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Abstract

Let S, (p®, d) denote the sum of rth powers of numbers having given order (or exponent) d modulo p®
where p is an odd prime, r, d and « are positive integers and d|¢(p®) with ¢(-) indicating the Euler
function. In this paper, we study the congruence property of this summation and obtain the following result

S’r(pa7d) = %NUO)’ (T’dd)

=p™ly, (p,lo) = 1,7 > 0,a > 0.
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1 Introduction

Let S, (p®, d) denote the sum of rth powers of numbers having given order (or exponent) d modulo p* where
pisanodd prime, r, d and « are positive integers and d|¢(p®) with ¢(-) indicating the Euler function. Gauss
proved in his masterpiece ([4]) that S1(p,p — 1) = p(p — 1) (mod p) where u(-) is the Mdbius function.
In 1830, Stern ([6]) generalized this result and obtained that S1(p,d) = p(d) (mod p) for any d|(p — 1).
In 1883, Forsyth ([3]) studied the congruence of S,.(p,p — 1) for any positive integer r, however, his results
and proofs were very complicated. In 1952, Moller ([2]) investigated more general cases and obtained

5(p.d) = S uld) (mod p), ds =

However, Moller’s proof was still complicated. Gupta ([5]) gave a simpler proof using the concept of

primitive root.

In this paper, we generalize Moller’s results to the case when the modulo is a power of a prime.

2 Main Results

The following are our main results.

Theorem 1. Let «, d and r be positive integers, let p be a prime number, [y is the number satisfying
d/(r,d) = p™lp and (p,ly) = 1, then we have

MW@E—%N@@MW) 0

Let h(d) = d/(r,d), let p(d) = pot,(h(d)) denote the highest power of p in h(d), where pot,,(n)
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denotes the highest power of factor p in n. For z|¢(p®), define

¢(d) _
F(z,r) = dzh; Wu(h(d)p p(d)) 2

We have

Theorem 2.

R A
To prove our main results, we need the following lemmas.
Lemma 1. There exists a primitive root g modulo p© such that
gpl(pq) =1 +ngl+1 (mod pl+2)

forany ! > 0and (p,n) = 1.

Proof: Suppose g is a primitive root modulo p, without loss of generality, we assume gP~! = 1 +
mp(mod p?) where (n1,p) = 1. It is well-known ([5]) that g is also a primitive root modulo p®. When
[ = 0, from the choice of g, we know Lemma 1 is true. Suppose that Lemma 1 is true for [ — 1, that is, we

have
—17,
gp (-1) = 1+ n2pla (7727p) = 15
then
l(py—
g = (L+mep)P =1+ (g) (12p")? + - -
= 1 +npl+1 (IIlOd pl+2)

By induction, we conclude that Lemma 1 is true.

Lemma 2 ([5]) Let f(n) denote an arithmetical function, then

S'(n) =Y f() =D ud{f(d) + f(2d) + -+ f(n)}
dln

ji<'n

where j <’ n represents j < nand (j,n) = 1.

pot, ((ZZ")) =c—poty(r), 0<r <p° c>0.

Lemma 4 ([1]) Given integers r, d and & such that d|k, d > 0, kK > 1 and (r,d) = 1, then the number of
elementsintheset S = {r +td: t =1,2,...,k/d} which are relatively prime to & is ¢(k)/o(d).

Lemma 3 ([5])



Now we are ready to prove our main results.

Proof of Theorem 1: Let ¢ be the primitive root as in Lemma 1, set ¢ = g#®*)/¢ then we have

= g?@*)ri/da (mod p®) = a (mod p%), 1 = " di = ( dd)’ a = g?@ri/d1
lr,

thus ¢" and a have the same order d;. Set
T={t":N<d}, K={t":j < di}.

It is observed that every element in X will reappear many times in 7 modulo p®. Let 7 be any element in
IC, which has the order d1, then the number of elements in the set

{t M =17 (mod p®), X <’ d}
is equal to the number of elements in the set
{A:A=j (mod dy), A <" d}

which is equal to ¢(d)/¢(d1) via Lemma 4. Thus, every element in IC will reappear exactly ¢(d)/#(d1)
times in 7" modulo p®.

Let £, = {a* : k <’ d;}, then we have (in what follows we will use = to denote the congruence with
respect to modulo p* for brevity)

a 5y — _ ¢(d) _ ¢(d)
Sy (p%,d) = b= b= b 3
)= 2 0= 00y 2= iy @
From Lemma 2, we have
Sb=Y ph){a"+a® +-- +a"} =" u(h) al_lh (4)
bEK, hld1 hldy -1

Let dy = p™ly, ly|(p — 1). Define

Then, we obtain

a di _ 1 h k adl -1 k]
b= > uh) e DD
bEK, hlprolg 0<k<ro,l|lo o
-1

aPt

=Zu 1a+lr02upl71

l‘lo l|lo

= S u) —11_”0 ) n) o ©)

l‘lo l|l0




Forl > 0, if (a' — 1,p®) # 1, then we have ¢! = 1 (mod p), i.e., g?@*)r/d = 1 (modp). Since
g is a primitive root modulo p, then we have (p — 1)|¢(p®)iri/dy, i.e., (p — 1)|p® 1 "0r (p — 1)I/lo.

However, since ly|dy, (d1,71) = 1 and (lp,p) = 1, we have ly|l. Therefore, for 0 < I < Iy, we must have

(a' —1,p®) = 1, hence

di _ 1
a ; = 0 (mod p%).
a —1
Similarly, we can obtain
at —1 o
Taking these two equations into Eq.(5), we obtain
d1 dl
a —1 a® —1
bEXKj b= pllo) —a" — Uro)u(lo) ——a™"® (mod p°)

Applying Lemma 3, we can obtain the following

7
POtp<<i>p’“’> >Sa+ b, iff>a—r 1<r<a, 2<k<p

In fact, we only need to prove

(6)

(7)

or r—pot, (k)+(k—1)8 > a. Because 8 > a—r, we then only need to prove r —pot,, (k) +(k—1) (a—r) >

0 which is obvious by noticing that pot, (k) < r. Thus, we obtain the proof of Eg. (7).
From Lemma 1, there exists a n > 0 with (, p) = 1 such that
alo — <g¢(pa)rl/d1)l0 — (gpa—ro—l(p_l))rl = ]_ + 'r]pﬁ

where 8 > a — rg. Thus, we have

ah =1 (a7l)yo —1  (14ppf)P -1

= p"® (mod p®)

alo —1 g —1 npP
and J
a® —1 ,
pr— ° = p™ (mod p?)
Similarly, we can obtain
a® —1

Taking Eqg. (8) and Eg. (9) into Eq. (6), we obtain

Z = pu(lo)p™ — I(ro)p(lo)p™ * (mod p®)
beX,

= ulo)p™ —U(ro)p™ '] = p(lo)$(»"™) (mod p®)

(8)

©)



Taking this into Eq. (3) we finally obtain

5, (p%, d) = %mww (modp®) = %M(lo) (mod p®).

This completes the proof of Theorem 1.
Whena =1,d|(p — 1), 70 = 0and [y = d/(r,d) = d;, we have

S, (p,d) = %a(dl) (modp)

which is exactly the result obtained by Moller ([2]).

Proof of Theorem 2: Notice that h(d) is multiplicative, and p(d) is additive, therefore

¢(d)u(h(d)p 7V)
$(h(d)p 7))

is multiplicative. Moreover, it can be easily shown that F(z,r) is multiplicative in z.

Suppose that ¢ is a prime, when (g, p) = 1, we have

p o k §
Pl = 5 S ) = 5 ?(?’k) )’ ()

dlg*1

If (¢°1,7) = ¢, 0 < B < ai, then

B i B+1
F(qcu’,r,) — Z¢(Q) (1)+¢(q + )U(Q)
=0

If (¢**,r) = g™, then F(g®,7) = 3401 #(d1) = ¢**. When g = p,

8. ¢(d) ~p(d)) _
F(p”,r) % ¢(h(d)p—1’(d))“(h(d)p ) (?pg¢(d) p.

Therefore, if z = pPpdt ... py* is the canonical prime factorization, then we have

F(:C,’r‘) = F(pﬁ,'I‘)F(p?l,’r)---F(pgk,’r)

_ [ Pt =, i p P g
0, otherwise.

This completes the proof of Theorem 2.
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