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Abstract— Connected coverage, which reflects how well a
target field is monitored under the base station, is the most
important performance metrics used to measure the quality
of surveillance that wireless sensor networks (WSNs) can
provide. To facilitate the measurement of this metrics, we
propose two novel algorithms for individual sensor nodes to
identify whether they are on the coverage boundary, i.e.,
the boundary of a coverage hole or network partition. Our
algorithms are based on two novel computational geometric
techniques called localized Voronoi and neighbor embracing
polygons. As compared to previous work, our algorithms can
be applied to WSNs of arbitrary topologies. They are also
truly distributed and localized by merely needing the minimal
position information of one-hop neighbors and a limited number
of simple local computations, and thus are of high scalability
and energy efficiency. We show the correctness and efficiency of
our algorithms by theoretical proofs and extensive simulations.

I. INTRODUCTION

Wireless sensor networks (WSNs) are ideal candidates to
monitor the physical space and enable a variety of applica-
tions such as battlefield surveillance, environment monitoring
and biological detection, etc. In such a network, a large
number of sensor nodes are deployed over a geographic
area (called the region of interest or ROI) for the purpose
of monitoring certain events of interest (e.g., emergence of
enemy’s tanks, detonating a radiological dispersion device).
Typically, each sensor node has a very limited sensing range
within which it is able to perform its sensing operation, and
the sensed data will be transmitted to a base station (BS)
over a multi-hop wireless path. The BS collects data from
all connected nodes, analyzes this data to draw conclusions
about the activities in the ROI, and serves as the only bridge
to connect the WSN with outside users [2].

As a consequence of this special network architecture,
from the user’s point of view, a position in the ROI is
really under the surveillance of the WSN if and only if
this position is within the sensing range of at least one
of the sensor nodes connected to the BS. We define the
collection of all these positions in the ROI as the connected
coverage, or coverage in short, and argue in this paper
that the continuous monitoring of the connected coverage
is a must be functionality for all mission-critical WSNs to
provide, regardless of their specific application or focus.

First of all, connected coverage is the most important
performance metrics used to measure the quality of service

This work was supported in part by the U.S. National Science Foundation
under Grant ANI-0093241 (CAREER Award) and Grant DBI-0529012.

a WSN can provide in a certain time, and should be an
inseparable complementarity of the report about the observed
events in the ROI. For example, in the battlefield surveillance
scenarios, the report from the base station that “none of the
enemy’s tanks has been observed in the ROI” is misleading
if it is not reinforced with the description of the current
connected coverage. Since as sensors running out of energy,
or being physically destroyed by natural or intended attacks,
there is an inevitable devolution of the WSN characterized by
the shrink of connected coverage or the growth of coverage
hole in the ROI, and the WSN should continuously self-
monitor the change of its coverage performance.

Secondly, the information of the connected coverage can
also be used to facilitate many basic operations of WSNs.
Some important ones are listed as follows:

Routing. If all the coverage boundaries can be identified
beforehand, routing in a WSN can be very efficient, espe-
cially geographic routing [8]. The reason is that overlooking
coverage boundaries may cause problems in communication,
as routing along shortest paths tends to put an increased
load on boundary nodes, thus quickly exhausting their energy
supply and growing the coverage hole.

Topology control. In a densely deployed WSN, it is often
suggested to allow sensor nodes to alternatively sleep to
conserve energy while meeting the coverage requirement
[13]. If a sensor node can self-identify its position on a
coverage boundary, it can automatically tune its strategy to
wake up neighboring nodes to fill in the coverage hole. Fur-
thermore, in a WSN with both static and mobile sensors [21],
identifying coverage boundaries among randomly deployed
static nodes would help determine movement strategies of
mobile sensors to improve network coverage.

Re-deploying or repairing WSNs. For mission-critical ap-
plications, it may be necessary to repair or even re-deploy
the WSN when the coverage performance is unsatisfactory.
The details of overage information can help decide when
and how to perform the network repair or re-deployment.
For example, we can know where the best places are for
adding new nodes to reduce or eliminate the coverage holes
and how many new nodes are needed.

In this paper, we develop two novel algorithms based on
localized Voronoi polygon (LVP) and neighbor embracing
polygon (NEP) for coverage boundary detection in WSNs.
In our scheme, the LVP-based algorithm requires both the
directional information (the orientation of each neighbor) and
distance information (the distance to each neighbor), and
theoretically can detect all the boundary nodes no matter



how the nodes are distributed. By contrast, the NEP-based
algorithm merely needs directional information, but can only
find the local (or global) convex points of the coverage
boundary. Both algorithms can be applied to WSNs of arbi-
trary topologies. They are also truly distributed and localized
by merely needing the minimal position information of one-
hop neighbors and a few simple local computations, and thus
are of high scalability and energy efficiency.

II. PRELIMINARIES

In this section, we first give the notation and assumptions,
and then present the network model and problem statement.
The existing proposals for the coverage boundary detection
will be summarized briefly at last.

A. Notation and Assumption

We use the following notation throughout the paper:
• ‖u − v‖ or ‖uv‖: the Euclidean distance between two

points u and v, where u, v ∈ R
2.

• ∂A: the topological boundary of a set A ⊂ R
2.

• AC: the complement of set A ⊂ R
2, i.e. AC = R

2 −A.
• uv: the line segment from point u to v where u, v ∈ R

2.
• rc: the maximum communication range of sensor nodes.
• rs: the sensing range of sensor nodes.
• Disk (u, r): the closed disk of radius r and centered at

point u. Let 0 indicate the origin and we have
Disk0 = Disk(0, rs) =

{
v : ‖v − 0‖ ≤ rs, v ∈ R

2
}

.

• Translation: Au = A+u = {v+u : v ∈ A} for u ∈ R
2

and A ⊂ R
2.

• Minkowski-addition: A ⊕ B = {u + v : u ∈ A, v ∈ B}
for A, B ⊂ R

2 . Obviously Au = A ⊕ {u}.
We assume that sensor nodes are homogeneous, i.e., rc

and rs are the same for all nodes. We also assume that any
two nodes can directly exchange messages if their Euclidean
distance is not greater than rc; a position in the plane can
be perfectly monitored (or covered) by a sensor node if their
Euclidean distance is not greater than rs.

For convenience only, we set rc = 2rs throughout the
rest of the paper. There are two reasons for doing so. First,
it can be proved that, for arbitrary spatial distributions of
sensor nodes, boundary nodes can be locally detected if and
only if rc ≥ 2rs. Therefore, we set rc = 2rs to reduce
energy consumption and interference. Second, as pointed
out in [23], the specification of rc = 2rs holds for most
commercially available sensors such as Berkeley Motes.
However, it should be noted that our algorithms are still
applicable to the scenarios of rc > 2rs.

B. Network Model

For simplicity, we focus on a 2-D square planar field to
be monitored (i.e., ROI) hereafter. Our results, however, can
be easily extended to 2-D or 3-D ROIs of arbitrary shapes.
For l > 0, let Al denote the square ROI of side l centered at
the origin, i.e., Al = [−l/2, l/2]2, and ∂Al be the border of
Al. We consider a network made of stationary sensor nodes
only, and denote the sensor nodes which are deployed in the
ROI to be V = {s1, · · · , si, · · · , sn} (si ∈ Al, for 1 ≤ i ≤

n, i ∈ N), where si represents the position of node i and n
is the total number of sensor nodes, or network size.

We say that nodes si and sj (i �= j and si, sj ∈ V ) are
one-hop neighbors (or neighbors for short) if and only if
the Euclidean distance between them is no larger than rc,
i.e., ‖si − sj‖ ≤ rc . We denote by Neig (si) the neighbors
of node si (not including si). We say there exists a direct
wireless links between two nodes if and only if they are
neighbors. Two nodes si and sj are connected if there is
at least one path consisting of direct wireless links between
them. A set of nodes is called connected if at least one path
exists between each pair of nodes in the set.

C. Formal Definition of the Problem

We now formally define the connected coverage boundary
detection (CCBD) problem addressed in this paper. We start
with a few definitions.

Definition 1: A connected set of nodes is said to be a
maximally connected set, or a cluster, if adding any other
node to it will break the connectedness property. We write
Clust(si) for the cluster containing node si.

Based on the sensing model, the sensing disk of node si

is given by Disk(si, rs) = Disk0 + si. Then the coverage
corresponding to a cluster can be defined as follows:

Definition 2: We define the set of all points in Al that
are within radius rs from any node of Clust(si) as the set
covered by Clust(si). This set is denoted by

Cover(si) =

⎛
⎝ ⋃

u∈Clust(si)

(u + Disk0)

⎞
⎠ ⋂

Al. (1)

We claim Al as being completely covered if there is at least
one cluster Clust(si) whose nodes can cover every point in
Al, namely, Cover(si) = Al.

Definition 3: We define the boundary nodes of Clust(si)
as those whose minimum distances to ∂Cover(si) are equal
to rs, and denoted them by

BN (si) = {u ∈ Clust (si) : min ‖u − v‖ = rs

for v ∈ ∂Cover (si)} ; . (2)

Accordingly, interior nodes is defined by

IN (si) = {u ∈ Clust (si) : u /∈ BN (si)} . (3)
We denote the position of the base station as BS. Note that

the cluster Clust(si) is connected with the BS if and only
if BS ∈ Clust(si) ⊕ Disk(0, rc). Therefore, the connected
coverage with BS, which means the total area of the ROI
under the surveillance of BS due to contributions from each
sensor node connected to BS, can be formally defined as

Cover(BS) =
{ ⋃

1≤i≤n

Cover(si) :

BS
⋂(

Clust(si) ⊕ Disk(0, rc)
) �= ∅

}
.

(4)

Note that Cover(BS) is uniquely decided by its bound-
ary ∂Cover(BS). Assume there are two different clusters
Clust(si) and Clust(sk) connected with BS, from the Def.
2, we have Cover(si) ∩ Cover(sk) = ∅. Therefore,

∂Cover(BS) =
{⋃

∂Cover(si) :
Clust(si) is connected with BS

} (5)



which means CCBD problem can be simplified as finding the
coverage boundary of each cluster, i.e., ∂Cover(si). Since
the minimum information required to describe ∂Cover(si) is
rs and BN (si), the CCBD problem is equivalent to finding
the set BN (si). Note that the CCBD problem formulated
above can be easily generalized to the cases with multiple
BSs or mobile BSs.

D. State of the Art

The task of CCBD will be trivial if we do it in a centralized
way and the exact locations of all nodes are available.
For example, a single node has access to locations of all
functional sensors (an “image” of the sensor distribution).
In this scenario, traditional ways of edge detection in im-
age processing are applicable. However, due to the energy
constraints, this scenario is impractical for most WSNs.
Distributed solutions to the CCBD problem have already
been proposed in [8], [9], [11], [12], [21], [23]. We classify
them as perimeter-based and polygon-based approaches.

Perimeter-Based Approaches. The first localized boundary
node detection algorithm1 is proposed in [12], which is
based on the information about the coverage of the perimeter
of each node’s sensing disk2. It can be shown that node
si is a boundary node if and only if at least there exists
one point v ∈ ∂Disk(si, rs) which is not covered by any
sj ∈ Neig(si) (cf. Fig. 1 (a)). Based on this criterion, an
algorithm with the complexity O(klogk) is designed in [12]
to locally check whether one node is a boundary node, when
k is the number of neighbors. Crossing-coverage checking
approach proposed in [11], [23] further simplifies previous
perimeter-coverage checking approach by just checking some
special points called crossings on the perimeter. A crossing is
defined as an intersection point of two perimeters of sensing
disks. A node si is a boundary node if and only if at least
there exists one crossing v ∈ ∂Disk(si, rs) ∩ ∂Disk(sj , rs)
which is not covered by any other sk ∈ Neig(si) − {sj}.
Fig. 1 (b) shows an example where c is a crossing determined
by two perimeters ∂Disk(si, rs) and ∂Disk(sj , rs), which is
covered by the third sensing disk of node sk. The problem of
perimeter-based approaches is that each node need to check
positions and status of all of its neighbors, which is inefficient
when the sensor nodes are densely deployed (cf. Section V)
and every time when a node dies, all its neighbors need to
check the coverage of their perimeters or crossings again.

Polygon-Based Approaches. In [8], [9], [21], Voronoi dia-
gram (VP) is used for coverage boundary detection. Briefly
speaking, the VP of a node set V , is the partition of
the Euclidean space into polygons, called Voronoi polygons
(VPs) and denoted by Vor(si) for si ∈ V such that all the
points in Vor(si) are closer to si than to any other node in V .
According to the closeness property of VPs, if some portion
of a VP is not covered by nodes inside the VP, it will not be

1Localized boundary node detection algorithm in this paper is defined as
the distributed detection algorithm which can be implemented on each node
with the cooperation of its one-hop neighbors or neighbors within the range
of constant number of hops.

2This information can be locally gathered when rc ≥ 2rs.
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Fig. 1. Perimeter-based boundary node detection approaches. (a) Perimeter-
coverage checking approach proposed in [12]. The solid curve represents
the portion of perimeter of sensing disk covered by neighbor nodes. (b)
Crossing-coverage checking approach proposed in [11], [23]. Solid and open
triangles represent covered and uncovered crossings, respectively.

covered by any other node, which implies a coverage hole.
Therefore, it is claimed in [8], [9], [21] that each node can
locally check whether it is on the coverage boundary with
the assumption that VPs can be derived locally. However,
it has been shown that the VPs of boundary nodes cannot
be locally computed [22]. Therefore, VP-based approach is
not a real localized solution. It does not work when the
survival nodes are sparsely distributed. In this paper, we still
follow the line of polygon-based approaches, since the VP
and its derivatives provide more information about the spatial
distribution of one node’s neighbors, which can be used to
design more efficient detection schemes and simplify the
updating procedures when the number of neighbors changed.

There is a trend in the literature to provide some basic
functionalities of WSNs by only using directional informa-
tion [4], [15], [19]. The boundary node detection with only
directional information is an untouched topic since all the
existing schemes are based on the directional and distance
information of each node’s neighbors. We will return this
topic in Section IV to propose a solution for this scenario.

III. LOCALIZED VORONOI POLYGONS

In this section, we describe our first algorithm for identi-
fying boundary nodes based on LVPs.

A. Definition and Properties of LVPs

To facilitate our illustration, we first define VPs and LVPs
in terms of half planes. For two distinct points si, sj ∈ V , the
dominance region of si over sj is defined as the set of points
which are at least as close to si as to sj , and is denoted by

Dom(si, sj) =
{
v ∈ R

2 : ‖v − si‖ ≤ ‖v − sj‖
}

. (6)

Obviously, Dom(si, sj) is a half place bounded by the
perpendicular bisector of si and sj , which separates all points
in the plane than those closer to sj .

Definition 4: The VP associated with si is the subset of
the place that lies in all the dominance regions of si over
other points in V , namely,

Vor (si) =
⋂

sj∈V −{si}
Dom (si, sj). (7)

In the same way, the localized Voronoi polygon (LVP)
LVor(si) and the tentative localized Voronoi polygon (TLVP)
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Fig. 2. Illustration of LVP-based boundary node detection algorithm.

TLVor(si) associated with si are defined as:

LVor (si) =
⋂

sj∈Neig(si)
Dom (si, sj); (8)

TLVor (si) =
⋂

sj∈SubNeig(si)
Dom (si, sj). (9)

where SubNeig (si) ⊂ Neig (si) .
The collection of LVPs given by

LVor (V ) = {LVor (s1) , · · · ,LVor (sn)} (10)

is called the localized Voronoi diagram (LVD) generated by
the node set V. The boundary of LVor(si), i.e., ∂LVor(si),
may consist of line segments, half lines, or infinite lines,
which are all called local Voronoi edges.

Lemma 1: Properties of VPs, LVPs and TLVPs:
(i) LVor (si), TLVor (si) and Vor (si) are convex sets;
(ii) Vor (si) ⊆ LVor (si) ⊂ TLVor (si);
(iii) Plane R

2 is completely covered by LVor (V ).
Proof: (i) Since a half plane is a convex set and the

intersection of convex sets is a convex set3, a LVP (or a
TLVP) as well as a VP is a convex set.

(ii) From (7), (8) and (9) we have

Vor (si) = LVor (si)
⋂ (⋂

sj∈V,sj /∈Neig(sj)
Dom (si, sj)

)
,

LVor (si) = TLVor (si)
⋂(⋂

sj∈Neig,sj /∈SubNeig(sj)
Dom (si, sj)

)
,

which directly leads to Lemma 1 (ii).
(iii) It is well known in computational geometry that⋃

si∈V
Vor (si) = R

2. (11)

(cf. [17, Property V1, pp. 77] for a reference). Combined
(11) with Lemma 1 (ii) that Vor (si) ⊆ LVor (si), we can
directly obtain Lemma 1 (iii).

Therefore, the set LVor (V )∩A can fully cover arbitrary
set A where A ⊆ R

2 . Note that this result can be easily
extended to any cluster in V , e.g., for Clust (si) we have⋃

sj∈Clust(si)
LVor (sj) = R

2. (12)

3This sublemma can be proved as follows: Let Bi, i ∈ I, be a convex set
and B =

⋂
i∈I

Bi. If u and v are two points in B, then they are in each
Bi, so the line joining u to v lies in each Bi and therefore in B.

B. LVP-Based Boundary Node Detection

In this subsection, we present an algorithm for each node
to detect whether it is on the coverage boundary based on its
own LVP, which is illustrated with node si as an example.

Input. Note that we need both directional and distance
information (relative positions) of node si’s neighbors as
the input of our algorithm. We need to consider two cases
based on whether the information about the border of Al

is available. In the first case when ∂Al is unavailable at
node si, our detection scheme is based on the construction
of LVor (si) (or TLVor (si)). In the second case when
∂Al is available, we need to exploit this information by
calculating LVor (si) ∩ Al (or TLVor (si) ∩ Al). It can be
shown that LVor (si)∩Al must be a finite convex polygon.
Thus, the second case can be transformed into the first case
by introducing dummy nodes into Neig(si). See Fig. 2 (a)
for an example, in which four dummy nodes d1 through d4

are introduced such that perpendicular bisectors between si

and the dummy nodes generate the four edges of the border
of ROI. Then we can calculate LVor (si) ∩Al by following
the same procedure for calculating LVor (si). Therefore, we
will only address the first case in what follows.

Our goal is to construct the LVor(si) (or TLVor(si))
which is sufficient for the boundary node detection with the
minimal requirement on the information about si’s neighbors.
We first divide Disk (si, rc) into four4 quadrants. Then we
construct the TLVP of si by the nearest neighbors (solid
nodes in Fig. 2 (b)) in each of the four quadrants. Without
lose of generality, we denote these four nearest neighbors as
s1, s2, s3 and s4. The TLVP is calculated by

TLVor (si) ←
⋂4

j=1
Dom(si, sj).

If all the vertices of the TLVP is covered by Disk (si, rs), the
procedure will stops and the TLVP will be saved. Otherwise,
we need to find new neighbors which are nearest to the
uncovered vertices of the TLVP (cf. Fig. 2 (c)), add those
neighbors to SubNeig(si), and calculate the TLVP again:

TLVor (si) ← TLVor (si)
⋂(⋂

sj∈SubNeig(si),j �=1,2,3,4 Dom (si, sj)
)
.

The new vertices of the new TLVP will be checked to see
whether they are covered by Disk (si, rs). This procedure

4Other values will also work well.
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continues until the LVP is calculated and saved.
Note that when ∂Al is unavailable, LVor(si) may be

infinite, which means it is possible that we cannot find
any nodes in one or more quadrants. See Fig. 2 (d) for an
example. If one quadrant contains no neighbors, we define
two sectors with angle 45◦ which are directly adjacent to
the quadrant as the assistant area, and add the nodes in this
area to SubNeig(si) first. If all the nodes in assistant area
cannot make TLVP finite, we can conclude that LVP must
be infinite without further calculation.

Output. If LVor (si) is infinite, si must be a boundary
node. If the LVor (si) (or final TLVor (si)) is finite and all
the vertices of LVor (si) (or final TLVor (si)) are covered
by si, then si ∈ IN (si). Otherwise, si ∈ BN (si).

C. Validating the Algorithm

In the VD, the VPs of different nodes are mutually
exclusive, but in the LVD, the LVPs of different nodes may
overlap. This critical difference makes the validating of our
algorithm totally different with the VP-based ones.

Theorem 1: If there is a point v ∈ LVor (si) which is not
covered by si, i.e., v /∈ Disk (si, rs), there must exist a point
h ∈ LVor (si) that is not covered by any node, and si must
be a boundary node.

Proof: Without loss of generality, we assume that
the node nearest to si and outside Disk (si, rc) is sm, and
‖si − sm‖ = rc + δ for δ > 0. Let s′m be the point on
siv satisfying ‖sis

′
m‖ = ‖sism‖, and h be another point

on siv such that ‖sih‖ = rs + δ/2 (see Fig. 3). By the
triangular inequality, we have ‖smh‖ + ‖sih‖ ≥ ‖sism‖ =
‖sis

′
m‖ = ‖sih‖ + ‖hs′m‖. Therefore, ‖smh‖ ≥ ‖hs′m‖ =

‖sis
′
m‖ − ‖sih‖ = rs + δ/2, which means that sm cannot

cover h and neither does any other node in Disk (si, rc)
C.

The reason is that, since ‖sisl‖ > ‖sism‖ holds for any node
sl ∈ Disk (si, rs)

C and sl �= sm, we have ‖s′lh‖ > ‖s′mh‖
where point s′l is on the line siv and ‖sis

′
l‖ = ‖sisl‖.

Therefore, ‖slh‖ ≥ ‖s′lh‖ > ‖s′mh‖ = rs + δ/2.
Since v ∈ LVor (si), based on the convexity of LVor (si)

we have siv ∈ LVor (si). Therefore, h ∈ LVor (si), which
implies for any node sj ∈ Disk (si, rc) and si �= sj , we have
‖sjh‖ ≥ ‖sih‖ > rs, i.e., no nodes in Disk (si, rc) can cover
h. Consequently, we can conclude that no node in the plane
can cover h because Disk (si, rc)∪Disk (si, rc)

C = R
2. Note

that from the above proof process, we can see that h can be

arbitrary close to v′, the intersection of circle ∂Disk (si, rs)
and siv. Therefore, si is a boundary node.

Theorem 2: If there is a point v ∈ Al not covered by any
sensor node, for every cluster Clust(si) there must exist at
least one sensor sj ∈ V whose LVor (sj) is not completely
covered by Disk (sj , rs).

Proof: According to Lemma 1 (iii) or (12), we have⋃
sj∈Clust(si)

(LVor (sj) ∩ Al) = Al (13)

Therefore, for any v ∈ Al, it must lie in at least one
LVor (sj) ∩ Al for sj ∈ Clust(si).

Theorems 1 and 2 prove that LVor (si)∩Al is completely
covered by si for all si ∈ Clust (sj) is the sufficient
and necessary condition for Clust (sj) to completely cover
Al. The following theorem shows that when LVor (si) or
LVor (si)∩Al is finite, the coverage of vertices of LVor (si)
(or final TLVor (si), since LVor (si) ⊂ TLVor (si)) by si

is equivalent to the coverage of the whole LVor (si) by si,
which guarantees the correction of our LVP-based algorithm.

Theorem 3: LVor (si) is fully covered by si if and only
if LVor (si) is finite and all the vertices are covered by si.

Proof: Let V e (si) be the set of vertices of LVor (si).
Obviously, when LVor (si) is completely covered by si, i.e.,
LVor (si) ⊂ Disk (si, rs), we have v ∈ Disk (si, rs) for all
v ∈ V e (si) and LVor (si) is finite. Since

max
u∈LVor(si)

{‖si − u‖} ≤ max
v∈V e(si)

{‖si − v‖} ,

when v ∈ Disk (si, rs) for all v ∈ V e (si), we have u ∈
Disk (si, rs) for all u ∈ LVor (si).

D. Some Discussion on LVP-Based Detection

Our LVP-based detection is a truly localized polygon-
based solution since computing LVor (si) (or TLVor (si))
only needs one-hop information (this can be directly obtained
from the def. 4), which is impossible for computing Vor (si).

Assume the number of neighbors is k, each node can
compute its own LVor(si) with complexity smaller than
O(k). The computing of the LVor(si) only involves some
simple operations on polygons which can be efficiently
implemented (e.g., PolyBoolean library [14]). We further
simplify the detection procedure by constructing TLVPs
first. For a densely deployed WSN, we have LVor(si) or
TLVor(si) → Vor(si), and it is well known in computa-
tional geometry, under the Poisson point model, the average
number of vertices of Vor(si) is 6 [17]. Therefore, when
the node density is high, only 4 ∼ 6 nearest neighbors’s
information will be needed for our LVP-based algorithm
to detect the boundary nodes. As compared to perimeter-
based approaches mentioned in Section II-D which require
all information of k neighbors no matter how high the
k will be, our LVP-based approach minimizes the needed
information from the neighbors, and thus greatly reduces the
computation and communication costs. Moreover, when a
neighbor node dies, our LVP-based approach need do nothing
unless the dead node is used to construct the final TLVor(si)
or LVor(si) in the last turn of detection. This unique property
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neighbors of si and dotted open nodes are the projection of neighbors on
the boundary of Disk(si, rc).

will simplify the updating of detection results and save
precious energy of each sensor nodes.

IV. NEIGHBOR EMBRACING POLYGONS

The neighbor embracing polygon (NEP) was first intro-
duced in computational geometry as an alternative to the
Voronoi polygon [5], [7]. In this section, we will show that
the localized NEP can also be used as a complementary tool
of the LVP for coverage boundary detection.

A. Definition and Properties of NEPs

Definition 5: Given the point set Neig (si), we define its
convex hull, CH (Neig (si)), as the smallest convex set
containing all the points in Neig (si). If si is in the interior
of CH (Neig (si)), i.e., si ∈ CH (Neig (si)) and si /∈
∂CH (Neig (si)), we call CH (Neig (si)) the NEP of si.

If si belongs to CH (Neig (si)), then si has at least three
neighbors. By the properties of the convex hull, we also know
that CH (Neig (si)) is the unique convex polygon whose
vertices are points from Neig (si) [3].

The idea of using NEP in boundary node detection is quite
intuitive. Fig. 4 illustrates the relationship between si and
its CH (Neig(si)). We can see that si is more likely far
from the boundary when embraced by its neighbors. On the
other hand, when si /∈ CH (Neig(si)), we can find a line
(supporting line for the convex set) which separates si from
its neighbors, and node si is on the boundary almost for sure.

There is a clear difference between our definition and the
existing one in [5], [7]. An NEP is constructed globally in
[5], [7]: for a given node si ∈ V , they first connect si to
the nearest node, then to the second nearest, and so on;
the process continues either when si belongs to the interior
of the convex hull of these nearest nodes or when all the
nodes in V have been tested. In this way, only the vertices
of CH (V ) do not have the NEP.5 By our definition, when
nodes without the NEP are found, some local convex points
other than vertices of CH (V ) (global convex points) will
also be identified, which can provide more detailed boundary
information (cf. Section V-A). More important, our scheme
can be done locally.

5NEPs are never used in coverage boundary detection in [5], [7].
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Fig. 5. Illustration of the computation of Sect(si, q+1) from Sect(si, q).

Although efficient algorithms for computing the convex
hull of a given point set are available, we still want to avoid
using them if possible. The reason is that we only need to
know whether there is an NEP for node si and do not care
about the shape or size of the NEP. Let Sect(si) be the
smallest sector with angle α whose apex is si and contains all
the points of Neig(si). Note that Sect(si) can be represented
by two points on ∂Disk (si, rc). In fact, we can project all the
points of Neig (si) onto ∂Disk (si, rc)6, and view Sect(si)
as the “1-D convex hull” of the projected points of Neig(si)
on ∂Disk(si, rc) (see Fig. 4). Intuitively, the existence of
the NEP depends on the magnitude of angle α, which can
be formally expressed by the following lemma:

Lemma 2: For a given finite set Neig (si), node si has an
NEP if and only if the angle α of Sect(si) is larger than π.

Proof: See [5, Lemma 2]. Note that, different from [5],
the degenerate case in which there are only two vertices of
CH (Neig (si)) defining a line segment containing si and
α = π, has been excluded here by the Definition 5.

Therefore, checking the existence of an NEP can be done
solely based on directional information.

B. NEP-Based Boundary Node Detection

Based on Lemma 2, the NEP-based boundary node detec-
tion works as follows with node si as an example:

Input. The NEP-based algorithm does not require dis-
tances to si’s neighbors, but only needs directions to si’s
neighbors. Therefore, we can use neighbors’ projections on
∂Disk (si, rc) as their representations (i.e., sj is a point
on ∂Disk (si, rc)). Accordingly, Sect(si) can be decided by
the two end points on ∂Disk (si, rc). We only consider the
case when ∂Al is unavailable in this section, since even this
information is available, it still cannot be utilized.

An intuitive way to check the existence of NEP is to sort
sj ∈ Neig(si) according to their angles to si, and then check
if there is a gap greater than π in these angles. The average
complexity of sorting is O (k log k), where k is the number
of neighbors. Below we describe how to decide whether
α > π in O (k) time by computing tentative Sect(si, n),
where n is the number of neighbors used in computing
this tentative sector. We first randomly take two points from
Neig(si), and construct a tentative sector Sect(si, 2). Then
we compute Sect(si) iteratively, by adding points to the

6rc can be any other value.
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Fig. 6. Illustration of the proof of Theorem 4.

tentative sector one by one. Given Sect(si, q) (q < k) and
the next point sq+1 randomly choosed from Neig(si), if sq+1

is contained in Sect(si, q), Sect(si, q + 1) = Sect(si, q).
When sq+1 /∈ Sect(si, q) and the antipodal point7 A(sq+1)
of sq+1 is contained in Sect(si, q) (excluding end points), we
can immediately decide α > π without further computation.
When A(sq+1), sq+1 /∈ Sect(si, q), we update Sect(si, q)
(the shaded area in Fig. 5 (a)) by adding to Sect(si, q) the
sector (the dashed area in Fig. 5 (b)) which is from by
an endpoint of Sect(si, q) to sq+1 and does not contain
A(sq+1). This procedure continues until it can be decided
that α > π or Sect(si) is computed and the α is obtained.

Output. If α ≤ π, si ∈ BN (si). However, when α > π,
we cannot decide whether si is a boundary node.

C. Validating the Algorithm

We first give the relationship between LVPs and NEPs.
Theorem 4: The LVP LVor (si) is infinite if and only if

there is no NEP for si.
Proof: We prove the first part by contradiction. Assume

that LVor (si) is infinite. Since LVor (si) is a convex set,
LVor (si) must contain a half-infinite line starting from si

and denoted by −→siv in Fig. 6 (a). Assuming that si ∈
CH (Neig (si)), we can find a triangle ∆sjsksl such that
si ∈ ∆sjsksl, where sj , sk, sl ∈ Neig (si). Without loss of
generality, we assume that −→siv intersects with sjsk (if −→siv
goes through sj or sk, we can directly get a contradiction).
Since ∠sjsisk < π, then ∠sjsiv or ∠vsisk must be smaller
than π/2. If ∠sjsiv < π/2, the bisector and perpendicular
of sjsi, i.e., uh, will intersect with siv at point h. Obviously,
all the points on hv will be closer to sj than si, which
contradicts the assumption that −→siv ⊂ LVor(si).

If si /∈ CH (Neig (si)), then all neighbors of si lie in
a sector with angle α < π (the shaded area in Fig. 6(b)).
Let −→siv be the half-infinite line starting from si with angle
β where β + α/2 = π (cf. Fig. 6(b)). Therefore, for any
point h on −→siv and sj ∈ Neig (si), we can get ‖sjh‖ >
‖sih‖, because in ∆sisjh we have γ ≥ β > π/2. So −→siv ∈
LVor (si), which implies that LVor (si) is infinite.

When LVor (si) is infinite, it cannot be fully covered by
Disk (si, rs). From Theorem 1, we can directly conclude
that si must be a boundary node if there is no NEP for
si. Therefore, the correctness of the algorithm is guaranteed.

7The antipodal point A(sq+1) is defined as the point on ∂Disk(si, rc)
that is on the ray staring at si and along the opposite direction of sq+1 and
represented by the dotted open node in Fig. 5.

D. Some Discussion on NEP-Based Detection

Unlike the LVP-based algorithm, the NEP-based algorithm
cannot identify all the boundary nodes, which is the cost
of only using directional information. The two algorithms
can be combined in the following way. Since directional
information is relatively easier to obtain than distance in-
formation, we assume that the former is available, while the
latter is determined only when necessary. In the first step, a
given node checks whether it has no NEP, and if so, decides
that it is a boundary node. Otherwise, this node determines
the distances to neighboring nodes and then performs the
LVP-based algorithm. In doing so, although both algorithms
need to be executed for some nodes, the overall energy
consumption and response time may be reduced in contrast
to the case when only the LVP-based algorithm is used, as
accurate distance estimation may be both time-consuming
and energy inefficient.

When each node can only obtain neighbors’s direction
information, it is easy to show that it is impossible to find
an algorithm to locally detect all the boundary nodes for
all situations. For NEP-based algorithm, it has already done
its best. However, note that only when we want to know
the coverage boundaries without any distortion, the whole
information about all the boundary nodes is necessary. In
practice, however, some degrees’ distortion on the “coverage
image” is usually tolerable for the users to make the decision.
Moreover, the property of the coverage boundaries (e.g.,
boundaries always consists of continuous closed curves) can
be utilized for the users to recover some lost data about
boundaries. Therefore, we can still get the main information
about the coverage boundaries from partial boundary nodes
detected by NEP-based algorithm. The simulation result
supports our belief and quite positive: the positions of nodes
without NEPs can depict the major topology shape of the
connected coverage area (see Fig. 8 in Section V-A).

V. PERFORMANCE EVALUATION

In this section, we first validate the accuracy of our
algorithms by simulations. We then show by theoretical
analysis and simulations that our algorithms outperform the
existing schemes in the literature.

A. Validating the Accuracy with Simulation Results

We have implemented the LVP-based and NEP-based
algorithms in R [1] and tested their performance on the
large-scale WSNs. Fig. 7 shows the detection results for two
WSNs with different coverage holes. The boundary nodes
detected by the NEP-based algorithm are darkly shaded dots,
and the additional ones detected by the LVP-based algorithm
are lightly shaded dots. In addition, the theoretical coverage
boundary is formed by solid lines. The effectiveness of
our algorithms are quite obvious, the LVP-based algorithm
can detect almost all the boundary nodes and give perfect
information about coverage boundaries. Although the NEP-
based algorithm cannot detect all the boundary nodes, it can
still offer very useful information. Consider the right side of
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Fig. 7. Boundary detection results for large-scale WSNs.

Fig. 7 as an example. All the boundary nodes determined by
the NEP-based algorithm send their positions or IDs to the
BS, which, in turn, can reconstruct the coverage boundary
based on such information. Fig. 8(a) and Fig. 8(b) show the
“images of the boundary” when the sink lies in the margin
and center of the ROI, respectively. Such results are quite
positive because although some details of boundaries are lost,
the outlines are still obtained.

B. Cost Analysis

1) LVP-based approach vs. perimeter-based approach:
All these two approaches can provide truly localized so-
lutions to the CCBD problems. The difference is that for
densely deployed WSNs, the number of neighbors’ informa-
tion needed for our scheme is a constant, while for perimeter-
based approach, all the neighbors’ information is required
(cf. Section III-D). Therefore, the higher the node density,
the greater the benefit using our scheme.

2) LVP-based approach vs. VP-based approach: Intu-
itively, LVP-based approach will have smaller communica-
tion overhead or equivalently energy consumption than the
VP-based method since LVPs can be locally computed. In
what follows, we prove this intuition in a formal way.

Theorem 5: If there exist boundary nodes, the costs of the
NEP-based and LVP-based algorithms are always smaller
than the cost of the VP-based one.
The proof of the theorem depends on the following lemma:

Lemma 3: For any si ∈ V , the VP Vor (si) can be locally
computed if and only if Clust (si) can completely cover the
plane R

2 (or Al, when the information of ∂Al is available),
i.e., Cover (si) = R

2 (or Cover (si) ∩ Al = Al).
Proof: From Theorems 1 and 2, a node set can

completely cover R
2 if and only if LVor(si) is fully covered

by Disk(si, rs) for any si ∈ V . From Lemma 1, this implies
that Vor(si) = LVor(si) for any si ∈ V . Therefore, Vor(si)
can be locally computed by si just as LVor(si).

Let d = max ‖v − si‖ for any v ∈ Vor(si). Since Vor(si)
is a convex set, then d = ∞ if Vor(si) is infinite, otherwise
d is the distance from a vertex of Vor(si) to si. Vor(si)
can also be computed in a similar way as LVP with set V
as input. We can determine that the construction of Vor(si)
is completed when all the nodes in Disk(si, 2d) have been
counted. Therefore, Vor(si) can be locally computed, which
implies that 2d ≤ rc or d ≤ rs and thus guarantees the

(a) (b)

Base station

Fig. 8. Coverage boundary reconstruction results on the base station with
the NEP-based algorithm.

complete coverage of Vor(si). Since this holds for all si ∈
V , we can ensure the complete coverage of the plane.

Therefore, when there are boundary nodes, it is impossible
to compute all Vor(si)’s locally based on only one-hop in-
formation. Since multi-hop communications are unavoidable,
the cost of the VP-based approach will be higher than both
LVP-based and NEP-based algorithms. Only when the node
density is so high that the ROI is completely covered (not
considering the ROI border), is the cost of the VP-based
approach equal to that of ours. However, in this case, there is
no need for coverage boundary detection at all. So Theorem
5 guarantees that when boundary detection algorithms are
helpful, the cost of our algorithms is definitely smaller than
the VP-based one. The next question is how significant the
cost savings are by using our algorithms, which is answered
in the rest of this section.

C. Evaluation of Energy Consumption for VP- and LVP-
Based Approachs

1) Evaluation settings: To facilitate the theoretical anal-
ysis, we assume that sensor nodes are distributed in a large
square region Al and form a homogeneous Poisson point
process with density λ. Each node knows its own position
by GPS or existing localization schemes such as [15]. For
any measurable subset of Al with area B,

Pr {finding i nodes in the region of area B} = (λB)ie−λB

i! .

Each node is expected to have k = πr2
cλ neighbors on

average, and the expected number of nodes in Al is given by
n = λ·Al. We also assume that each node fails independently
and uniformly with probability p. It has been shown that
functional nodes still form a homogeneous Poisson point
process with density λ′ = (1 − p) λ [20]. Therefore, the
network can be uniquely identified by the current node
density λ (or equivalently k).

Here we only consider the homogeneous Poisson point
process because it is widely accepted in modeling sensor
networks [10]. In addition, we let the side length l → ∞
(which implies n = λAl → ∞). In doing so, we can infer
the characteristics of the whole network by just analyzing
some “typical nodes” (which are far away from ∂Al) and
ignoring the “boundary effects” [18].

Based on the continuum percolation theory [16], [18], if
k ≤ 4.5, a 2-D network will be partitioned into O (n) small



clusters, which implies that the WSN will completely failed.
Previous work [10], [13] also points out that for n → ∞, the
ROI Al is completely covered with a high probability when
λ and k satisfy

πr2
sλ = π(rc/2)2λ = k/4 = log (n) + 2 log log (n) . (14)

When k is greater than this critical value, we can guarantee
that there is no coverage hole in the network. Therefore, in
what follows we will just consider the case when

4.5 < k < 4 log (n) + 8 log log (n) . (15)

In our evaluation, in order to have a fair comparison,
VPs are computed in a similiar way as LVPs with set V as
input. Specifically, we first compute LVor(si) as the tentative
VP of si, and then refine the tentative VP iteratively. In
each iteration, we add one more hop information about node
positions. Let d (si) = max ‖v − si‖, for any v ∈ LVor(si)
(d(si) = ∞ when LVor(si) is infinite). Obviously, to
guarantee the accuracy of the results, we only need to check
the nodes in region Disk (si, 2d (si)).

To facilitate the analysis, we also assume that commu-
nications proceed in rounds (governed by a global clock)
with each round taking one time unit, and that there are
effective MAC-layer protocols supporting reliable commu-
nications. Let ET and ER denote the energy consumed to
transmit and receive one bit, respectively, and SM be the
size of message M in bits. Below shows the procedure for
computing VPs/LVPs/NEPs.

Step 1: Every node si broadcasts its position si, and
receives its neighbors’ position message. This step is enough
for computing LVPs and NEPs, and the energy consumption
of node si is (ET + kER) Ssi

. To compute VPs, we still
need to do the the following steps:

Step 2: Node si computes its tentative VP LVor(si) with
position of sj where sj ∈ Neig (si), and then broadcasts
d(si) if d(si) > rc. The energy consumption of si in this
step is (ET + kER) Sd(si).

Step 3: Upon receiving any d(sj), node si checks the
positions of its neighbors. If there is a node sk such that

sk ∈ Disk(sj , rc)C ∩ Disk(sj , 2d(sj)) ∩ Disk(si, rc),

node si reports sk’s position to node sj . If Disk (si, rc) ⊂
Disk (sj , 2d (sj)), node si still needs to broadcast d(sj) and
sj’s position.

Step 4: repeat step 3 until Disk(si, rc) �⊂ Disk(sj , 2d(sj)).
If constructing a VP needs m-hop information, the total

energy consumption in steps 3 and 4 will be

(m − 1) (ET + kER)
(
Sd(sj) + Ssj

)
. (16)

2) Theoretical results: Given the density λ, from the proof
of Lemma 3, 2d(si) can be computed from (14) as:

2d (si) =
(

4 log (n) + 8 log log (n)
πλ

)1/2

. (17)
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Fig. 9. Energy consumption for the LVP- and VP- based algorithms.

The next step is to compute the number of hops needed to
reach 2d(si). For the homogeneous Poisson point process,
hop-distance relationship has been derived in [6]:

E (m) =
{

1, d ≤ rc

0.5 + h · c, d > rc
(18)

where d = h · rc is the distance to reach, E (m) is the
corresponding expected number of hops, and c is a constant
that is close to two for a small k and to one as k becomes
large. Therefore, the number of hops needed for 2d (si) > rc

can be calculated as:

E (m) =
1
2

+
c

rc

(
4 log (n) + 8 log log (n)

πλ

)1/2

. (19)

The energy consumption of a typical node using the LVP-
based or NEP-based algorithm is

ECLVP = (ET + kER) Ssi . (20)

It is difficult to precisely compute the total energy con-
sumption for transmitting position information of sensor
nodes in region Disk (si, rc)

C ∩Disk (si, 2d (si)) to si. One
way to handle this problem is to estimate it by the last hop
energy consumption:

ECL Hop = (ET + ER)(π(2d(si))2λ − πr2
cλ)Ssi . (21)

Therefore, the energy consumption for a typical node using
the VP-based algorithms will not be less than

ECVP = ECLVP + E(m)(ET + kER)Sd(si)

+(E(m) − 1)(ET + kER)Ssi + ECL Hop .
(22)

For 4.5 < k < 4 log (n) + 8 log log (n), we have E (m) ≥
1.5. Since d(si) is 1-D while si) is 2-D data, we assume that
Ssj

= 2Sd(sj). Then we can get
ECVP

ECLVP
> 2.75. (23)

Obviously, the energy savings are significant. Note that
(23) holds for all 4.5 < k < 4 log (n) + 8 log log (n). For
a network with an inhomogeneous point distribution, we
can divide the network into a finite number of partitions
with different constant densities. If the densities are all in
(4.5, 4 log (n)+8 log log (n)), the inequality (23) still holds.



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

k: Avg. # of Neighbors

A
vg

. #
 o

f N
od

es
 N

ee
de

d 
fo

r 
D

et
ec

tio
n

Crossing−Coverage Checking Approach
LVP−Based Approach

Fig. 10. Average number of neighbor nodes needed for the crossing-
coverage checking approach and LVP-based approach.

D. Simulation results

1) LVP-based approach vs. VP-based approach: We sim-
ulate a WSN with l = 200 m, rc = 20 m, Ssj = 64 bytes,
ER = 0.6 µJ/bits, ET = 0.8µJ/bit, and 4.5 < k < 45
(the range of k derives from the Eq.15). Fig. 9 shows the
average node energy consumption for the VP-based (ECV P )
and the LVP-based or NEP-based (ECLV P ) algorithms as
a function of k. We can see that the theoretical values
of ECLV P are always greater than the simulation results.
The reason is that we treat nodes on the ROI boundary as
typical nodes in theoretical analysis, while these nodes in
fact have much fewer neighbors and thus have less energy
consumption. In addition, both theoretical and simulation
results of ECLV P slightly increase as k becomes large, as the
reception energy consumption increases with the increasing
number of neighbors. By contrast, the theoretical results of
ECV P are always lower than the simulation results because
of the approximation in (21). We can also observe that the
difference becomes smaller with the increase of k. This is
because the number of hops needed to reach 2d(si) will
become smaller with the increase of k and our approximation
will make more sense. In general, it is obvious that our LVP-
based algorithms can achieve remarkable energy savings.

2) LVP-based approach vs. perimeter-based approach:
The simulate settings are the same as the above. Fig. 10
shows the average number of neighbor nodes needed for
the perimeter-based approach and LVP-based approach to
detect boundary nodes as a function of k. We can see
that, as we predict, when the node density increases, the
number of nodes needed holds as a constant for LVP-based
detection while increases synchronously for perimeter-based
approaches. Therefore, compared to our scheme, perimeter-
based approaches will be a burden especially at the beginning
of the lifecycle of WSNs where WSNs are usually densely
deployed to provide greater redundancy and fault-tolerance.

VI. CONCLUSION

In this paper, we develop two deterministic, localized
algorithms for coverage boundary detection in WSNs. Our

algorithms are based on two novel computational geometric
techniques, namely, localized Voronoi and neighbor embrac-
ing polygons. Theoretical analysis and simulation results
show that, our algorithms can be applied to WSNs of
arbitrary topologies with varying node densities and have the
minimal computation and communication costs, as compared
to previous proposals.
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