ 2 , 4 ] )  
[2, 2.5] [ - 6 ,  - 4 ]  ' 

and 

Let 

44) L =  2 - ' U =  2.5 - 

V = {A I aij = lij u,j}. 

VA s II, the characterist ic po lynomia l  of A T + A is 

22 - 2 (a l l  + a22)), + 4a l ia22  - (a12 + a21) 2. 

Since a l l  < 0, a22 < 0, 

# R ( A ) < 0  ~ A + A  r s t a b l e  

¢¢- 4a l i a22  -- (a12 + a21) 2 > 0. 

Fo r  A e V, 

4a l i a22  - (a12 + a2x) 2 >/4(  - 3 ) ( - 4 )  - (4 + 2.5) > 0 ¢:- /~R(A) < 0 ¢~ A 1 is stable. 

Thus,  our  criterion is still applicable. 

Example  3. Consider  

qI = { A A I A A  = ~ a,A,, [tr, l <~ 6,, i = . . . .  , r } ,  

where the matrices Ai, which represent  the uncertain structure, are given skew matrices,  i.e., AT = - Ai 
(i = 1,2 . . . . .  r). The  p rob lem is to find the condi t ion such that  A + AA is asymptot ical ly  stable for any 
AA e all (we say that  A + q / i s  stable), where A satisfies A + A T is negative definite. The above  formulat ion 
can be viewed as the representat ion of a dissipative system (such as a flexible structure) with energy- 
conserving per turbat ion.  If  we choose the 2-norm, the induced matr ix  measure  is /~2, which satisfies 
#2(A + AA) = ½2max(A + A T) < 0, so under  the above assumpt ions  we conclude that  A + q / i s  stable with 
convergence rate at least - #2(A). 

Example  4. Let 

(0 1) 
A =  

- - a  2 - - a  1 

This is the c o m p a n i o n  (controllability form for a control lable single input  system) of a state matr ix  with the 
character is t ic  po lynomia l  )2 + a12 + a2. A simple compu ta t ion  yields 

p2(A) = ½[ -- al + x//a~ + (1 -- a2)2], 

and  we observe that  ]22(A ) >/0, which is not  good  for our  analysis. The  above  form is very useful for p roblems 
related to robust  stabil ization and s imul taneous stabilizability of  an appropr ia te  state feedback control  
design study for a single input  system, but  it is not  appropr ia te  for stability studies of  interval matrices. The 



Y. Fang et al. / Stability of  a polytope of  matrices 245 

study of stability of interval dynamic systems using the criteria developed in this paper requires that a state 
space realization for these systems has been determined, which forms a future research topic. 

4. Conclusion 

In this paper, we have obtained a very general sufficient condition for the stability ofa polytope of matrices 
or a positive cone of matrices. For a certain class of vertex matrices, the sufficient condition is also necessary. 
A sufficient condition for the stability of an interval dynamical system is given and the relationship between 
the real parts of the eigenvalues of a matrix and its matrix measure is derived. Using the matrix measure, we 
have also given a result for the stability of time-invariant linear systems with parameter variations 
representing the unmodeled dynamics. 
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