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Abstract—Cognitive radio (CR) technology, which enables
unlicensed secondary users to opportunistically access the unused
licensed spectrum, has attracted more and more attention from
both academia and industry due to its potential to significantly
improve the spectrum utilization. Considering both temporal and
spatial variations of spectrum availability, this paper focuses
on improving the energy efficiency in cognitive radio networks
by opportunistically serving the delay-tolerant data only when
enough spectrum is available. Based on this idea, a stochastic
optimization problem is formulated to integrate the power con-
trol, link scheduling, and routing, which minimizes the expected
power consumption while guaranteeing the system stability. To
obtain the solution, we use the Lyapunov optimization technique
and design an online algorithm, which solves a sub-problem
without future knowledge of the related stochastic models (e.g.,
random data arrival and spectrum supply). Besides, in view of
the NP-hardness of the sub-problem, we also develop a heuristic
algorithm based on branch-and-bound framework to obtain the
approximate solution with low computing complexity. Theoretical
analysis shows that our algorithm offers an explicit tradeoff
between energy consumption and delay performance. Numerical
results also confirm the effectiveness of our solutions.

Index Terms—Cognitive radio, energy consumption, cross-
layer scheduling, time varying spectrum supply, stochastic op-
timization.

I. INTRODUCTION

THE rapid growth in popularity of wireless devices, such
as smartphones and tablets, and the surge of various

mobile applications, such as online social networking and
mobile gaming, have resulted in recent booming of data
services. The ever growing data services directly lead to the
exponential increase in data traffic and the increasing demand
for spectrum resource in wireless networks. In parallel with
that, recent studies [1], [2] show that even in the most crowed
region of big cities (e.g., Washington, Chicago, New York
City, etc.), many licensed spectrum blocks are not efficiently
utilized in certain geographical areas and are idle most of
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the time, mainly due to the static spectrum allocation regu-
lation of Federal Communications Commission (FCC). Such
circumstances motivate FCC to open up the licensed spectrum
bands and search for new innovative technologies to encourage
dynamic use of the under-utilized spectrum. As one of the most
promising solutions, cognitive radio (CR) technique enables
unlicensed secondary users (SUs) to opportunistically access
vacant licensed spectrum as long as it does not disrupt to
the quality of service of licensed spectrum holder, which can
significantly improve the utilization of spectrum resource.

Another direct result of the ever growing data traffic is
the increase of the associated energy consumption in wire-
less networks. For example, telecommunication data volume
increases approximately by an order of 10 every 5 years, which
causes an increase of the associated energy consumption by
approximately 16-20 percent per annum [3]. On the one hand,
many types of multi-hop wireless networks (e.g., ad hoc net-
works and sensor networks) are battery-powered and are thus
constrained with energy at each node. On the other hand, the
sharp rise in energy cost and carbon dioxide (CO2) emission
of information and communications technology (ICT) is more
and more obvious. Therefore, optimizing the energy efficiency
of wireless communications is increasingly urgent and impor-
tant since it can not only reduce environmental impact, but also
reduce overall network costs to make communication more
practical and affordable.

In this paper, we focus on the energy-efficient communi-
cations in cognitive radio networks (CRNs). Specifically, we
develop an energy-aware cross-layer scheduling strategy to
minimize the energy consumption in CRNs. In the literature,
some research works [4]–[14] have explored energy-efficient
communications over traditional wireless networks. However,
none of them considers the uncertain spectrum supply, which
is one salient feature of CRNs. In CRNs, since SUs must
evacuate licensed bands whenever primary services are active,
it is much more challenging to perform power allocation, link
scheduling, and routing than in traditional wireless networks.
Considering the spatial uncertainty of spectrum availability in
CRNs, some efforts [15]–[22] have been devoted to cross-layer
design for maximizing network throughput or minimizing the
usage of licensed spectrum. However, none of them focus
on energy efficiency in CRNs. Recently, Li et al. [23] has
investigated the minimum energy consumption problem by
exploring joint frequency allocation, link scheduling, rout-
ing, and transmission power control for multi-hop CRNs.
This approach is referred to as the traditional static real-
time transmission strategy in this paper since it collects the
available spectrum and data arrival information, solves the
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optimization problem, and then immediately transmits all the
data from the source to the destination. Note that in CRNs,
the spectrum availability is time-varying due to the activity
of primary users (PUs), which is ignored in the literature
[23]. Besides, in practice, most of the services, such as video
streaming, are delay-tolerant. Therefore, based on the Shannon
capacity theorem, we can further reduce the network energy
consumption through scheduling the transmission of delay-
tolerant traffic when the network nodes have more available
spectrum bands. It means that the traditional static real-time
transmission strategy may not be optimal any more after we
consider the time dimension.

In this paper, we develop a dynamic energy-aware schedul-
ing strategy by considering both temporal and spatial un-
certainty of spectrum availability in CRNs. In view of the
randomness in data arrival and spectrum supply, a stochastic
optimization problem that minimizes the time-average expect-
ed energy consumption while stabilizing the network is for-
mulated. Based on the Lyapunov optimization technique [24]–
[27], we design an online algorithm to obtain the solution. Our
contributions are summarized as follows:

• We study the average energy expenditure minimization
problem by considering both temporal and spatial spec-
trum features in multi-hop CRNs. Specifically, we pro-
pose to reduce the network energy consumption through
scheduling the transmission of delay-tolerant traffic when
the network nodes have more available spectrum re-
sources.

• Mathematically, a cross-layer stochastic optimization
framework is formulated, which jointly considers power
allocation at physical layer, link scheduling at link layer,
and flow routing at network layer. Based on Lyapunov
optimization technique, we develop an energy-efficient
scheduling algorithm that solves a sub-problem without
future spectrum supply information. Besides, in view
of the NP-hardness of the sub-problem, we develop
an algorithm based on branch-and-bound framework to
obtain the approximate solution.

• Through theoretical analysis and simulation results, we
show that our algorithm can not only stabilize the system,
but also offer an explicit tradeoff between the energy
consumption and delay performance. Furthermore, nu-
merical results show that our algorithm outperforms the
traditional static real-time algorithm in terms of energy
efficiency.

The rest of this paper is organized as follows. The related
work is reviewed in Section 2. In Section 3, we describe
the system model in detail and mathematically formulate our
problem. In Section 4, we design an energy-efficient schedul-
ing strategy based on Lyapunov optimization technique. We
describe an approximate algorithm based on branch-and-bound
to the sub-problem at each time slot in Section 5. We conduct
simulations and evaluate the performance of our proposed
algorithms in Section 6. Finally, we draw the concluding
remarks in Section 7.

II. RELATED WORK

Recently, CRs have drawn intensive attention due to the
potential to significantly improve the spectrum efficiency [30]–
[36]. However, one key obstacle to the deployment of CRNs
lies in the uncertainty of spectrum supply. Since SUs must
evacuate the licensed bands whenever primary services be-
come active, the return of primary services has significant
impact on how to perform opportunistic spectrum accessing,
scheduling and interference avoidance, and routing in multi-
hop CRNs. To overcome this obstacle, some efforts have been
made to cross-layer optimization in CRNs by considering the
uncertainty of spectrum availability. Tang et al. [15] studied the
joint spectrum allocation and link scheduling problems with
the objectives of maximizing throughput and achieving certain
fairness in CRNs. Michelusi and Mitra [16] proposed a cross-
layer framework to jointly optimize spectrum sensing and
access in agile wireless networks, in which, sensing and access
are jointly controlled to maximize the SU throughput, with
constraints on PU throughput degradation and SU cost. Hou
et al. [17], [18] investigated the joint power control, frequency
scheduling and routing problem in order to minimize the
network-wide spectrum resource and presented a centralized
algorithm for spectrum sharing in CRNs. In their following
work, Shi and Hou [19] also provided a distributed approach to
the same problem. Considering the uncertain spectrum supply,
Pan et al. [20]–[22] modeled the vacancy of licensed bands as a
series of random variables and minimized the usage of licensed
spectrum to support CR sessions with rate requirements at
certain confidence levels.

On the other hand, in view of the importance of energy
saving, many research works have been constructed to min-
imize energy consumption in traditional wireless networks
while meeting certain service requirements at different layers
of protocol stack, e.g., energy-efficient scheduling and MAC
schemes [4], [5], Energy harvesting relay and power allocation
[6], and energy-efficient routing protocols [7]–[9]. All of
these efforts only focus on single layer optimization. As we
know, power control has a profound impact on interference
among nodes and on scheduling. Moreover, power control and
scheduling determine link capacities, which, in turn, affect
routing. Thus, a network problem is inherently cross-layer
in nature and calls for joint consideration of power control,
scheduling, and routing. Based on this observation, Cruz and
Santhanam [10], Bhatia and Kodialam [11] studied the joint
routing, scheduling and power control problem for power
efficient communications over multi-hop wireless networks.
Meanwhile, Oh et al. proposed a distributed algorithm for BS
switching on/off by considering network impact, which is an
effect caused by turning off a BS. To overcome the centralized
computation burden in the literatures [10] and [11], Lin et al.
[12] designed a distributed algorithm with low computational
complexity. By considering dynamic spectrum and renewable
energy resource availability, Liao et al. [13] formulated both
offline and online energy cost minimization problems and gave
the corresponding control algorithms.

In the literature, some research efforts have also been devot-
ed to energy-efficient communications in CRNs. In [28], Jiang
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et al. propose several energy-efficient solutions to spectrum
sensing, spectrum sharing, and secondary network deployment
in non-cooperative CRNs. Li et al. [23] has investigated the
minimum energy consumption problem with joint consider-
ation of frequency allocation, link scheduling, routing, and
transmission power control in multi-hop CRNs. Bayhan and
Alagoz in [29] has also studied energy efficient scheduling
in centralized cognitive radio networks. Different from the
existing works, we use the harvested spectrum to serve delay-
tolerant traffic and reduce the network power consumption by
considering both temporal and spatial variations of spectrum
availability in multi-hop CRNs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Architecture and Motivation

The potential to significantly improve the utilization of
spectrum resource has prompted a few interesting research
problems on the implementation of CRs in both ad hoc
networks and cellular networks [30]–[36]. Unfortunately, all of
these existing works commonly assume that SUs have already
been equipped with CRs, which can explore licensed spectrum
bands, reconfigure RF, switch frequency across a wide range
of spectrum (e.g., from 20 MHz to 2.5 GHz [37]), and
exchange packets over non-contiguous spectrum bands. This
may be possible in theory, but in practice currently it is very
difficult to implement such high cognitive capability in light-
weight radios in mobile devices such as cell phones. Besides,
the cognitive functionalities may significantly increase energy
consumption, which is also undesirable for energy-constrained
mobile devices.

Based on the above observations, we have designed a new
architecture for CRNs in the literatures [20] and [38], called
cognitive capacity harvesting (CCH) networks. As shown in
Fig. 1, a CCH consists of three types of entities: Second Ser-
vice Provider (SSP), Secondary Users (SUs) and static Relay
Stations (RSs). The SSP is an independent service provider
with its own basic spectrum bands. It can also harvest/purchase
some vacant licensed spectrum, such as TV white spaces, from
other license holders and then allocate all the available spec-
trum resources to the CCH network for enhancing its services
for SUs. A SU can be any traditional device with existing
accessing technologies (e.g., laptops or desktop computers
using Wi-Fi, cell phones using GSM/GPRS, smart phones
using 3G/4G/LTE, etc.) or CR device using CR technology. To
facilitate the access of SUs with or without cognitive capabili-
ty, the SSP deploys a collection of RSs equipped with multiple
cognitive radios, which form the basic infrastructure and can
tune to any basic band or harvested band for communications.
If a SU has cognitive capability, it can communicate with
RSs over both basic bands and harvested bands. Otherwise,
they communicate over the basic band. Some basic bands are
reserved to establish the common control channels, through
which important signaling information can be exchanged.

Since most of energy in CCH is consumed by the RSs,
in this paper, we focus on developing a dynamic cross-
layer scheduling strategy to minimize the time-average power
expenditure of RSs in CCH. Considering the time-varying

spectrum supply feature and the delay-tolerant traffic, the tra-
ditional static real-time transmission strategy (refer to Section
I, i.e., collect the available spectrum and data arrival infor-
mation, then immediately transmit all the arrival data from
source to destination with the minimum energy consumption)
may not be optimal, which motivates us to design a dynamic
scheduling strategy. Here, we give a simple example to show
the superiority of dynamic scheduling strategy to traditional
static real-time transmission strategy. As illustrated by Fig.
2, we consider a time-slotted system where node A transmits
data to node B. To simplify the analysis, we only focus on two
slots. Assume that the data arrives at time slot t1 and slot t2
are 3 units and 1 unit, respectively. The number of harvested
spectrum bands, whose bandwidth is equal to 1 unit, are 1 and
3 at slot t1 and slot t2, respectively. For illustration purpose,
we use Shannon capacity C = W log(1 + hP

ηW ), where W
is the bandwidth, h is the channel state, P is the allocated
power and η is the noise power density. Without loss of
generality, we assume h = 1 and η = 1. Under the traditional
static real-time transmission strategy, node A will transmit 3
units data to node B over 1 available spectrum band at time
slot t1, thus the power consumption is P1 = 23/1 − 1 = 7
units. Similarly, node A will transmit 1 unit data to node
B with 3 available spectrum bands at time slot t2, thus the
power consumption is P2 = 3 × (21/3 − 1) = 0.7798 units.
We can easily obtain the average power consumption of the
traditional static real-time strategy is 3.8899 units. However,
as a comparison, if node A does not transmit any data at time
slot t1 and transmits all the data at time slot t2, we have P1 = 0
unit and P2 = 3× (24/3 − 1) = 4.5595 units. In this case, the
average power consumption is 2.2797 units, which is much
lower than that for the traditional static real-time strategy.
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Fig. 2. The single link communication scenario.

B. Mathematical Modeling

In this subsection, we present our mathematical model for a
more general case. Consider a typical CCH network consisting
of an SSP, a group of RSs and SUs, and a set of spectrum
bands (including basic bands and harvested bands) as shown
in Fig. 1 [20], [38]. Let N and B denote the set of RSs and the
set of spectrum bands in the network, respectively. We assume
that the total number of RSs is |N | = N and the bandwidth
of each frequency band m ∈ B is Wm.

The entire system operates in a time-slotted fashion. To
avoid causing serious interference to any PU, all RSs adopt
the overlay spectrum sharing approach, which leads to the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCCN.2016.2614838

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

SSP

Accessing Technologies

GSM/GPRS

3G/4G/LTE

WiFi
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Spectrum Harvesting

Spectrum Sharing

Relay Station

Fig. 1. System architecture of CCH

temporal and spatial uncertainty of the spectrum availability
in CCH. At time slot t, each RS i senses the spectrum and
finds a set of available frequency bands Mi(t) ⊆ B. The
band availability state Mi(t) evolves over time according to
the activity of PUs, thus may not be the same at different
RSs and at different time slots. This is the biggest different
characteristic of cognitive multi-hop wireless networks from
traditional multi-hop networks. It is the time-varying spectrum
supply feature that provides the dynamic scheduling strategy
with energy saving possibility. It should be noted that better
sensing techniques employed, the smaller interference that
can be potentially generated to PUs. We assume that sensing
techniques of deployed static RSs is good enough in this paper.

We consider the following power propagation model [38]:

Pr = γ · d−n · Pt, (1)

where Pt is the transmission power at the sender, Pr is the
received power at the receiver, γ is an antenna related constant,
n is the path loss factor, and d is the distance between the
sender and receiver. We assume the data transmission over a
link is successful if and only if the received power exceeds
the sensitivity α1. Then according to (1), the maximum
transmission range Rmax

T = (γPmax/α1)
1/n for a RS when

it uses the maximum transmission power Pmax. Besides, we
use the primary interference model, that is, the interference is
intolerable if and only if it exceeds a toleration threshold, say
α2 at a receiver. Similarly, we have the maximum interference
range Rmax

I = (γPmax/α2)
1/n. Obviously, α2 < α1.

Transmission Constraints. Based on the definition of
transmission range, the set of RSs that can transmit to RS i on
band m ∈ Mi(t) at time slot t with maximum transmission
power is

T m
i (t) = {j|dij ≤ Rmax

T , j ∈ N\{i},m ∈ Mj(t)}, (2)

where dij is the distance between RSs i and j. Note that T m
i (t)

is also the set of RSs to which RS i can transmit. Similarly,
based on the definition of interference range, the set of RSs
that can interfere with RS i on band m ∈ Mi(t) at time slot
t with maximum transmission power is

Im
i (t) = {j|dij ≤ Rmax

I , j ∈ N ,m ∈ Mj(t)}. (3)

Note that Im
i (t) is also the set of RSs with which RS i can

interfere.
We denote

xmij (t) =

 1
If RS i transmits data to RS j
on band m at time slot t,

0 otherwise.
(4)

Since one RS i can use a band m ∈ Mi(t) for transmission
to only one RS at any time, we have∑

j∈T m
i (t)

xmij (t) ≤ 1. (5)

In order to achieve successful transmission from RS i to RS
j on band m, the following power allocation constraints must
be satisfied for the transmission link i → j and interfering
link k → h, where k ∈ Im

j (t), k ̸= i, and h ∈ T m
k (t).

If xmij (t) = 1, we have pmij (t) ∈ [(
dij

Rmax
T

)
n
Pmax, Pmax]

and pmkh(t) ≤ (
dkj

Rmax
I

)
n
Pmax, where (

dij

Rmax
T

)
n
Pmax is the

minimum transmission power to ensure the received power
exceeds α1, and (

dkj

Rmax
I

)
n
Pmax is the maximum transmission

power to avoid interrupting transmission from RS i to RS j,
which can be derived from (1); Otherwise, pmij (t) = 0 and
pmkh(t) ≤ Pmax. These constraints can be re-written as:

(
dij
Rmax

T

)nPmaxx
m
ij (t) ≤ pmij (t) ≤ Pmaxx

m
ij (t), (6)
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pmkh(t) ≤ Pmax − [1− (
dkj
Rmax

I

)n]Pmaxx
m
ij (t). (7)

In addition, for successful scheduling and transmission,
the following two constraints must also hold: 1) RS i can-
not transmit and receive simultaneously over the same band
m ∈ Mi(t); 2) Similar to (5), RS i cannot use the same band
m ∈ Mi(t) to receive data from two different RSs at the same
time. Interestingly, it turns out that the above two constraints
are mathematically embedded in (6) and (7) as shown in [18].

Flow Routing and Link Capacity Constraints. We define
the arrival processes in terms of the source and destination of
data flow: Ac

i (t) is the amount of data exogenously arriving
at RS i and destined for RS c at time slot t. For simplicity
of explanation, we assume the arrival matrix A(t) (N × N
matrix, its element is Ac

i (t)) are i.i.d. over time with arrival
rate E{A(t)} = λ. (λ is N ×N matrix, its element is λci =
E{Ac

i (t)}.) All data transmitted from any source to a particular
RS c ∈ N is defined as commodity (or data item) c. Data is
stored at each RS according to its destination, and we let U c

i (t)
represent the current backlog of commodity c in RS i. The
resulting 1-step queuing equation for backlog U c

i (t) satisfies
(for c ̸= i)

U c
i (t+ 1) =max{U c

i (t)−
∑

j∈
∪

m∈Mi(t)

T m
i (t)

ucij(t), 0}

+
∑

j∈
∪

m∈Mi(t)

T m
i (t)

ucji(t) +Ac
i (t),

(8)

where ucij(t) is the commodity c routed from RS i to RS j
at time slot t. It must satisfy the link rate constraint which
depends on the available bandwidth

−→
M(t) (1×N vector, its

element is Mi(t)) and power allocation scheme p(t) (N ×
N × |B| matrix, its element is pmij (t)) as follows:∑
c∈N

ucij(t) ≤ uij(
−→
M(t),p(t))

=
∑

m∈Mi(t)∩Mj(t)

Wm log(1 +
γd−n

ij p
m
ij (t)

ηWm
),

(9)

where η is the noise power density. Besides, the commodity
c transmitted out from RS i cannot exceed its backlog∑

j∈
∪

m∈Mi(t)

T m
i (t)

ucij(t) ≤ U c
i (t).

(10)

To simplify the expression, we use Ici (u(t)) and Oc
i (u(t))

to represent the commodity c routed to and from RS i, which
can be expressed as:

Ici (u(t)) =
∑

j∈
∪

m∈Mi(t)

T m
i (t)

ucji(t),

Oc
i (u(t)) =

∑
j∈

∪
m∈Mi(t)

T m
i (t)

ucij(t),
(11)

where u(t) is an N ×N ×N matrix and its element is ucij(t).
Thus, Eq. (8) and Eq. (10) can be simplified as (12) and (13),
respectively:

U c
i (t+ 1) =max{U c

i (t)−Oc
i (u(t)), 0}+ Ici (u(t)) +Ac

i (t).
(12)

Oc
i (u(t)) ≤ U c

i (t). (13)

C. Problem Formulation

In view of the randomness in data arrival and spectrum
availability, we aim to develop a dynamic scheduling strategy
to minimize the average power consumption while stabilizing
the queues of the system, by jointly considering power control
p(t), link scheduling x(t) (N × N × |B| matrix, its element
is xmij (t)), and flow routing u(t). The average power con-

sumption can be expressed as lim
T→∞

1
T

T−1∑
t=0

E{f(p(t))}, where

the expectation is taken over the potential randomness of data
arrival, spectrum availability as well as scheduling decision.
Here,

f(p(t)) =
∑
i∈N

∑
m∈Mi(t)

∑
j∈T m

i (t)

pmij (t) (14)

is the total power consumption at time slot t.
To stabilize the system, we need to ensure the average

system backlog is finite [24], i.e.,

∑
i,c

U c
i

∆
= lim sup

T→∞

1

T

T−1∑
t=0

∑
i∈N

∑
c∈N

E{U c
i (t)} <∞. (15)

Thus, our problem can be formulated as follows:

minimize
p(t),x(t),u(t)

lim
T→∞

1
T

T−1∑
t=0

E{f(p(t))} (16)

subject to (4), (5), (6), (7), (9), (12), (13) and (15), which is
denoted as problem 0.

The major challenge to solve the above stochastic problem
lies in that future data arrival and available spectrum band are
uncertain. To overcome this challenge, we design a dynamic
scheduling algorithm based on the Lyapunov optimization
technique [24] in next section.

IV. OPTIMAL SCHEDULING ALGORITHM

A. Lyapunov Drift Analysis

We first establish the Lyapunov drift technique to ensure
the stability and performance optimization to be achieved
simultaneously. Let U(t) (N × N matrix, its element is
U c
i (t)) be the process of queue backlogs that evolves according

to a certain probability distribution. To measure aggregat-
ed network congestion, we define a Lyapunov function as
L(U(t)) =

∑
i∈N

∑
c∈N

[U c
i (t)]

2. In addition, we define the one-

step conditional Lyapunov drift ∆(U(t)) as:

∆(U(t)) = E{L(U(t+ 1))− L(U(t))|U(t)}, (17)
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where the expectation is taken over the potential randomness
of the available bandwidth

−→
M(t) and scheduling decision

during time slot t, given the current backlog matrix U(t).
The conditional Lyapunov drift has two features as shown
in Lemma 1 and Lemma 2, which can guide us to develop
our scheduling policy and analyze the system performance in
the subsequent. The results can be obtained following similar
techniques in [24].

Lemma 1. The conditional Lyapunov drift under any policy
satisfies:

∆(U(t)) + V E{f(p(t))|U(t)}

≤ CN2 + 2
∑
i∈N

∑
c∈N

U c
i (t)λ

c
i + E{V f(p(t))

−
∑
i∈N

∑
c∈N

2U c
i (t)(O

c
i (u(t))− Ici (u(t)))|U(t)},

(18)

where

C
∆
= (Amax + µin

max)
2 + (µout

max)
2,

Amax
∆
= max

i,c,t
E{Ac

i (t)},

µin
max

∆
= max

{i,c,t,p(t),x(t),
−→
M(t)}

Ici (u(t)),

µout
max

∆
= max

{i,c,t,p(t),x(t),
−→
M(t)}

Oc
i (u(t)).

(19)

Proof: By squaring both sides of (8), we can obtain the
following results:

[U c
i (t+ 1)]2 ≤ [U c

i (t)−Oc
i (u(t))]

2+

[Ici (u(t)) +Ac
i (t)]

2 + 2U c
i (t)[I

c
i (u(t)) +Ac

i (t)]

= [U c
i (t)]

2 + [Oc
i (u(t))]

2 − 2U c
i (t)O

c
i (u(t))

+ [Ici (u(t)) +Ac
i (t)]

2 + 2U c
i (t)[I

c
i (u(t)) +Ac

i (t)]

≤ [U c
i (t)]

2 + C + 2U c
i (t)A

c
i (t)− 2U c

i (t)[O
c
i (u(t))− Ici (u(t))].

(20)

Given the current backlog matrix U(t), taking an expec-
tation of (20) and summing over c, i ∈ N , we derive the
following results:

∆(U(t)) ≤ CN2 + 2
∑
i∈N

∑
c∈N

U c
i (t)λ

c
i

−
∑
i∈N

E{
∑
c∈N

2U c
i (t)(O

c
i (u(t))− Ici (u(t)))|U(t)}.

(21)

After adding V E{f(p(t))|U(t)} to both sides of the in-
equality, we prove Lemma 1. �

Lemma 2. (Lyapunov Drift with Performance Optimization)
If there exist positive constants V,B, ε, f∗, such that for all
time slots t and all matrices U(t), the one-step conditional
Lyapunov drift satisfies

∆(U(t)) + V E{f(p(t))|U(t)} ≤ B − 2ε
∑
i∈N

∑
c∈N

U c
i (t) + V f∗,

(22)

then the system is stable and the time average backlog satisfies∑
i,c

U c
i

∆
= lim sup

T→∞

1

T

T−1∑
t=0

∑
i∈N

∑
c∈N

E{U c
i (t)} ≤ B + V f∗

2ε
,

(23)
while the time average power consumption satisfies

f(p(t))
∆
= lim sup

T→∞

1

T

T−1∑
t=0

E{f(p(t))} ≤ f∗ +B/V. (24)

The proof is similar to that in [24] which is omitted here
for brevity.

B. Energy-Efficient Scheduling Algorithm

Based on Lemma 1, we now develop a practical scheduling
algorithm that stabilizes the system and consumes an aver-
age power consumption that is arbitrarily close to the min-
imum value f∗, (i.e., Energy-Efficient Scheduling Algorithm
(EESA)): At every time slot, each RS observes the current
level of queue backlog U(t), senses available spectrum bands−→M(t), and submits them to the SSP over the common control
channels. After that, the SSP determines the link scheduling
matrix x(t), power matrix p(t) and flow routing matrix u(t)
to minimize the right hand side of inequality (18) under
the constraints (4), (5), (6), (7), (9), (12) and (13). The
corresponding optimization problem can be expressed as:

minimize
p(t),x(t),u(t)

V f(p(t))−
∑
i∈N

∑
c∈N

2U c
i (t)(O

c
i (u(t))− Ici (u(t)))

(25)
subject to (4), (5), (6), (7), (9), (12) and (13), which is denoted
as problem 1.

In problem 1, V represents an arbitrary positive control
parameter. Here, V is a parameter like Lagrange multiplier and
affects a tradeoff between energy consumption and average
queueing delay as shown in next subsection. After problem 1 is
solved, the backlogs can be updated as Eq. (8). From problem
1, it can be observed that EESA does not need any knowledge
of future data arrival and available spectrum information.

C. Performance Analysis of EESA

In this subsection, we analyze the performance of EESA
based on the features of conditional Lyapunov drfit in Lemma
1 and Lemma 2. Before that, we first give the following
definition for network capacity region.

Definition 1. The network capacity region Λ is the closure
of the set of all rate matrices λ that can be stably supported
over the network, considering all possible algorithms (possibly
those with full knowledge events).

Theorem 1. If the rate matrix λ is interior to the network
capacity region Λ, and the data arrivals as well as available
band states are i.i.d. over time slots, then EESA (pEESA(t),
uEESA(t)) stabilizes the network and yields a time average
congestion bound as∑

i,c

U c
i
EESA ≤ CN2 + V f(Pmax)

2εmax
, (26)
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where Pmax is a constant matrix (each element is Pmax) and
εmax is the largest ε such that λ + ε1 ∈ Λ (1 is a N × N
matrix, its element is 1ci being an indicator function equal to
0 if U c

i (t)
∆
= 0, and 1 otherwise). Further, the time average

power consumption satisfies

f(pEESA(t))
∆
=

lim sup
T→∞

1

T

T−1∑
t=0

∑
i∈N

E{
∑

m∈Mi(t)

∑
j∈T m

i

pmij
EESA(t)}

≤ f∗ + CN2/V.

(27)

Proof: In [24], it is shown that if λ is interior to the network
capacity region Λ, i.e., there is an ε such that λ+ε1 ∈ Λ, and
the data arrivals as well as available band states are i.i.d. over
time slots, a stationary randomized policy (STAT) that takes
scheduling decisions pSTAT(t), xSTAT(t) and uSTAT(t) can
be developed to satisfy E{ucijSTAT (t)} = f cij , where the
variables f cij are the flows such that∑

j∈
∪

m∈Mi(t)

T m
i

f cij −
∑

j∈
∪

m∈Mi(t)

T m
i

f cji = λci + ε. (28)

Besides, the stationary policy also satisfies

E{f(pSTAT(t))} = f∗(ε), (29)

where f∗(ε) is the minimum cost for stabilizing rates λ+ ε1
and it satisfies f∗(ε) → f∗ as ε→ 0.

From (28), under this stationary policy we have∑
i∈N

E{
∑
c∈N

2U c
i (t)(O

c
i (u

STAT(t))− Ici (u
STAT(t)))|U(t)}

=
∑
i∈N

∑
c∈N

2U c
i (t)(λ

c
i + ε).

(30)

Based on Lemma 1 (step a), and the fact that EESA achieves
a smaller object value than any policy including STAT in
problem 1 (step b), we plug (29) as well as (30) (step c) and
obtain

∆(U(t)) + V E{f(pEESA(t))|U(t)}
(a)

≤ CN2 + 2
∑
i∈N

∑
c∈N

U c
i (t)λ

c
i + E{V f(pEESA(t))

−
∑
i∈N

∑
c∈N

2U c
i (t)(O

c
i (u

EESA(t))− Ici (u
EESA(t)))|U(t)}

(b)

≤ CN2 + 2
∑
i∈N

∑
c∈N

U c
i (t)λ

c
i + E{V f(pSTAT(t))

−
∑
i∈N

∑
c∈N

2U c
i (t)(O

c
i (u

STAT(t))− Ici (u
STAT(t)))|U(t)}

(c)

≤ CN2 −
∑
i∈N

∑
c∈N

2U c
i (t)ε+ V f∗(ε).

(31)

Thus, from Lemma 2, we attain the following results from
(31): ∑

i,c

U c
i
EESA ≤ CN2 + V f∗(ε)

2ε
, (32)

f(pEESA(t)) ≤ f∗(ε) + CN2/V. (33)

The performance bounds in (32) and (33) hold for any value
ε > 0 such that λ+ ε1 ∈ Λ. The particular choice of ε only
affects the bound calculation and does not affect the EESA
policy or change any sample path of system dynamics. We
can thus optimize the bounds in (32) and (33) separately over
all possible ε values. The bound in (33) is clearly minimized
by taking a limit as ε→ 0, yielding

f(pEESA(t)) ≤ f∗ + CN2/V. (34)

Conversely, the bound in (32) is minimized by considering
the largest feasible ε > 0 such that λ + ε1 ∈ Λ (defined as
εmax), yielding∑

i,c

U c
i
EESA ≤ CN2 + V f(Pmax)

2εmax
. (35)

This proves Theorem 1. �
Theorem 1 shows that in addition to stabilizing the system,

EESA can achieve the average power consumption deviated
no more than O(1/V ) from the optimal result where V is a
control parameter. Furthermore, (26) reveals that with a larger
V value, EESA will cause a longer queue length and thus
suffer larger delay. However, Inequality (27) shows that a
larger V value can narrow the gap between average power
consumption performance and the optimal value. Thus, V has
an influence on the tradeoff between the delay and energy
consumption performance.

V. APPROXIMATE ALGORITHM BASED ON
BRANCH-AND-BOUND FOR PROBLEM 1

The EESA proposed in the previous section involves solving
a sub-problem at every time slot, i.e., problem 1. Problem 1 is
in the form of mixed-integer non-linear program (MINLP),
which is NP-hard in general [39]. In this section, we de-
velop an approximate algorithm based on the branch-and-
bound framework [40] (ABB), to solve this problem with
low computing complexity. Moreover, we analyze the effect
of implementation of ABB at each time slot on the system
performance. In order to simplify the presentation, we omit
the script t in the rest of this section.

A. Algorithm Based on Branch-and-Bound

The challenges to solve problem 1 lie in the binary variables
x and the non-linear constraint (9), i.e., the log term. As far
as we know, the so-called branch-and-bound framework [40],
[41] is commonly used to solve this kind of problem [17].
The core idea of branch-and-bound are to progressively reduce
the searching space to finally determine the values for binary
variables and to reduce the computing complexity by relaxing
the non-linear term. Under this framework with some problem
specific components (e.g., linear relaxation technique, local
search algorithm and branching as we will show), we develop
an algorithm ABB to provide a θ-optimal solution, which is
formally defined as:

Definition 2. For a minimization problem, denote S∗ the
objective value of the optimal solution. A feasible solution
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with objective value S is called a θ-optimal solution if we
have S∗ ≥ S − θ, where θ ≥ 0.

Note that the above definition is different from that in [17]
which is in the form of S∗ ≥ θS. In the prior work, the
objective value is obviously positive, thus they can define
the θ-optimal solution as S∗ ≥ θS. With θ < 1, they can
ensure the existence of θ-optimal solution. However, using
the definition S∗ ≥ θS, it is hard to set the value of θ
for our problem since the objective value may be negative
or positive. For example, when the feasible solution and the
optimal solution are positive, we need to set θ ≤ 1 to ensure
that there exists a θ-optimal solution. Similarly, if the feasible
solution and the optimal solution are negative, then we need
to set θ ≥ 1 to ensure the existence of θ-optimal solution.
For problem 1, it is difficult to know whether the solution is
negative or positive, thus it is hard to set the θ value. With
Definition 2 which is more general, we do not have the above
problem and we can ensure the existence of θ-optimal solution
only if θ ≥ 0. Moreover, we can set θ = (1− θ1)S to achieve
S∗ ≥ θ1S as that in prior work.

Algorithm 1 shows the pseudocode of ABB. Initially, for
problem 1, we set its lower bound LB = −∞ and upper
bound UB = ∞. Using linear relaxation technique, we
obtain a relaxation problem for problem 1 which can be solved
in polynomial time. The solution of this relaxation problem,
which may not be feasible, provides a lower bound LB1 for
problem 1. Then, based on this relaxation solution, we use
a local search algorithm to find a feasible solution, which
provides an upper bound UB1 for problem 1. We update
UB = UB1 and LB = LB1. If LB ≥ UB−θ, we can easily
conclude that UB is a θ-optimal solution, i.e., we can stop with
UB. Otherwise, the θ-optimal solution has not been found and
we should narrow the gap between UB and LB with a tighter
relaxation. We use branching to reduce the feasible space of
problem 1 by fixing some x variables, which are called as
partition variables. In particular, we select a partition variable
xmij based on the solution of the relaxation problem and fix
xmij = 1 and 0 to split the whole feasible space into two
parts. After that, problem 1 is partitioned into two new sub-
problems (denoted as problem 2 and problem 3) with different
xmij values. Again, we perform linear relaxation technique
to get lower bounds LB2 and LB3 for problems 2 and 3,
respectively. Obviously, the relaxations in problems 2 and 3
are both tighter than that in problem 1 due to the fixed xmij ,
which leads to min{LB2, LB3} ≥ LB1. Thus, we can update
LB from LB1 to min{LB2, LB3}. We also perform the local
search algorithm to find feasible solutions that provide upper
bounds UB2 and UB3 for problems 2 and 3, respectively.
If min{UB2, UB3} ≤ UB1, we update UB from UB1 to
min{UB2, UB3}. As a result, we now have a smaller gap
between LB and UB. We test again and if LB ≥ UB−θ, we
stop with UB. Otherwise, we choose a problem and perform
branching in the same way. This process is repeated till
we find the θ-optimal solution. During this process, we cut
branches which do not affect the final result to accelerate
traversal. It should be noted that we can set θ = (1− θ1)UB
to achieve LB ≥ θ1UB as that in prior work. There are four

key problem specific components in ABB, which are described
and designed as follows:

Algorithm 1 Algorithm based on branch-and-bound
1: Initialize the solution ψθ = ∞, upper bound UB = ∞,

lower bound LB = −∞, and a problem list List = ∅.
2: Build a relaxation problem for problem 1 and obtain its

solution ψ̂1 with object value LB1 using linear relaxation
technique.

3: Insert problem 1 into List.
4: while List ̸= ∅ do
5: In List, select a problem z that has the minimum lower

bound (denoted as LBz). Remove problem z from List.
6: Update LB = LBz . If LB ≥ UB − θ, stop with ψθ.
7: Get a feasible solution ψz with object value UBz from

ψ̂z via local search algorithm.
8: if UBz < UB then
9: Update ψθ = ψz and UB = UBz . If LB ≥ UB−θ,

stop with ψθ.
10: end if
11: Branching: select a variable xmij with the largest relax-

ation error, and build two new sub-problems z1 and z2
by setting xmij = 1 and xmij = 0 respectively.

12: Obtain LBz1, ψ̂z1 and LBz2, ψ̂z2 for sub-problems z1
and z2 via linear relaxation technique, then insert sub-
problems z1 and z2 into List.

13: Cut Branches: remove all the problem z′ with LBz′ ≥
UB − θ from List.

14: end while

1) Linear Relaxation Technique. The goal of this linear
relaxation technique (see line 2 in Algorithm 1) is to cut down
the complexity of our original problem, which comes from
the binary variables x in (4) and the non-linear constraint
in (11). For the binary constraint (4), we relax the binary
requirement and replace it with 0 ≤ xmij ≤ 1. For the
log term in (9), similarly to [19], we introduce a variable
cmij = log(1 + γd−n

ij p
m
ij ) and try to get a linear relaxation

for y = log x over xL ≤ x ≤ xU which is the interval
we are concerned with. As shown in Fig. 3, the function
y = log x can be bounded by four segments, i.e., segments
I, II, III and IV. Segments I, II, and III are tangential lines
at (xL,log xL), (β,log β), and (xU ,log xU ) respectively, where
β = xL·xU ·(log xU−log xL)

(xU−xL) ln 2 is the horizontal location of the point
intersecting extended tangent segments I and III. Segment IV
is the chord that joins points (xL,log xL) and (xU ,log xU ).
These segments can be described by the following four linear
constraints:

xL

ln 2y − x ≤ xL

ln 2 (log xL − 1),
β

ln 2y − x ≤ β
ln 2 (log β − 1),

xU

ln 2y − x ≤ xU

ln 2 (log xU − 1),
(xU − xL)y + (log xL − log xU )x ≥ xU log xL − xL log xU .

(36)
As a result, the log term has been relaxed into linear con-
straints. Now, we can relax our original problem from MINLP
to a linear program (LP), which can be solved in polynomial
time and provides a lower bound for the objective function.
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Fig. 3. The linear relaxation for function y = log x.

2) Local Search Algorithm. Although the solution of a
relaxation problem z (denoted as ψ̂z) provides a lower bound,
it may not be feasible. The goal of local search algorithm (see
line 7 in Algorithm 1) is to obtain a feasible solution ψz from
ψ̂z , which provides a upper bound. We use the same routing
solution u to that in ψ̂z as the feasible solution ψz . Then we
try to determine the values for x and p in ψz such that (9)
holds for each link as shown in Algorithm 2: Initially, with
the fixed xmij in problem z, each pmij is set to the smallest
value in its value space, i.e., (pmij )L = 0 for unused bands and
(pmij )L = (

dij

Rmax
T

)
n
Pmax for active bands. Based on these pmij ,

we compute the capacity
∑

m∈Mi∩Mj

Wm log(1 + γd−n
ij p

m
ij )

and the requirement
∑
c∈N

ucij for each link. If there is no

link whose requirement is larger than its capacity, then the
feasible solution is found. Otherwise, we find a link and try
to satisfy (9) by enlarging its capacity through increasing
the transmission power under its value limitation and using
some other available but unused bands. It should be noted
that once one band is used (i.e. xmij = 1), it has the impact
on the available bands and transmission power limitation of
other links (see line 6 in Algorithm 2). After we do this for
all links with requirements larger than their capacities, if all
the requirements have been satisfied, then we have found the
feasible ψz . Otherwise, we fail to find a feasible solution and
we set the objective value to ∞.

After the feasible x and p are found, we can try to adjust
x and p to further reduce the object value (see line 10∼14
in Algorithm 2). From the Shannon’s capacity formula, we
find that given the capacity and channel condition, the more
bandwidths the link uses, the less power it consumes. Besides,
based on the convexity of log function, we know that given
capacity and bandwidth, the optimal transmission power on
each band is equivalent. Thus, for each link, we can use the
additionally available and unused bands. Except for that, we
check if the link’s requirement can be still satisfied after we
adjust the transmission power on each its available and unused
band under the limitation to a same value. If the answer is yes,
then we adjust the power and treat the adjusted x and p as
solution, otherwise, we still use the originally found x and p
as solution.

3) Branching. After updating LB to the lower bound LBz

Algorithm 2 Local search algorithm.
1: Set pmij = (pmij )L based on the fixed xmij . Compute the

capacity and requirement for each link.
2: for each link i→ j whose requirement is larger than its

capacity do
3: while its requirement is larger than its capacity do
4: Increase pmij among active bands with ∆ each time

in the non-increasing order of p̂mij and under the
limitation that pmij ≤ (pmij )U .

5: If its capacity is still insufficient, then try to use an
available but unused band m in the non-increasing
order of p̂mij . Also set xmij = 1, xmih = 0 for
h ∈ T m

i \{j} based on (5), and let (pmkh)U =

(
dkj

Rmax
I

)nPmax for k ∈ Im
j \{i}, h ∈ T m

k based on
(7).

6: If there is not any available band and the power can
not be increased any more, break.

7: end while
8: If link i→ j cannot be satisfied, set the objective value

to ∞ and stop.
9: end for

10: for each link whose requirement is larger than 0 do
11: Back up the found x and p.
12: Use additional available and unused bands, and adjust

the transmission power on each its used band to a same
value under the limitations.

13: If its requirement can be still satisfied, use the adjusted
x and p. Otherwise, use the backup x and p.

14: end for

of problem z, if it is still smaller than UB − θ, we should
further close the gap between LB and UB to get the θ-optimal
solution, that is branching (see line 11 in Algorithm 1). To
achieve this, we can scale down the feasible space by fixing
some x variables, which are called partition variables. How
to choose these partition variables is important as it affects
the computing complexity. We propose to choose the partition
variable based on the solution of the relaxation problem ψ̂z ,
that is, we choose an xmij with the largest relaxation error
min{x̂mij , 1− x̂mij} among all x variables, and fix its value in
two new sub-problems z1 and z2 as 0 and 1, respectively.
It should be noted that the fixed xmij imposes constraints on
other variables: if xmij = 0, then we have pmij = 0 based on
(6); if xmij = 1, then we have xmih = 0 for h ∈ T m

i , h ̸= j

based on (5), pmij ≥ (
dij

Rmax
T

)nPmax based on (8), and pmkh ≤
(

dkj

Rmax
I

)nPmax for k ∈ Im
j , k ̸= i, h ∈ T m

k based on (7).

4) Cut Branches. We can reduce the computing complexity
through cutting some branches (see line 13 in Algorithm 1).
As shown in [18], during the process of ABB, if we find a
problem z with LBz ≥ UB − θ, then we can conclude that
this problem cannot contribute to find a θ-optimal solution
and thus we can remove this problem from the list for further
consideration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCCN.2016.2614838

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10

B. Performance Analysis of ABB
As shown in the previous subsection, only if θ ≥ 0, the

worst case is that we traverse all binary variables and ABB
can eventually find the θ-optimal solution. Although the worst-
case complexity of ABB is exponential, the actual running
time could be fast when all partition variables are binary.
Firstly, we can reduce the computing complexity through
cutting branches. Besides, once one xmij variable is fixed as 1,
then some related x variables can be fixed as 0 simultaneously
based on (5), which further cuts down the actual running time.
Especially, we can control computing complexity by setting a
fit θ value. With a larger θ, ABB will achieve the θ-optimal
solution faster. Except for that, we can set a maximum iteration
number (after these iterations, we terminate the ABB even if
we have not found the θ-optimal solution) to make sure the
computing complexity is acceptable. However, it may not find
the θ-optimal solution with the maximum iteration number
constraint.

Obviously, ABB can just guarantee a θ-optimal solution at
each time slot. It is unclear whether the θ-optimal solution
achieved at each time slot have any influence on the energy
consumption and stability performance of the whole system.
In this subsection, we analyze the impact of implementation
of ABB at each time slot on the system performance, which
is shown in the following Theorem.

Theorem 2. If the rate matrix λ is interior to the network
capacity region Λ, and the data arrivals as well as available
band states are i.i.d. over time slots, then ABB (pABB(t),
uABB(t)) stabilizes the network and yields a time average
congestion bound of∑

i,c

U c
i
ABB ≤ CN2 + θ + V f(Pmax)

2εmax
. (37)

Further, the time average cost satisfies

f(pABB(t))
∆
= lim sup

T→∞

1

T

T∑
t=0

∑
i∈N

E{
∑

m∈Mi(t)

∑
j∈T m

i

pmij
ABB(t)}

≤ f∗ +
CN2 + θ

V
.

(38)

Proof: Define S(p(t),u(t)) = V f(p(t)) −∑
i∈N

∑
c∈N

2U c
i (t)(O

c
i (u(t))−Oc

i (u(t)). Suppose the

objective value of the optimal solution to problem 1 is
f∗ = S(p∗(t),u∗(t)) where p∗(t) and u∗(t) are the
corresponding optimal solutions. The object value achieved
by ABB is S(pABB(t),uABB(t)) where pABB(t) and
uABB(t) are the corresponding solutions. Then, based on
Definition 2, we can have

S(p∗(t),u∗(t)) ≥ S(pABB(t),uABB(t))− θ. (39)

Besides, we have

S(pSTAT(t),uSTAT(t)) ≥ S(p∗(t),u∗(t)). (40)

Thus, combining (39) and (40), we obtain

S(pSTAT(t),uSTAT(t)) ≥ S(pABB(t),uABB(t))− θ.
(41)

Plugging (41) into (18) under ABB, we obtain

∆(U(t)) + V E{f(pABB(t))|U(t)}

≤ CN2 + 2
∑
i∈N

∑
c∈N

U c
i (t)λ

c
i + E{V f(pSTAT(t))−∑

i∈N

∑
c∈N

2U c
i (t)(O

c
i (u

STAT(t))− Ici (u
STAT(t)))|U(t)}+ θ.

(42)

With (29) and (30), we have

∆(U(t)) + V E{f(pABB(t))|U(t)}

≤ CN2 −
∑
i∈N

∑
c∈N

2U c
i (t)ε+ V f∗(ε) + θ. (43)

Similarly to the proof of Theorem 1, we can easily derive the
results (37) and (38). �

Theorem 2 shows that although ABB just achieves the θ-
optimal solution at each time slot, it has the same performance
features as EESA: 1) achieves the average power consumption
deviated no more than O(1/V ) from the optimal solution;
2) ensures the system is stable; 3) offers an explicit tradeoff
between energy consumption and delay performance.

VI. PERFORMANCE EVALUATION

In this section, we present numerical results for the proposed
algorithm. Our goals are to demonstrate the effectiveness of
our algorithm and study the impact of control parameter V on
the system performance.

A. Simulation Setup

We consider a multi-hop CRN consisting of |N | = 10 RSs
randomly distributed in a 800×800 m2 area. There is a session
with rate uniformly distributed within [0,85] Mb/slot, whose
source RS and destination RS are selected randomly in R.
The total number of spectrum bands |B| is 8. For illustrative
purposes, we assume all the bands have identical bandwidth,
which is set to be 10 MHz, i.e., Wm = 10 MHz for all
m ∈ B. All the RSs have the same maximum transmission
power Pmax = 10 W on each band. Considering the AWGN
channel, we assume the noise power ηWm = 10−10 W [20].
Moreover, we suppose the path loss factor n = 4, the antenna
parameter γ = 3.90625, the receiver sensitivity α1 = 10−8 W
and the interference threshold α1 = 6.25 × 10−10 W [20].
According to the illustration in Section II-B, we can calculate
the maximum transmission range Rmax

T and the maximum
interference range Rmax

I , which are equal to 250 m and 500
m, respectively. Besides, for the simplicity of computation, we
set the maximum iteration number in ABB to 1000. For ABB,
we let ∆ = 0.25 W and θ = 0.25NV . At each time slot, the
available bands of each RS and the data rate are randomly
generated.

B. Results and Analysis

Based on the simulation settings above, we conduct sim-
ulations to study the optimal power consumption problem in
CCH with the following two parts: 1) Through comparing our

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCCN.2016.2614838

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



11

proposed strategy (denoted as PS) with the traditional real-
time transmission strategy (denoted as TS, refer to Section I
for the definition), we try to demonstrate the effectiveness of
PS; 2) Through setting different values of control parameter
N , B, and V , we try to investigate its impact on the system
energy and delay performance.
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Fig. 4. Performance comparison between PS and TS (V = 5V ′).

Fig. 4 depicts the results of performance comparison be-
tween PS and TS. The control parameter is set to V = 5V ′,
where V ′ = 7300. From Fig. 4, we have the following two
observations:

1) As shown in Fig. 4(a), the power consumption of PS
is less than that of TS. The average power consumption of
PS and TS are 9.125 W and 12.1 W, respectively, which
means that PS can save 24.5% energy as compared to TS.
The reason is that instead of transmitting the data timely, PS
can intelligently delay some delay-tolerant data and transmit
it when the system has more available spectrum bands. In
this way, we can save some energy as depicted in the capacity
formula, where the capacity increases linearly with bandwidth,
but only logarithmically with transmission power.

2) As shown in Fig. 4(b), the total system backlog firstly
increases, and finally reaches a steady value which is close to

4900 Mb. The result illustrates that PS can ensure the system
is stable. Using Little’s law, we can also calculate the average
delay from the above mean backlog length.
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Fig. 5. Performance of PS with different control parameter values.

Next, we study the performance of PS under different values
of the control parameter V . The results are illustrated in Fig. 5.
From Fig. 5(a), we find that the power consumption decreases
with the increase of V . However, from Fig. 5(b), we find that
the system backlog increases with the increase of V . All these
observations demonstrates that we can achieve the tradeoff
between the delay and energy saving performance through
controlling the values of V , which corroborates the accuracy of
our theoretical analysis in Theorem 2. Furthermore, whatever
the V value is, all the curves in Fig. 5(b) indicate that ABB
can ensure the stability of system.

In addition, we compare the average power consumption of
PS and TS under different number of nodes |N | and different
number of available bands |B|. The results are shown in Fig.
6. It can be observed that the average power consumption of
PS is always lower than that of TS. Finally, we evaluate the
transmission delay and convergence speed of PS with various
number of nodes and available bands, and the results are
illustrated in TABLE 1. As TABLE 1 shows, the growth rate of
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delay is highly relative to the number of nodes and bands, but
it is also proportional to the total backlog. Thus, the backlog
could truly reflect the delay incurred by a data stream under
different circumstance. Besides, the convergence speed of PS
is very fast when the number of nodes and bands is small.
When the number of nodes and bands increases, we can see
that the PS algorithm can still achieve 25% energy efficiency
gain at the expense of delay performance with the tolerable
computing complexity through setting a maximum number of
iterations. In a word, TS is suit for delay-sensitive services
and PS is appropriate for delay-tolerant services such as data
and streaming mobile apps.
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Fig. 6. Average power consumption comparison between PS and TS.

VII. CONCLUSIONS

In this paper, based on a novel architecture of CRNs we
have proposed for spectrum harvesting and sharing, we address
the energy saving problem considering both temporal and
spatial feature of varying spectrum. A cross-layer stochastic
optimization framework which minimizes the time-average
expected power consumption while stabilizing the network is

TABLE 1
THE PERFORMANCE OF DELAY AND NUMBER OF ITERATIONS OF PS.

(a) Performance under different number of nodes

node number delay
(slot)

total backlog
(Mb) iteration times

3 49.05 2087 64
4 132.05 5898 198
5 161.19 7301 287
6 190.67 8705 710
7 253.33 11182 730
8 316.33 13659 750

(b) Performance under different number of bands

band number delay
(slot)

total backlog
(Mb) iteration times

4 249 10616 62
6 190.67 8705 710
8 173.2 7956 738
10 126.86 5303 761

formulated. Based on the Lyapunov optimization technique
and branch-and-bound framework, we design an online al-
gorithm to obtain an approximate solution. Theoretical anal-
ysis and simulation results show that our algorithm offers
an explicit tradeoff between energy consumption and delay
performance. Besides, numerical results illustrate that thanks
to the specific characteristic in CRNs, i.e., both time and space
varying features of spectrum availability, our proposed strategy
is superior to the traditional real-time transmission strategy in
term of energy consumption performance.
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