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Abstract: The robust stability of linear systems with unstructured, structured or non-linear pertur-
bations is investigated in a unifying framework. New sufficient conditions in terms of matrix Riccati
inequalities are obtained. Some previously known results are generalized.
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NOTATION

AT transpose of matrix A

A, Euclidean norm of matrix A=
om(A)

TH() |l oo H_, norm

1 identity matrix with appropriate
dimension

j the imaginary part, i.e. \/—1

RY2= /R positive definite matrix such that
R =(/R)?

X<Y (X<Y) Y — X is positive semi-definite (posi-
tive definite)

An(X) largest eigenvalue of symmetrical
matrix X

ou(A) largest singular value of matrix A

1 INTRODUCTION

Robust stability analysis and designs for dynamical sys-
tems with parameter uncertainty have attracted con-
siderable attention since the publication of Kharitonov’s
celebrated theorem [1] on the robust stability of a poly-
nomial with interval parameter uncertainty. Siljak [2]
and Mansour [3] have presented good surveys on param-
eter space methods for robust stability analysis of con-
tinuous state space models and Jury [4] has investigated
the generalization of continuous-time robust stability
results to discrete-time systems. The books by Mansour
et al. [5] and by Dorato and Yedavalli [6] are collections
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of papers which represent recent developments in this
area. There is a great deal of literature on the robust
stability of polynomials with uncertain parameters, but
comparatively little attention has been paid to the robust
stability of state space models. The stability radius con-
cept has been used to study the robustness of stability
of state space models with unstructured uncertainty (see
reference [7] and the references therein). When state
space models have structured uncertainty, the stability
radius concept may be too conservative and other stab-
ility robustness measures may be more suitable. Fang
et al. [8-10] used a matrix measure to study the stability
of linear systems with convex perturbations and
obtained upper bounds for perturbations with which the
system is still stable. A very general approach to solving
such problems is Lyapunov’s second method. The idea
is to use a nominal system to construct a Lyapunov
function and then to apply this Lyapunov function to
study the stability of the uncertain system. Patel and
Toda [11] used this approach to study the stability of
linear systems with unstructured perturbation and
obtained the upper Euclidean bound of the perturbation.
Yedavalli [12] obtained an upper bound for the interval
perturbation for robust stability using this approach.
Zhou and Khargonekar [13] studied the robust stability
of systems with perturbation in the form of a linear com-
bination of a finite number of matrices and improved
Yedavalli’s result. Yedavalli and Liang [14] used a state
space transformation before applying Yedavalli’s results
in reference [12] to reduce the conservatism. Yedavalli
[15] has summarized some recent results in this area.
Recently, Fang and Loparo [16] have applied
Lyapunov’s second method and optimization techniques
to improve many previously known results and many
new results have been obtained.
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In the present paper another Lyapunov function is
used for systems with structured (or unstructured) and
non-linear perturbations. From this, some new robust
stability results are obtained which are expressed in
terms of matrix Riccati inequalities.

2 PRELIMINARIES

Matrix A is said to be stable if all eigenvalues of A have
negative real parts. For a transfer matrix H(s) the H,,
norm is defined as the upper bound of the largest singu-
lar value of H(jw) over [0, +0), i.e. the upper bound
of the largest singular value of the transfer matrix over
the imaginary axis (see reference [17]).

The following two lemmas will be used below.

Lemma 1[17, 18]

Given a scalar y >0, the following statements are
equivalent:

1. A'is stable and
IC(sT—A)"'B],, <y

2. There exists a positive definite matrix P such that
ATP + PA +y ~2PBBP + CTC < ()

It is also easy to show the following result.

Theorem 1

Lemma 2

For any matrices X and Y and any positive definite
matrix R,

XY™+ YXT < XR !XT + YRYT

3 MAIN RESULTS

Consider the following non-linear system:
2O =Ax()+ ), gilx(1), 1]
i=1
& x(0), delx(0), 1< (OWix(r), i= 1L,2,....m
(1)

where W, (i=1,2,..., m) are positive semi-definite
matrices. Below it will be assumed that the non-linear
perturbation class is one of the non-linear functions
satisfying the inequality constraint and guaranteeing the
existence and uniqueness of the corresponding non-
linear systems.

Definition

The non-linear system (1) is said to be robustly stable if
for any non-linear functions satisfying the constraints
in (1) it is asymptotically stable.

For system (1) the following result was obtained.

System (1) is robustly stable if there exist positive numbers A15 A2, ..., A, such that the matrix Riccati inequality

A"P + PA + (2 A{1>P2+ Y AW, <0
i=1

i=1

has a positive definite solution P > 0,

Proof

Consider the following Lyapunov function candidate:

(2)

Vix(@), 1] = x"(t)Px(1) + illf T ()Wix(s) — gl [x(5), s1gix(s), ]} ds

i=1

Then

m T
Vix(0), 1] = {Ax(t) + Y &lx(), l]} Px(1)
i=1

+xT())P {Ax(r)+ S gilx(), z]} + 3 A OWa) — 3 4gT 1), (o). 1
i=1 i=1 i=1

=xT(z) {ATP+PA + i AW, + i A;IxT(z)PZ} x(1)
i=1 i=1

4

+ i {—ifle(t)sz(t)+g,-T[X(t), APx(1) + x"(1)Pgi[x(1), 1] — Aigl[x(2), f]gi[x(2), t]}
i=1
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=xT(?) [ATP +PA + i AW, + < i li_l) P2:| x(1)
i=1

i=1

- f {gi[x(t), t]\/li—\/(li‘l)Px(t)} {gi[x(t), t]\//li—\/(lfl)Px(t)}
i=1

<x'(1) [ATP +PA + ‘2 AW, + ( i /1;1> Pz] x(t)

i=1

from which it can be seen that V[x(z), ] <0 for any x() # 0. From the Lyapunov theory it is established that system

(1) is robustly stable, which completes the proof.

This theorem can be used to obtain many simple criteria for robust stability.

Corollary 1
The system
X0)=Ax()+ ), &lx(0), 1]

i=1
| gilx(0), Al <Bilx(®) 2,
is robustly stable if
m 1
2P @
where ATP + PA = —L

i=1,2,....m

Proof

For the given P, the matrix Riccati inequality becomes
I+ < Y /1;1>P2+ Y ABH<0
i=1 i=1

which is equivalent to
-1+ < Y A;1>/1§4(P)+ Y ABE<0
i=1 i=1

Choosing 4; = Ay(P)/B;, it is possible to obtain

m

2. Bi<1/[2Ay(P)]

i=1
This completes the proof using Theorem 1.

When m =1, Corollary 1 is reduced to the following
result, which is obtained in [11] using a different
approach. Pandolfi and Zwart [19] showed that this is
also valid for linear distributed parameter systems.

Corollary 2
Consider the system

() =[A+AA@Dx(@),  [AA(D)|.<a
This system is robustly stable if

1
2Au(P)
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a<

where P is the positive definite solution of the Lyapunov
equation ATP + PA = —1.

A similar argument as in the proof of Corollary 1,
where A;=Au(P)/\/[Ax(W,)], leads to the following
result.

Corollary 3

System (1) is robustly stable if there exists a positive
definite matrix Q such that

An(Q)
22 (P)

5 (W] < (3)
i=1

where P is the positive definite solution of the Lyapunov
equation

AP+PA=-Q

Moreover, the best bound in (3) can be achieved when

Q=L

Combining Lemma 2 and Theorem 1, the following
corollary is obtained.

Corollary 4

The system

x(t) = <A + 'i Bi> x() + i gi[x(2), 1]

i=1
& lx(), gilx(n), 1< xT(OWix(t),  i=1,2,...,m
is robustly stable if there exist positive numbers

A, A2, ..., A, and  positive  definite  matrices
R, R,, ..., R, such that the matrix inequality

14 m
AP +PA + Y PBR;'BIP+ ( y A;l) p2
i i=1

i=1

m p
+ Z/LW1+ ZR,<0
i=1 i=1

has a positive definite solution P > 0.
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Proof
From Theorem 1, the system is robustly stable if

p
ATP+PA+ Y

i=1

(PB, + BTP) + ( y ,1;1> p2
i=1

+ Y LW, <0

i=1
Applying Lemma 2, the proof can be completed.

Next a study is made of the robust stability of linear
systems with structured perturbation:

x(t)= <A + i k,.Bi> x(t)+ il gilx(@®), 1] @
i=1 i=

g’ir(x’ t)g(x’ t) S xTWix

where k & (ky, ks, ..., k,,) denotes the structured uncer-
tainty. This system was studied in reference [6] with no
non-linear terms. Similar results are obtained from
Theorem 1 for system (4).

Theorem 2

Let P denote the positive definite solution of the
Lyapunov equation ATP + PA = —Q, and let

Pi=BzTP+PBi’ Pe=[P1P2"'Pm]
i=1,2,....m

System (4) is robustly stable if there exist positive num-
bers 4, 4,, ..., 4, such that one of the following con-
ditions holds:

AnlQ — (B 47 )P? — =P 4, W]

3 k< 5
121 ou(P,) %)
m A — (B ATHP2 =3P AW,
Z |kl| < m[Q ( i=1 ) 1 ] (6)
i=1 max; <;<m Om(P;)
A — (AT HP2 3P AW,
lkll < m[Q ( 1~—'1n i ) i=17% z] (7)
2L op(P)
Proof of condition (5)
For system (4), the matrix inequality (2) becomes
m m )4
i=1 i=1 i=1

Since
Y kiP=[k L k0 k, I][PTPI--- PT]T
i=1

it follows that
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ool
i=1

Sou(lkLkoI - kI ow([PT P - - PL]T)

: \/ (z k%) ou(P,)

Taking this into inequality (8), condition (5) guaran-
tees (8).

Proof of condition (6)

A’M < Z kiPi> <

i=1

Since

Y kP
i=1

by taking this into inequality (8) it is possible to obtain
condition (6).

< z |kl ”Pi”2<<z Iki|> max oy (P;)
2 =1 i=1

1<ism

Proof of condition (7)
Since
i=1

by taking this into inequality (8) it is possible to obtain
condition (7). This completes the proof.

<3 lIPl,< max um[i ai(Pi)}
2 i=1 i

<is<m i=1

Choosing specific values of A;, many sufficient con-
ditions for robust stability criteria can be obtained. The
following is one of them, where 4; = Ay (P)/\/[Ay(W,)].

Corollary 5

As in Theorem 2, system (4) is robustly stable if one of
the following conditions holds:

mo oy Bw(Q) = 2{Z AW Ay (P))?
£ <O g
e Am(Q) —2{ZF_ \/[/‘LM(Wi)]}/lM(P)
121 el < max; <;<m, om(P;) (10)
Am(Q) = 2{ZF_; /A (W)} Ay (P)
il < 2t om(Py) ah
Remark

With no non-linear perturbation, condition (9) with
Q =1 is obtained by Zhou and Khargonekar [13]. The
results here can be further improved from inequality (8)
by the technique given in reference [16], but this will be
left to the reader.

Finally, a study is made of the robust stability of linear
systems with unstructured perturbation. Consider

x(t) = <A + i AB,.> x(1) + i g:[x(0), 1] (12a)

i=1 i=1
ABABI <Q;,  gl(x, )gi(x, 1) <x"Wx (12b)
For this system the following result is obtained.
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Theorem 3

System (12) is robustly stable if one of the following
conditions holds:

1. There exist positive numbers r{, 7y, ..., 'm,
A1, 44, ..., A, such that the matrix inequality

ATP+PA+P<

P m
AT+ Y ri_lﬂi)P
= i=1

i=1

+f/1iwi+<iri>1<o (13)

i=1 i=1

has a positive definite solution P > 0.
2. There exists a positive definite matrix Q such that

S V(PP + 3 2u(P) i W] < 34,(Q)

i=1
where P is the positive definite solution of
AP +PA=—-Q.
3. A is stable and there exist positive numbers

Fis¥2ys ooy Py A1y Agy ...y A, such that

[CT(sI—A) "B, <1

where

)4
BB =) r71Q,+ Y A7

1 i=1

p m
CTC= Zﬂ.lwl+<z ri>I
i i=1

i=1

IF

13

Proof of condition 1

From Corollary 3, system (12) is asymptotically stable
if there exist positive numbers ry, 5, ..., Fpy A1, A2, .. u 4,
such that the matrix inequality

m p
ATP +PA +P ( y r;lABiAB;f> P+ ( Y /1;1> P2
i=1

i=1

p ‘ m
+ ) l,-Wi—l-(Z ri>I<0
i=1 i=1

Applying (12b), condition 1 is obtained.

Proof of condition 2

Let P be the positive definite solution of ATP +PA =
—Q. The matrix inequality in condition 1 can be guaran-
teed if

Q)+ Y (PR + Y, it Y AT R (P)

i=1 i=1 i=1

+ ) Au(W) <0
i=1
Choosing r; = \/[Ay(PR;P)] and A; = Ay(P)//[An(W))],
condition 2 can be obtained.
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Proof of condition 3

This is straightforward from condition 1 and Lemma 1.

4 ILLUSTRATIVE EXAMPLES

The two examples presented in this section will show
how to use the test criteria developed in this paper.

Example 1

Consider the system
x(t) = (A + kB)x(1) + f[x(1), 1]
I fTx(0), Al <Bllx@)]2,

where

A -3 1 B 0.5 0
=1 —35) 075 1

The Lyapunov equation PA + ATP = —1I has the positive
definite solution

_ 0.1641 0.0078

~\0.0078 0.1016

14
k| <a (14)

From Corollary 5,

1—28Au(P)  1-0338
ou(PB+B™P)  0.2784

which can be guaranteed if 0.27840 + 0.338<1.
Therefore, if 0.2784a +0.336<1, system (14) is
robustly stable.

Figure 1 shows the trajectory of the system for =0
with k varying from —3.5 to 3.6. From the above dis-
cussion, the stability range obtained is |k| < 1/0.2784 =
3.592. This is also shown in Fig. 1: when |k| < 3.5, the
system 1is indeed robustly stable. However, for k = 3.6,
the trajectory diverges and hence the system is not
asymptotically stable. The upper bound obtained for
robust stability is indeed a very good estimate.

|kl <

Example 2

Consider the system

(1) = (A + AB)x(¢) + f[x(2), {]

2
ABABT < (O(‘)l 0 )

a3

S, O S, 1) < <‘f g)

where

A

Il
VRS
_ |

[\
I o
w
N~
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‘Trajectory for the first component

1 \ T T T T T T T T

k=3.6

0.8\ 4

0.7H\ : J

k=3.5

0.2 k=3.0 4

k=2.5
0.1 4

Trajectory for the second component

1.4 T T T T T T T T T

Fig. 1 State trajectories for various values of uncertainty parameter k

From ATP +PA = —1, where
b (0.2667 0.0333) o <a§ 0)
0.0333 0.1667 0 a2
and hence from Theorem 3, condition 2, Since Ay (RP?) < tr(QP?), by taking this into inequality
VIAm(S@P?)] + max(By, f,)n(P) <3 (15) (15) it can be concluded that if

Proc Instn Mech Engrs Vol 212 Part I 105096 © IMechE 1998
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(0.0722a2 +0.0289a2) + 0.2768 max(f;, ) <0.5

the system is robustly stable. If 1 (2P?) < Ay (2)Ay(P?)
is used, it is found that if

0.5 0.5

max(a,, a,)+max(f;, 8,) < T (P) ~0.2768

= 1.8064

the system is robustly stable.
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