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Abstract—Given the fact that more than 1 million crimes
happened in U.S. every year, public safety becomes one of
the most important concerns. Although many public safety
related applications have been commercialized, how to guarantee
safely walking to a destination, especially in an unfamiliar
city is still challenging. To provide a safe walking navigation
in smart cities, we design a novel application, SPATH (the
Safest PATH). To support this service, wireless cameras, existing
cellular infrastructure, and vehicles with underutilized computing
resources are utilized to process and transmit surveillance videos,
which can be viewed by users to check the current safety
status of walking paths. Noting the long-distance transmission
of a large volume of videos may cause network congestion,
video summarizing technology, which is realized by utilizing
the underutilized computing capability in vehicles, is applied to
extract valuable information from a video file while effectively
compressing its data size. Since the quality of service for this
application is strongly correlated with the latency of delivering
videos, we formulate a latency minimization problem by jointly
considering the computing resource allocation and computing
task assignment. A Fast Iterative Matching (FIM) is proposed
with low complexity to effectively solve the optimization problem.
Simulation results demonstrated the effectiveness and efficiency
of our solution.

Index Terms—Public safety, Smart city, Edge computing,
Resource allocation.

I. INTRODUCTION

Public safety is one of the most important concerns in the
United States. According to the annual compilation of crimes
reported by the law enforcement agencies, there were esti-
mated 1,247,321 violent crimes committed in 2017. Moreover,
there were estimated 319,356 robberies all the year round [1].
That is to say, nearly 38 robberies were reported every hour. In
fact, most robberies occur in urban areas, especially at night.
To improve public safety in cities, technology companies
have already taken steps to design safety related applications.
Recently, Mobile Software AS designs a new application,
bsafe [2], which allows a user to add contacts as the guardians.
When an imminent danger is perceived, a user can activate this
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application, which automatically sends alert to the recorded
guardian. Similarly, Safe Apps Ltd. launches a StaySafe [3],
which involves a new safety feature, called timed sessions.
A user can set check-in intervals as their estimated session
time. Once the user misses the session time deadline, this
application will notify the corresponding contacts. However,
all those applications are the post-crime services. Thus, how
to offer a pre-crime warning is still an open problem.

Open crime dataset is considered by many researchers
recently to identify the safest and shortest path for users [4]–
[7]. In [4], Galbrun et al. utilize a crime probability model
based on the existing crime data to measure the safety status of
a walking path. Given historical crime locations, the estimated
density of crime at a point can be quantified with Gaussian
Kernel Density Estimation (KDE). Then, the estimated crime
density of a walking path can be measured by aggregating
crime occurring points on walking path. Goel et al. improve
Galbrun’s model in [5]. They design a safety model based on
both the static and dynamic information. The static information
is composed of crime related dataset belongs to different
administrations. Dynamic information involves feedback re-
ceived from users (crowdsourced). Users update the safety
status of any point on their walking paths. Different from
previous works, Garvey et al. [7] integrate pre-crime warning
and post-crime support to design a novel safety application
called PASSAGE. PASSAGE not only recommends safe paths
to a user but also allows the user to share her current walking
location with a friend.

However, the previous models suffer from the following
limitations: (a) The historical crime data may be outdated;
(b) The crime estimation model is not adapted well to small
time scale; (c) Crowdsourced data cannot guarantee sufficient
feedback; (d) User feedback based on personal experience
is not accurate. In order to overcome these limitations, we
propose to utilize street cameras with high resolution and
wireless communication capability as the “remote eye” since
street cameras has been widely deployed for many applications
in smart cities. For example, Moscow has installed 160,000
outdoor cameras to support several public services such as
trash removal, traffic management and crime monitoring [8].
Chicago has developed two public safety related programs,
which has deployed over 32,000 cameras in the city in order
to respond to traffic-related issues, monitor large crowds such
as parades, and validate calls for fires or EMS [9].

Even though utilizing street cameras can overcome the
limitations of previous design, long latency caused by the
transmissions of large volumes of videos will impose restric-
tions on the use of these cameras. Edge computing provides
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Fig. 1: System Architecture

a popular solution to this issue, which pairs data source with
powerful edge servers [10]–[12]. Such servers are deployed
at the proximity of data source to perform task computing or
processing, data storage, and caching. For example, Rodrigues
et al. [12] present a method by utilizing virtual machine
migration and transmission power control to minimize service
delay. As a result, their approach based on simultaneously
lowering the time for transmission and the time for processing
does reduce service delay significantly, particularly when
the application involves with transmitting a large amount of
data. Furthermore, in order to deal with communication and
computing demands at edge more efficiently and conveniently,
recent works propose a novel idea, which leverages vehicles
as a service [13]–[18]. Apart from the edge computing char-
acteristics, such as proximity to end users, computing, and
storage, employing vehicles as a service distinguishes itself
from dense geographical distribution of communication and
computing devices and support for mobility [13]. In [15], Ding
et al. propose a V-CCHN (Vehicular Cognitive Capability Har-
vesting Network) architecture. In this work, Cognitive Radio
(CR) router enabled vehicles are employed to utilize harvested
spectrum resources to opportunistically transmit large volume
of data. Furthermore, with the built-in computing capability
of CR routers, vehicles serve as edge cloud servers for local
data processing and aggregation to solve network congestion
problems and reduce long latency caused by the long-distance
transmissions for large volumes of data.

Inspired by all previous works, we propose SPATH to
effectively find the safest walking path in smart cities (as
shown in Figure 1). The potential walking path of a user is
divided into several road segments. To indicate the estimated
safety status, each road segment is labeled by a numerical
value, namely crime index. We utilize the historical crime
data and kernel density estimation to estimate the crime
index of each road segment. Wireless street cameras are
employed to capture the street view of each road segment
to provide fresh on-time street safety status. Based on the
crime index, the captured videos are transmitted through the
cellular infrastructure to users for identifying the safety status.
It is reasonable to consider the slowly moving and parked
vehicles (such as connected and autonomous vehicles) have
plentiful and underutilized computing resources, which can

be used to provide public services [13], [15], [19]. In order
to handle the huge volume data of captured videos while
avoiding potential network congestion, vehicles are treated as
local computing units to summarize captured videos, which
can effectively extract valuable information while reducing the
data size of captured videos significantly [20]. The rationality
of studying this problem is that utilizing the local computing
units could reduce the latency for video delivery, which further
improves the quality of safety. Thus, we formulate a latency
minimization problem involving computing resource allocation
and computing task assignment. Furthermore, we design a Fast
Iterative Matching (FIM) algorithm with low complexity to
effectively solve the latency minimization problem. The main
contributions of this paper are listed as follows.

• A new application, SPATH, has been proposed to identify
the safety status of a user’s walking path. With the
designed application, the videos of street cameras first
are summarized on local computing units and then are
transmitted to users for reviewing. We utilize vehicles
with underutilized computing resources to reduce the
latency for video analytics.

• Quality of safety for users is correlated with overall
latency for video delivery and video analytics, and thus
we formulate a latency minimization problem by jointly
considering computing resource allocation and computing
task assignment. Furthermore, due to the hardness of the
original optimization problem, we develop a novel FIM
algorithm, which can significantly reduce the complexity,
to provide a suboptimal solution for the optimization
problem.

• Simulation results show that the FIM algorithm outper-
forms other algorithms with low complexity. In addition,
our proposed scheme can effectively reduce the latency.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III introduces system
models. Section IV formulates the optimization problem. The
mixed integer non-linear programming problem under multiple
constraints is solved by a FIM algorithm in Section V. Per-
formance of the proposed scheme is evaluated in Section VI.
Finally, conclusions are drawn in Section VII.
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II. RELATED WORK

In this section, we discuss the related work from two
aspects, namely pre-crime warning applications and vehicle
as a resource.

A. Pre-crime Warning Applications

Early works on the pre-crime warning applications, such
as [4]–[7], are focused on utilizing historical crime data and
crowdsourced feedbacks to assess the safety status. In [4],
Galbrun et al. develop a crime probability model based on
the historical crime data in Chicago and Philadelphia. They
estimate the possible crime hot spots with Gaussian kernel
density estimation. In order to measure the safety status of the
navigation path, crime activity density is proposed, which is
quantified by aggregating crime probability of each point on
the walking path. Moreover, they design an algorithm to offer
candidate paths for users with a different tradeoff between
distance and safety.

By observing the drawbacks of the approach in [4], Goel et
al. improve the safety model with two types of data, namely
static and dynamic [5]. The static data is open data including
historical crime data, road quality information, locations of
police stations, and schedule of public transport, etc. Infor-
mation in static data can be used to measure a navigation
path is safe to walk or not. However, the static data may not
accurately capture the actual situation as the information may
be outdated. Therefore, the authors build a dynamic dataset
to adapt to the information change. Dynamic data includes
feedback from users in near real time, which is gathered in a
crowdsourced manner. Users can report the safety status of any
point on their walking path. Following the design of Goel et
al., Mata et al. identify the crime level of the walking path with
the official crime data and the useful information from online
social media as in [6]. Criminal data repository is first built
from tweets related to crime events. Then, the crime records
are classified based on crime type, time, and location. Finally,
a safe route is obtained from the estimation of crime rates.

Different from previous works, Garvey et al. [7] integrate
pre-crime warning and post-crime service. In order to over-
come the inaccuracy of the estimation of safety status, they
develop the PASSAGE, a safety application. In [7], Garvey
et al. also offer possible walking path of a user by applying
estimation model of crime points and allows the user to add
friends or relatives as the guardians, who receive the current
location of the user.

B. Vehicle as a Resource

More recent studies focus on exploring better utilization
of resources on connected and autonomous vehicles (CAVs).
Vehicle as a resource is a novel idea leveraging vehicles
to provide service of sensing, data storage, computing, and
communications, etc. In [14], Zhang et al. propose a sys-
tem architecture, where vehicles are service providers for
smartphones. When infrastructure-based cloud does not have
enough resource to support the service for users, residual
computing in vehicles is allocated to accomplish mobile

application offloading. In [15], [21], Ding et al. design a V-
CCHN (Vehicular Cognitive Capability Harvesting Network)
architecture, which utilizes CR routers enabled vehicles to
handle the explosively growing wireless data traffic. The V-
CCHN involves some new features, such as the capacity of
reconfiguring agile communication interfaces to interoperate
with other devices and mobility to realize data exchange within
proximity, to fully exploit available vehicles. For more details
of this architecture, readers are referred to [15].

To overcome the drawbacks of the previous works and better
explore the benefits of residual communication and computing
resources in vehicles, we propose SPATH, which transmits
surveillance videos from street cameras to users to identify
the safety status on walking paths and utilizes vehicles with
underutilized computing resources as local computing units to
summarize the videos to reduce the service latency.

III. SYSTEM ARCHITECTURE

In this section, we first present an overview of our proposed
application, SPATH. Thereafter, communication, computing,
and crime index model are explained in detail.

A. Architecture Overview

In this paper, we consider a scenario in Fig. 2. When
a user launches the SPATH, the controller will activate the
camera nodes to capture videos according to the user’s walking
path information and search for available vehicles near the
activated camera nodes as the local computing units. Then,
the controller gathers communication, computing, and safety
related information (crime index) to make the task assignment
decision and computing resource optimization. According to
the control information, camera nodes transmit the pending
videos to associated local computing units via appropriate
communications technologies for video summarization anal-
ysis. Finally, the summarized videos are delivered to the user
via the existing cellular infrastructure. The user could scan
all the summarized videos to identify the safety status of the
walking path. If the user considers the walking path is not
safe enough, she can select alternative paths and make service
request again. In this paper, we ignore the latency for request
and control information message because of the small size of
request and control information packet.

The architecture of our SPATH is shown in Fig. 2, which
consists of four components: application, local computing
units, camera nodes, and the controller.

1) Camera node: This can be a new wireless camera or a
traditional street camera with communication radio interface
and it can offload its captured videos to nearby computing
units within the scope of a certain distance via D2D commu-
nications [22].

2) Local computing unit: This can be a moving or parking
vehicle with sufficient computing and storage capability and
it can perform video summarization task. Each vehicle can be
matched with several camera nodes to summarize videos.
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Fig. 2: Illustration of video summarizations and transmissions
.

3) Controller: This is a static facility, which can be a base
station or a roadside unit (RSU) or an access point (AP).
It collects communication and computing information from
camera nodes and vehicles. Based on the collected information
and the crime index for each video task, it makes the task
assignment decision and optimizes the computing resource.

4) Application: Application is installed on the user’s mo-
bile device. A user can use it to navigate, scan the summarized
videos of the walking path, and make service request for
alternative paths.

B. System Model

Denote the set of the camera nodes as C =
{c1, c2, · · · , ci, · · · , cn}, the i-th camera node by ci . Local
computing units are indexed as V = {v1, v2, · · · , vj, · · · , vm},
the j-th local computing unit by vj . In this paper, we consider
a widely used task model to describe video summarization
task Di , i.e., Di=(αi ,βi ,I(ci)), where αi stands for required
CPU cycle of the task Di , and βi denotes the data size
of computing task Di to be delivered toward the comping
unit and I(ci) is the crime index of each task. Crime index
indicates the significance of each task since the larger crime
index, the higher probability of observing a crime incident.
Then, we discuss communication, computing, and crime index
model, which will be used in the subsequent development.

Communication Model: In this paper, we consider adopt
orthogonal channels to support the data transmissions between
camera nodes and local computing units. We assume camera
nodes communicate with local computing units via D2D links
and computing units transmit summarized videos to the user
via cellular links. The data rate for the camera nodes offloading
tasks to the associated computing units can be obtained as
follows:

ri, j = Wi, j log2

(
1 +

pihi, j
N0

)
, (1)

where Wi, j indicates the allocated bandwidth and hi, j denotes
the channel gain between the camera ci and the computing
unit vj . Furthermore, pi is the transmission power of camera
node ci , and N0 is the noise power. We assume the mobility of
local computing units is low and the offloading time is relative
short, thus hi, j is a constant.

The transmission latency for transmitting the task Di from
camera node ci to computing unit vj is therefore given by

tTi =
βi

Wi, j log2

(
1 + pihi, j

N0

) . (2)

Similar to previous works such as [23], this paper ignores
the transmission latency of delivering summarized video from
computing units to the user end, since the data size of
summarized videos is much smaller than the original videos.

Computing Model: In this paper, we consider the difference
of computing resource among local computing units and
denote the computing resource of local computing units as F
= { f0, f1, · · · , fj, · · · , fm}. We assume several camera nodes
can share the computing resource of a local computing unit
during the video summarization process. Thus, the computing
time of task Di can be written as

tCi =
αi
κi, j fj

, (3)

where κi, j is the proportion of computing resource that com-
puting unit vj allocated to complete task Di .

Crime Index Model: Crime index is a numerical value,
which is used to label each road segment to indicate the
estimated safety status. In this paper, crime index is measured
based on the historical criminal activity probability and the
estimated criminal activity probability. Thus, crime index is
proportional to the probability that a crime incident on each
road segment is observed. In general, the road segment with
higher crime index are more dangerous because of the higher
probability of observing a crime incident. For example, road
segments in the urban area of Chicago [4] has a higher crime
index since these road segments not only have been observed
with a large number of criminal activities according to the
historical data, but also have a high probability of observing
a crime incident in the future based on the criminal activity
probability estimation. In this paper, we apply Gaussian kernel
density estimation to model the estimated criminal activity
probability density. Given n points of crime locations are
marked as (qx,1, qy,1), (qx,2, qy,2), · · · , (qx,n, qy,n), the density
of crime at a location (lx, ly) can be quantified as follows [4]:

f (lx, ly) =
1

nσ2

n∑
i=1

1
2π

exp

(
−
‖lx − qx,i ‖2 + ‖ly − qy,i ‖2

2σ2

)
, (4)

where σ is a parameter that controls the smoothness of the
density estimation, which can be determined by the Scott’s
rule [24]. We denote the set of the road segments as S =
{s1, s2, · · · , sk, · · · , sK }, the k-th road segments by sk . There-
fore, we can obtain the crime index of road segment sk by

I(sk) = − log
(
ε(1 − Ph

sk
) + (1 − ε)

(
1 − Psk

) )
, (5)

where Psk =
∫ eU

x,k

eL
x,k

∫ eU
y,k

eL
y,k

f (lx, ly)dlxdly is the estimated crim-

inal activity probability and eL
x,k

,eU
x,k

,eL
y,k

, eU
y,k

are edge posi-
tions for road segments sk . Ph

sk
denotes the historical criminal

activity probability. ε is the weighting factor. Therefore, for
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TABLE I: Symbols and definitions

Symbol Definition
C Set of camera nodes
B Set of local computing units
S Set of road segments
Di Video summarization task for camera node ci
ci i-th camera node
vj j-th computing unit
sk k-th road segment
pi Transmission power for camera ci
hi, j Channel gain
fj Computing resource of local computing unit vj
N0 Noise power
αi Amount of the task
βi Data size of computing task
Wi, j Bandwith
tTi Transmission latency for video summarization task Di

tCi Computing latency for video summarization task Di

f (lx, ly ) Probability density of crimes at location (lx, ly )
I (sk ) Crime index of road segment sk
ε Weighting factor

each camera node ci located in the road segment sk , the crime
index can be written as

I(ci) = I(sk), (6)

which means all camera nodes located in the same road
segment sk has the same crime index. The main notations
adopted in this paper are presented in Table I

IV. PROBLEM FORMULATION

By leveraging communication, computing, and storage
(CCS) capability, together with the crime index model pro-
posed in the previous section, we design our SPATH by formu-
lating a latency minimization problem considering computing
task assignment and computing resource optimization. We
first discuss several constraints for the latency minimization
problem.

Task Assignment: To be specific, we define the integral
decision matrix x = (xi, j) with xi, j ∈ {0, 1}, where xi, j = 1
indicates camera node ci is associated with computing unit vj
for video summarization while xi, j = 0 otherwise. Since we
assume the captured video cannot be split, the camera node ci
can only be matched with one computing unit. This matching
constraint can be written as follows:∑

j∈V

xi, j ≤ 1. (7)

Maximum Computing Power Limitation: In this paper, we
consider the total amount of computing resource assigned
to each task placed on computing unit vj cannot exceed its
limitation, that is, ∑

i∈C

xi, j κi, j ≤ 1. (8)

Maximum Communication Channel Limitation: We con-
sider each computing unit has limited available frequency sub-
channels to communicate with camera nodes, we introduce the
constraint as ∑

i∈C

xi, j ≤ Q. (9)

Safety Guarantee: We consider that if a camera node is
associated with a computing unit for video summarization, the
status of this road segment is safest for a user since the user
can obtain the fresh safety information. Thus, we redefine the
crime index of selected camera node is I(ci) = 0. In order to
guarantee the safety of a user, we introduce the crime index
requirement for a user’s walking path as∑

i∈C

(1 − xi, j)I(ci) ≤ Ith . (10)

Latency Minimization
Under the above setup, we pursue a latency minimization

problem by jointly considering computing resource allocation
and computing task assignment, which is formulated as

OPT :min
x,κ

∑
i∈C

xi, j(tTi + tCi ) (11)

s.t.∑
i∈C

xi, j κi, j ≤ 1∑
i∈C

xi, j ≤ Q∑
i∈C

(1 − xi, j)I(ci) ≤ Ith∑
j∈V

xi, j ≤ 1

xi, j ∈ {0, 1}

It is clear that the proposed latency minimization problem is
a mixed integer non-linear programming (MINLP) problem
since it contains both binary variables x and continuous
variables κ. In the next section, we adopt matching theory
with low complexity to find an approximate solution to the
proposed optimization problem because of the hardness of the
original optimization problem.

V. ALGORITHM

In this section, a FIM algorithm is proposed to solve the
optimization problem, since the MINLP optimization problem
has a high complexity with the increasing number of camera
nodes and computing units. The objective function can be
rewritten as follows:

g(κ,x) =
∑
i∈C

xi, j(
βi
ri, j
+

αi
κi, j fj

). (12)

We consider the original problem can be decoupled into
two sub-problems, computing resource optimization problem
and task assignment problem. Given xi, j = x̂i , which means
xi, j is fixed, the original latency minimization problem in (11)
is converted as a computing resource optimization problem,
which is a convex problem. Therefore, optimal solution, κ∗i, j , of
computing resource optimization can be obtained by adopting
the Karush-Kuhn-Tucker (KKT) conditions. With the optimal
solution, κ∗i, j , obtained from the computing resource optimiza-
tion problem, the latency minimization problem is converted
as task assignment problem, which is an integer programming
problem. Then, we adopt the matching theory to obtain the
solution.
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A. Computing Resource Optimization

We consider the OPT with the following OPT-RA when
xi = x̂i , a fixed value.

OPT-RA :min
κ

g(κ, x̂) =
∑
i∈C

x̂i, j(
βi
ri, j
+

αi
κi, j fj

) (13)

s.t.∑
i∈C

x̂i, j κi, j ≤ 1

Therefore, the Hessian matrix of the OPT-RA can be derived
as follows:

H =



∂2g
∂2κ1, j

∂2g
∂κ1, j∂κ2, j

. . .
∂2g

∂κ1, j∂κn, j
∂2g

∂κ2, j∂κ1, j

∂2g
∂2κ2, j

. . .
∂2g

∂κ2, j∂κn, j
...

...
. . .

...
∂2g

∂κn, j∂κ1, j

∂2g
∂κn, j∂κ2, j

. . .
∂2g
∂2κn, j


(14)

Further, we can obtain each specific element of the Hessian
matrix is:

∂2g

∂κp, j∂κq, j
=

{ 2αi

κ3
i, j fj

if p = q

0 otherwise
(15)

It is observed that all parameters in (15) are positive since
2αi

κ3
i, j fj
≥ 0. We conclude that OPT-RA is convex because the

Hessian matrix H is a positive definite matrix [25]. Since the
constraints are linear, optimal solution of OPT-RA can be
obtained with the KKT conditions.

We introduce the Lagrange function of OPT-RA according
to the previous analysis, which can be written as follows:

L(κ, γ) =
∑
i∈C

x̂i, j(
βi
ri, j
+

αi
κi, j fj

) +
∑
j∈V

γj(
∑
i∈Cj

κi, j − 1), (16)

where γ = (γ1, · · · , γm) are the Lagrange multipliers corre-
sponding to the inequality constraints. Since Slater’s condition
holds for OPT-RA, then the KKT conditions provide neces-
sary and sufficient conditions for optimality [26]. If κ∗ and γ∗

is the optimal point with zero duality gap, then the gradient
for L(κ, γ) must vanish at point κ∗. Therefore, we can obtain:

∇(
∑
i∈C

x̂i, j(
βi
ri, j
+

αi
κ∗i, j fj

)) +
∑
j∈V

γ∗j∇(
∑
i∈Cj

κ∗i, j − 1) = 0, (17)

γ∗j (
∑
i∈C

x̂i, j κi, j − 1) = 0.

Moreover, we can derive the optimal value of κ∗i, j form (17),
which can be written as follows:

κ∗i, j =

√
αi∑

i∈C

√
x̂i, jαi

. (18)

B. Task Assignment

After obtaining the optimal computing resource allocation,
we develop an algorithm based on the matching theory [27] to
solve the task assignment problem. Matching theory provides
tractable solution to the problem of multiple agents in two
distinct groups. Each agent wants to match with one or

multiple agents in the opposite group. Mathematically, the
many to one matching can be defined as follows.

Definition 1: [28] Given two distinct set M and W, a
matching µ is a mapping function from M∪W into 2M∪W ,
such that: µ(mi) ⊆ W and |µ(mi)| ≤ 1 for all mi ∈ M;
µ(wj) ⊆ M and |µ(wj)| ≤ Nj for all wj ∈ W, where Nj is
the capacity of agent wj ∈ W; µ(mi) = {wj} if and only if
wj ⊆ µ(mi) for all (mi,wj) ∈ M ×W

To better describe a matching, the preference lists of agents
should be defined. Each agent holds a preference list to
opposite group. All the actions, such as proposal, acceptance,
and rejection are according to the preference list. In this paper,
we establish each agent’s preference list as follows.

1) Preferences of camera nodes: From the camera node’s
perspective, each camera node seeks the minimum of its
transmission time to a local computing unit. Therefore, we
propose a utility function for a camera node to form its
preference list among computing units as follows:

φCi, j =
βi

Wi, j log2

(
1 + pihi, j

N0

) . (19)

Thus, the preference list �Ci, j of camera node ci can be
constructed by using (19).

2) Preferences of computing units: The preference list of
local computing units can be established according to the
time cost of the video summarization for a matched camera
node. The utility function for a local computing unit can be
calculated as follows:

φVi, j =
αi
κi, j fj

. (20)

According to the above utility function, the preference list for
computing unit vj among camera nodes in the opposite group
can be constructed as �Vj,i .

C. Fast Iterative Matching (FIM) algorithm

We now introduce our proposed FIM algorithm, which is
illustrated Algorithm 1. The FIM algorithm operates in an
iterative way until achieving the stability. Initially, each camera
node forms its preference list �Ci, j . The whole FIM algorithm
consists of two major phases: one is for matching and the other
is for optimizing. At the beginning of matching in each round,
each camera node ci proposes to its most preferred computing
unit vj and removes vj from its preference list �Ci, j . When
receiving ci’s proposal, vj may face two conditions: either
enough available communication channels for the transmission
of ci’s video have been found or there are not enough available
channels to support the ci’s video transmission. Computing
nodes vj first forms its preference list �Vi, j with the optimized
computing resource, which can be calculated by (18). If vj
finds enough available communication channels to support the
video transmission, it accepts the most preferred proposal and
the matched camera node is removed from unmatched set Cun.
If vj does not find enough communication channels to support
its video transmission, it discards the worst camera node and
the discarded camera node is added to the unmatched set Cun.
At the end of each round, if the constraint (10) is not satisfied,
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Algorithm 1 FIM Algorithm

Input: Imin, Q, fj ,�Ci, j , C,V,l(ci);
Output: Matching µ

Initialization;
Set Q j = Q for all vj
Construct set Cun,set Cun=C;

Matching;
for each ci ∈ Cun do

Proposes to the first vj in its preference list and remove
vj from �Ci, j ;

end for
for vj ∈ V do

Forms its preference list �Vj,i with the κ∗i, j by (18).
if Q j > 0 then

vj keeps the most preferred cpi among proposals;
Removes c∗i from Cun
Q j = Q j − 1

else
vj rejects the worst cdi and keeps the rest;
Add cdi to Cun

end if
end for
if constraint (10) is not satisfied then

if Q j > 0 for any vj then
Go back to
Matching;

else
for vj ∈ V do

Discards cdi with the smallest crime index
Go back to
Matching;

end for
end if

end if

then camera nodes conduct next iteration. When there are no
available communication channels for all computing units in
the new iteration, all computing units discard the camera nodes
with the smallest crime index. The matching and optimizing
process iterates until safety related constraint (10) is satisfied,
or all cameras are matched.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
scheme in three aspects: (i) The comparison among different
task assignment schemes; (ii) The impact of available comput-
ing power; (iii) The impact of key parameters, such as the data
size of videos and the bandwidth of communication channels.
We introduce the simulation setup at first. Then extensive
simulations are provided and analyzed.

A. Simulation Setup

We consider that the camera nodes are placed in the grid
topology and a group of local computing units are randomly

deployed. We assume the communication range of local com-
puting units is up to 100 m. The data size and computing
amount of tasks follow uniform distribution with a mean value
of 5 MB and 1 Gigacycles, respectively [29]. The computing
resources of computing units are distributed within the range
[10, 20] GHz. The channel fading of the communication links
is modeled by the complex normal distribution, CN(0, 1) [30].

The FIM, proposed in this paper, is compared with two task
assignment schemes:
• Greedy assignment scheme: each camera node sends the

proposal to match with the most powerful computing
unit in its communication range. If a computing unit has
enough communication channels to support all camera
nodes, it will hold all video summarization task. If
the received proposals have reached the limitation, the
computing unit will accept the proposal according to the
crime index. The computing resource allocation for each
computing unit is according to (18).

• Random assignment scheme: camera nodes match with
computing units randomly. If the communication limita-
tion is reached, computing units are matched with camera
nodes with respect to the crime index. The computing
resource optimization is carried out according to (18).
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Fig. 3: The comparison between the proposed scheme with
task assignment schemes with network size increasing.

B. Results and Analysis

Comparison among different task assignment schemes: The
performance comparison among our FIM, greedy scheme, and
random scheme is illustrated in Fig. 3. We let the number of
camera nodes vary in [5, 25]. The density of the computing
nodes is set to be a constant value with respect to the number
of camera nodes. Results in Fig. 3 demonstrate that the
proposed FIM achieves significantly better performance over
the other two schemes. This is because the available number
of computing units for each camera node is increasing with
the network size increases. Therefore, FIM algorithm could
exploit more benefits from the diverse choices. However,
greedy and random schemes ignore the possible gain from the
increasing number of computing units. Moreover, resource
optimization for FIM can enhance the gain from diverse
choices, since the matching choice is based on the result of
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resource optimization. Noticing that resource optimization
can also achieve performance gain for greedy and random
schemes. However, the benefit of resource optimization does
not compensate for the loss of matching scheme.
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Fig. 4: Impact of available computing power.

Impact of available computing power: We further compare
the performance of the FIM algorithm with two heuristic
schemes under different available computing power. We set
the number of camera nodes to 15 and the computing power
in each local unit to be varying in [2, 10] Gigacycles. Figure 4
shows that FIM scheme achieves significantly higher perfor-
mance gain over the other two schemes, particularly when
the number of computing units is small. Noticing that FIM is
introduced to adjust the matching choice according to available
computing power when computing resource is insufficient, it is
not surprising that a more significant performance gain can be
observed when the computing power is smaller. Moreover, the
latency of all schemes is reduced slowly when the number of
computing units is large. The reason is that sufficient comput-
ing resource makes all task assignment schemes achieve less
benefit with respect to the variation of computing resource.

Impact of data size : In Fig. 5, we investigate the latency of
different task assignment schemes with respect to the varying
data size of captured videos. The parameter settings are the
same as those in Fig. 4 and the data size of the video varies
within [1, 9] MB. The results shown in Fig. 5 demonstrate that
three algorithms have the same relationship between latency
and the data size of videos. The result shows that the larger
of the data size, the longer of the latency. The result also
demonstrates that the impact of the data size is evident,
especially at large data size. The reason is that when the
data size is large, FIM algorithm not only reduces the latency
in terms of the choice of computing units but also achieves
significant benefits from the transmissions of videos.

Impact of bandwidth: We also consider the impact of the
bandwidth of communication channels. In this evaluation, The
parameter settings are the same as those in Fig. 4 and the
bandwidth of communication channels is set to the range
[0.5, 2.5] MHz. The results shown in Fig. 6 demonstrate that
the performance gaps of three task assignment schemes are
narrowing along with the increasing of bandwidth. When the
communication resource is sufficient, FIM can only achieve
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Fig. 6: Impact of bandwidth.

benefits from computing resource and the loss of greedy and
random schemes is less for transmissions of videos. Fig. 6 also
shows that the impact of bandwidth is more significant when
bandwidth is small. The proposed FIM can achieve 85.6%
better performance compared with random assignment scheme
and 87.3% compared with greedy assignment scheme when
bandwidth is 1 MHz. The reason is that when bandwidth is
small, FIM can obtain more benefit from better communication
channels.

VII. CONCLUSION

In this paper, we have proposed a safety application,
SPATH, to handle safety issues in smart cities. We have
utilized existing cellular infrastructures to transmit surveil-
lance videos from street cameras to the users to identify the
safety status. To handle the large volume of videos, we have
leveraged the vehicles with underutilized computing resources
as the local computing units to summarize videos. Since the
quality of safety provisioning is strongly correlated with the
latency of delivering the videos, we have formulated a latency
minimization problem by jointly considering computing re-
source allocation and computing task assignment. Moreover,
we have developed a Fast Iterative Matching (FIM) algorithm
to solve the latency optimization problem. Simulation results
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show that our proposed scheme can effectively reduce the
latency.
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