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Abstract—This paper describes a neural network with lateral inhibition, which exhibits dynamic winner-take-all
(WTA) behavior. The equations of this network model a current input MOSFET WTA circuit, which motivates the
discussion. A very general sufficient condition for the network to have a WTA equilibrium point is obtained and
sufficient conditions for the network to converge to the WTA point are presented. This gives explicit expressions for
the resolution and lower bound of the input currents. We also show that whenever the network gets into the WTA
region, it will stay in that region and settle down exponentially fast to the WTA point. This provides a speed up
procedure for the decision making: as soon as it gets into the region, the winner can be picked up. Finally, we show
that this WTA neural network has a self-resetting property. Copyright ©.1996 Elsevier Science Ltd
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MOSFET, nonlinear dynamics.

1. INTRODUCTION

Neural networks which pick the maximum from a
collection of inputs are known as winner-take-all
(WTA) networks (Feldman & Ballard, 1982). The
operation of these networks is a mode of extreme
contrast enhancement where only the maximally
stimulated neuron responds and all other neurons
in the network are inhibited. Such networks have
been used extensively in decision making, pattern
recognition, and competitive-learning networks, and
general-purpose  self-organizing neural networks
(Nabet & Pinter, 1991; Sheu et al., 1992; Choi &
Sheu, 1993; Kohonen, 1993; Haykin, 1994; Kaski &
Kohonen, 1994 and references therein). The WTA
networks have also been used in various signal
processing applications, including image feature
extraction (Mahowald & Delbruck, 1989), nonlinear
inhibition (Lazzaro et al., 1989), Hamming network
(Robinson et al., 1992), subthreshold-region signal
processing (Andreaou et al., 1991), silicon binaural
hearing (Mead et al, 1991), image processing
applications (Lee & Sheu, 1991), and video compres-
sion (Fang et al., 1992).

The current literature frequently describes WTA
networks that are constructed using lateral inhibition

Requests for reprints should be sent to Professor Thomas G.
Kincaid, ECS Department, College of Engineering, Boston
University, 44 Cummington Street, Boston, MA 02215, USA.

1141

among the neurons so that the system is a competitive
neural network. Intuitively, if the competitive system
is initiated from a fair start with sufficiently strong
inhibition, the players in this competition will go to
two extremes: win or lose, so that WTA behavior can
be expected (Grossberg, 1973). However, if the lateral
inhibition is weak or lateral excitation is involved in
the competition, the dynamics of the system can be
very complex as illustrated by Ermentrout (1992) and
Lemmon and Kumar (1989). Thus, conditions for
WTA behavior are desirable for the practical design
of such neural networks. There are many strategies
for WTA network designs. MAXNET (Lippmann,
1987) is an architecture of mutual inhibition to select
a maximum, though its efficiency and implementation
are a problem. Motivated by self-organizing algo-
rithms, some iterative neural networks are designed
to pick the largest number in a data set (Yen et al.,
1994, 1995 and references therein). Although these
networks are convenient for computer computation,
they may be very hard to implement in analog
hardware. A number of investigations on analog
implementation have been undertaken and electronic
networks have been designed to implement the WTA
function. Lazzaro et al. (1989) developed a current—
input voltage—output WTA circuit using MOSFET
transistors. This circuit has the advantage that it has
O(N) interconnections. However, the paper only
analyzed the circuit at steady-state and did not
provide the dynamic analysis, which is obviously a
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very important issue for WTA network design.
Majani et al. (1989) generalized the WTA analog
networks to K-winners-take-all networks. Starzyk
and Fang (1993) modified the Lazzaro circuit to
improve the resolution and speed performance by
introducing excitatory feedback. Sheu and his cow-
orkers (Lee & Sheu, 1991; Fang et al., 1992; Sheu et
al., 1992; Choi & Sheu, 1993) systematically
investigated the WTA networks, their VLSI imple-
mentations and various applications. A voltage-input
circuit was developed by Choi and Sheu (1993) using
a cascade configuration to significantly increase the
competition resolution and the high-speed perfor-
mance. More recent circuits described by Serrano and
Linares-Barranco (1995) and by Smedley et al. (1995)
offer solutions to the transistor matching problem.

However, there has been no complete theoretical
dynamic analysis of a circuit to show under what
conditions on the parameters and the inputs the
circuit does have a WTA equilibrium point and
converge to this point. In the examples cited above,
simulations or experiments have been used to
demonstrate that there is an input resolution and a
minimum input required to guarantee WTA opera-
tion. Some cited MOSFET implementations built the
WTA circuits with transistors biased in the subthres-
hold regions in order to achieve the low-power
operation. However, as Choi and Sheu (1993)
noted, these circuits may have some significant
limitations such as low operation speed, small
dynamic range, and limited noise immunity for
engineering applications.

This paper gives the detailed dynamic analysis for
a WTA analog circuit design which is suitable for
MOSFET implementation. The circuit is a fully
connected O(N?) implementation. Although this
may be only suitable for small scale applications,
the dynamic analysis present in this paper provides
for the first time explicit expressions for resolution
and minimum inputs in terms of the circuit
parameters, which serves as the design guide for
MOSFET fabrication and network implementation.
Moreover, we do not assume that all transistors in
the circuit operate in the specific region during the
dynamic transient. The conditions under which the
WTA network exhibits the desired behavior is
divided into two parts. First, necessary and sufficient
conditions on the network parameters are derived for
the existence of a WTA equilibrium point. Second,
sufficient conditions are derived under which the
network goes to the WTA point from a fair start at
the origin. It is also shown that a fair start can be
obtained by zeroing the inputs. To the authors’
knowledge, this is the first systematic dynamic
analysis for the WTA MOSFET circuits.

The organization of the paper is as follows. In
Section 2, we present the MOSFET implementation

Y. Fang et al.

of the WTA network, serving as the motivation for
the subsequent development. This description of this
network is formalized in a set of differential equations
which use a MOSFET device model. A new class of
dynamical neural networks is proposed which covers
a few known neural networks such as shunting and
additive neural networks. In Section 3, the first of our
two part derivation is presented. A set of necessary
and sufficient conditions for the existence of a WTA
point is derived for the general networks. In Section
4, the second part of the derivation is given. Using a
novel analysis, sufficient conditions are obtained for
the MOSFET network to go to the WTA point from
a fair start. The resulting conditions are either
resolution and upper bound conditions on the inputs
or resolution and gain conditions. We also show that
if the neural network gets into the WTA region, then
it will stay there and settle down at the WTA point.
This suggests a quick decision-making procedure: it is
not necessary to wait for the network to reach the
equilibrium point; as long as it gets into the WTA
region, a decision can be made immediately. At the
end of this section we show that the system can be
reset automatically to the fair starting point by
switching off the inputs for a while. Simulation
results are presented in the fifth section to illustrate
the effectiveness of the designed WTA neural
network. Finally, we conclude with some comments
about this research and future research directions.

2. MOFSET IMPLEMENTATION OF WTA
NETWORK

The winner-take-all neural networks we present in
this paper use the metal oxide semiconductor field
effect transistor (MOSFET), and the configuration
for this network is shown in Figure 1.

In such an N neuron network, each neuron
consists of N —1 MOSFETs, one resistor and a
capacitor, which can be the stray capacitance.
Therefore, we need N(N —1) MOSFETs and N
resistors in this network. All MOSFETs, resistors,
and capacitors are identical; therefore, all neurons in
the network are identical. In this circuit, we use the n-
channel enhancement mode MOSFET with threshold
voltage V¥, and physical parameter K. Let
i€{1,2,...,N}. The inputs to the neurons are
currents, which can be generated by photodiodes.
Let J; denote the ith input current, and let v;(z) denote
the voltage on the capacitor of the ith neuron. The ith
neuron is shown in Figure 2. ) )

Consider the ith neuron. For j# i, let If,z), Vé’g),
V((i':) denote the current through the drain, the voltage
between the gate and source, and the voltage between
the drain and the source, respectively, for the jth
MOSFET whose gate connects to the jth neuron (i.e.,

the inhibition from the jth neuron). Let /% and I(é)
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denote the currents through the resistor and the
capacitor in the ith neuron. From Kirchhoff’s current
law, we have

A0 W _Yi_ i)
1,_I§{+I(C+Zl<ds—§+C—dT+21§§,

J#i J#i
hence we obtain
dv,- 1 ij)
CE:—EV,'—FI,*—;ISS. (21)

From the characteristics of a MOSFET (cf. Horen-
stein, 1990; Sedra & Smith, 1991), we have

KD — vy & — (Vi)

£ Ve <V9,0 < Yo < ng) -V
ds = " o : .

KVO — v, ve <v@, v s vy

0, otherwise

and ng) =v+ Vr, Vg) = v; + V7. Taking these last
two equations into the first equation and letting
Ifi? = h(vi, v;), we have

K2(vi + Va)y, — (v + V1)),
\i ?0,-VT <y < Vi — V’r
' Vj ?0,V,‘>Vj— Vr

0, otherwise

where the physical parameter K is determined by the
material and the physical shape of the MOSFET.
Finally, taking this into eqn (2.1), we obtain the
neural network differential equation:

dV,' ,
C—r=—Gvi+1;~ ;h(v,-,vj),z =1,2,...,N, (22)

where G = 1/R is the conductance of the resistor. For
convenience, we call the function A(x,y) the
MOSFET function, and the network (2.2) with the
MOSFET function is called the MOSFET neural
network. For clarity, we rewrite the function h(x, y)
in the following form:

K[2(x + Vr)y — (x+ V1),
y 20,-Vr <x <x- V¢
h(x,y) = ) (2.3)
Ky7 y>01x>y—VT

0, otherwise,
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which is just the characteristics of a MOSFET with a
battery of voltage V't connected to the source.

In the region y 20, —Vp <x <y-—Vr, the
function A(x,y) has a multiplicative term, which
corresponds to the shunting part of the network, this
region is the triode region of a MOSFET. In the
region y =0, x >y — Vr, h(x,y) only depends on the
¥, which corresponds to the additive part of the
network; this region is the constant current region of
a MOSFET.

It is easily observed that the MOSFET function
h(x, y) satisfies the following property:

PROPERTY A. h(x,y) is a nonnegative continuous
Junction which is monotonically nondecreasing in both
variables x and y. Moreover, h(x,y) = 0 for any y <0.

Obviously, the neural network (2.2) is a competi-
tive system. In certain regions, it is shunting, while in
other regions it is additive. Therefore, comparing
with previous implementations such as the shunting
networks and additive networks (Nabet & Pinter,
1991), this is a new implementation of a neural
network.

3. CONDITIONS FOR THE WTA POINT TO
EXIST

The MOSFET implementation above leads us to the
study of the neural network (2.2) for a general
continuous function h(x,y). Most importantly, we
are interested in the WTA properties of the network.
Let I1,5,...,Iy be the external inputs, In.x and
Jubmax be the largest and second largest external
inputs. We assume throughout this paper that 7; > 0
and I; # Ii(i #j,i,j=1,2,...,N). We will use dx/dt
and x interchangeably to denote the derivative of x
whenever convenient. A point v = (vy,va,...,vn)T
(where the superscript T denotes the transpose of a
vector or matrix) is called a WTA point if it is an
equilibrium point of (2.2) and only the component
corresponding to the largest input is positive while
other components are nonpositive. We let v, denote
the state variable which corresponds to the largest
input Iy,,. Then v is the WTA point if it is such an
equilibrium point of (2.2) satisfying: vyax > 0 and
v; €0(j # max). For convenience, let the set
Ct={v=(",-.,n)" [Vmax > 0,v; <0,j # max} be
called the WTA region.

Based on this definition, in order to make the
system (2.2) be a winner-take-all (WTA) network, we
must guarantee that the WTA point exists so that a
decision can be made where the system settles down.
In this section, we present some necessary and
sufficient conditions for the existence of the WTA
point for the system (2.2).

We first present a result for the system (2.2) with a
more general function A(x, y).
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THEOREM 1. Suppose that the function h(x,y) has the
Property A. Then the system (2.2) has a WTA point if
and only if

I <h(0, 5 R),j #max,j=12,... N. (3.1)

Proof. Without loss of generality in the proof, we
assume that I; > L >---> Iy >0. In this case,
Inax = 1.

Sufficiency. Suppose that (3.1) is true; we want to
show that the system (2.2) has an equilibrium point v
such that v; > 0 and v, <O(j # 1). We only need to
show that there is a WTA point in the WTA region
C*t = {v|v1 > 0,v; <0,/ # 1}. In fact, in this region,
noticing that h(x,y) =0 for y <0, we have
—Gv+5L =0, 1e.,, vy=IR>0 and —GVj + I
—h(v;,v1) =0, we only need to show that for any
Jj#1, the equation —Gv;+1,—h(v,1R) has a
nonpositive  solution. Let  F(x)=-Gx+1I;
—h(x,;R), then F(x) is a continuous function, and
F0)=1I;—h(0,1R) <0 and for T>0, we have
F(-T)=GT+IL—h(—-T,iR) 2GT— h(0,,R) > 0
for sufficiently large 7. From the intermediate
theorem of continuous functions, we conclude that
there exists a point v; € [T, 0] such that F(v;) = 0.
This means the existence of a WTA point.

Necessity. We need to show that if the system (2.2)
has a WTA point, then (3.1) must be true. In fact,
suppose that (3.1) is not true, then there is j # 1 such
that 1; > A(0,1R). Let v be the WTA point, ie.,
v1 >0 and v; <O(j # 1). We know that vi = 1R > 0
and —Gvj+1;—h(v;1R)=0. In particular,
—Gv; + I; — h(v;, ; R) = 0. From this and the mono-
tone nondecrease of A(x,y) in x, we have
Gvi=1I;,— h(vi, R} =I,— h(0,I, R) > 0, which con-
tradicts the fact that v; <0. Therefore, (3.1) must be
true. [

The proof is illustrated graphically in Figure 3.
The graph shows that the theorem is simply a
statement that A(x, y) and the “load line” for R and
source J; have an intersection where v; <0(j # 1).

For the MOSFET neural network, we have the
following result.

CoOROLLARY 1. The MOSFET neural network (2.2)
with the MOSFET function h(x,y) has a WTA point if
and only if either

vi 1 L »
R > I =/ , 32
max{lm 2KV Toe 21m} (3.2)
or
1 VT
— ﬁ <R < ﬁ, (3.3)
VK T Trnex

for all j +# max.
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I1-Gvy h(v,Rly)

h(0,14R)

Vio 0 R{; vi

FIGURE 3. The graphic proof of Theorem 1.

Proof. For the MOSFET neural network, the
function h(x,y) can be specified, and we evaluate
h(0,InaxR). Since IniR >0, the corresponding
MOSFET is ecither in the triode region or the
constant current region. In the triode region, we
have — V1 <0 <IpaxR— V1, 18, R 2V1/lnax. The
condition (3.1) becomes

I; <h(0, InaxR) = 2RKV 1l pax — KV,

ie.,

R A

R> =/ .
Z KV T | 2o

This reduces to the first condition in the corollary.
Similarly, in the constant current region, we have
0> InaxR— V1, ie.,, R< Vr/lhx. The condition
(3.1) in this case becomes

I; <h(0, I R) = KIZ, R,

1e.,

%

R >

-

This reduces to the second condition of the corollary.
This completes the proof. []

For practical network design, the following
corollary gives a useful set of sufficient conditions
for the existence of a WTA point.

COROLLARY 2. The MOSFET neural network (2.2)
with the MOSFET function h(x,y) has a WTA point if

KViR =1, (3.4)

and

(3.5)
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Proof. As indicated in the proof of Corollary 1, when
Ipax =Vr/R, the MOSFET is in the triode region,
and condition (3.1) becomes I; <2KVr1Rlps — KV3,
which can be guaranteed by
Inax <2KV1RIp.y — KV%. Solving this for . gives

I <VT KVTR
max = 2KVIR ’

Since Inax = V1/R, this condition is met if the term in
the parentheses is no more than one, which is the case
if KV4+R >=1. From Corollary 1, if I;,, = V1/R and
(3.4) is true, there exists a WTA point.

If Luax < V1/R, the MOSFET is in the constant
current region, and the condition (3.1) becomes
I; <KP,_R, which can be assured by
Imax <KI2, R. This is met if (3.5) is true. This
completes the proof. []

The two conditions of this corollary represent a
gain condition and a threshold condition, respec-
tively. The dimensionless expression KVtR is the
incremental gain of the transistor-resistor combina-
tion when the input gate voltage is Vr/2. Inequality
(3.4) says this gain exceeds unity to ensure the
existence of a WTA point. The second condition,
the inequality (3.5), says that if the largest input
current I,y is more than a threshold 1/KR?, then the
existence of a WTA point is guaranteed.

4. WTA BEHAVIOR AND CONVERGENCE
ANALYSIS

In the last section, we provided a set of conditions for
the system (2.2) to have a WTA equilibrium point.
However, in order to guarantee that the neural
network (2.2) is so designed as a WTA network, we
have to show that the system (2.2) will settle down to
the WTA point. It seems impossible to design a
network (2.2) that will always converge to the WTA
point for any external inputs no matter where it
starts, because of the nonlinearity involved in the
function A(x,y). In order to get the natural winner
from a closed competitive system, a fair start should
be expected. A natural fair starting point is the origin,
ie., each competitor has nothing at the very
beginning. In this paper, we will always start the
system (2.2) from the origin, and a resetting
procedure will be used whenever necessary.

There has been intensive research on the conver-
gence of dynamical neural networks (Grossberg,
1988; Hirsch, 1989 and references therein). The
Cohen—Grossberg theorem (Cohen & Grossberg,
1983) provided the most general convergence
theorem for neural networks, and a general Lyapu-
nov function construction guideline was proposed.
It has been shown that the additive and shunting
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neural networks with symmetric interconnections
between neurons use global Lyapunov functions so
that convergence of the networks can be con-
cluded.

It is not known if the system (2.2) can be converted
into the Cohen-Grossberg model. Even for the
MOSFET neural network (2.2), the MOSFET
function A(x,y) cannot be written as a sum or
product of two independent functions h;(x) and
hy(y); hence we cannot apply the Cohen—~Grossberg
theorem.

In this section, we will utilize the special structure
of the MOSFET function h(x,y) for the principal
result, Theorem 5. However, results for a general
h(x,y) with Property A are obtained in the theorems
leading to this result.

We first want to show the boundedness of the
trajectory of the neural network (2.2).

THEOREM 2. If the function h(x,y) has the Property A,
the trajectory of the neural network (2.2) is bounded.

Proof. We only need to show that the trajectory of the
system (2.2) will eventually stay in a bounded set. If
v; > Iip, we have

dv 1L 1 1
oy, o Vi) < - = i _'<O,
a~ RrRC"TC C;h(“"”) RC"TT

hence the v;(¢) will decrease and v;(f) <IR, i.e., vi(¢)
is bounded from above. If

vi< LiR—Y_ Rh(0,LR) <0,
A
then, from A(v;,v;) <h(0,v;) <h(0,LR), we have for
sufficiently large ¢

dv;
— > —2e%itc (0,R)
dt ;

where we use the fact that h(x,y) is nondecreasing
in both x and y; hence v;(¢) will increase, ie.,
vi(t) is also bounded from below. This completes
the proof. [

The trajectory of (2.2) also has the so-called order-
preserving property which we formalize as follows.

THEOREM 3. For any continuous function h(x,y), the
neural network (2.2) is order-preserving: if I; > I; and
vi(to) > v;(to), then for any t =1y, vi(t) > v(1).

Proof. A(t) = v;(t) — v;(t), then A(?) is a continuous
function and A(#) > 0. Suppose that the claim in the
theorem is not true, then there exists a #* > o such
that A(r*) = 0and A(r) > 0for ty <t <. At ", we
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have v;(r*) = v;(*); thus, subtracting the jth equation
from the ith equation in (2.2), we obtain

BN _ LAWY + (- ) = o), (o)

= h(v(),v(r)] =L - I; > 0.

Since dA(t)/dt is also a continuous function, from the
above  inequality, there exists a  small
§>0(6 < —1ty) such that dA(¢)/dt>0 in the
interval [¢* — §,¢* + 6], i.e., A(2) is strictly increasing
in this interval, hence A(#*) > A(¢* — ) > 0; this is
contradictory to the choice of #*. [J

From the system equations of (2.2), it is easy
to see that when the system starts from the rest
state, i.e., the fair starting condition, all output
voltages will increase and get into the positive
orthant. As we expect, the voltage corresponding to
the largest input current will initially be the
largest. From the order-preserving property and the
system equations, this voltage will always stay
positive, since the trajectory cannot get into the
negative orthant. Therefore, it suffices to study
the conditions under which the system must enter
and stay in the WTA region. Since the system
equations have a solution when all but one voltage
are negative, the following result, Theorem 2,
guarantees that whenever the network enters the
WTA region, the network will stay in that region
and converge to the WTA point. Hence the system
has at least local WTA behavior. Before we give
the result, we need the following lemma.

LemMMA. (a) (Comparison principle). Let g(t,x) be
a scalar continuous function, and let m(t) be the
solution of the scalar differential equation:
m(t) = g(t,m(r)) with m(ty) = my. Then for any
continuous function x(t) satisfying the differential
inequality: x(t) <g(t,x(1)) with x(t)) = mg, we have
x(f) <m(t) for any t =ty. Similarly, for any
continuous function x(t) satisfying the differential
inequality: x(t) 2g(t,x(1)) with x(to) = my, we also
have x(t) Z=m(t) for any t = 1.

(b) If the continuous function y(f) =0 satisfying
»(&) < —ay(t) + g(t) where a > 0 and g(t) exponen-
tially converges to zero, i.e., there exist positive
numbers M >0 and 8 > 0 such that |g(t)| <Me ™,
then y(1) also exponentially converges to zero. In fact,
Sfor any v < min{a, 3}, there exists positive number
M such that |y(t)] <M,e™.

Proof. The rigorous version of (a) and its proof can
be found in Lakshmikantham and Leela (1969). We
only need to prove (b). From -y < min{a, #}, there
exists a small positive number € such that
v+ e <min{a,B}. Then from the comparison
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principle, we have

14
0 <)1) <ey(0) +L e Ng(r)dr <ey(0)

! t
+J e~ =B gr <e™ +j e~ (rral=T) ;—lr+or
o 0

x dr = e "[y(0) + Mte™].

However, y(0) + Mte ¢ is bounded; therefore, there
exists a positive number M; >0 such that
¥(0) + Mte= <M,. Taking this into the above
inequality, we can complete the proof of (b). []

THEOREM 4, Let C* denote the WTA region. Suppose
that the function h(x,y) has the Property A; then
whenever the trajectory of (2.2) starting from the
origin enters the WTA region C*, it will stay there
forever. Moreover, if the function h(x,y) is a
Lipschitzian function, it will converge exponentially
to the WTA point with convergence rate at least -y for
any v < 1/RC.

Proof. Since A(0,0) =0 and 7; >0, initially, the
system (2.2) will get into the positive orthant.
Without loss of generality in the proof, we assume
that 1 >5L>--->Iy>0 and C=1. Then,
Ct = {v = (vl,vz, e ,vN)T|v1 > 0 and Vj <0,j# 1}
From (2.2) and the nonnegativeness of A(x,y), we
have [using x(¢) to denote the differentiation dx(z)/dt
for convenience] v;(t) € — Gvi(t) + I;, and

13
. I;
l.’,'(t) SE_GIV,'(O) + J e_G('—T)I,'dT = £(1 — e'G‘) < == I,R
o G G

Suppose the first claim in Theorem 4 is not true, i.e.,
the network (2.2) enters the WTA region and then
gets out of the region later on. Then there exist #{ > 0
and t, > 0 such that v;(21) = v2(2) = 0 [notice that in
considering only v, we have used the order-preserving
property of the trajectory of (2.2)], i.e., v2(¢) gets into
the region C* at #; and gets out of the region C* at 5.
In this case, we must have v,(#;) <0 and v (#;) >0
[otherwise, if v2(¢1) > 0, then vy(2) > v2(t1) = 0 for
the time ¢ sufficiently close to #; from the right, hence
the network does not enter the WTA region at 1,
which contradicts the definition of #. A similar
argument applies to the other case]. On the other
hand, in [t;,%,], we have v,(f) <O0(i # 1); therefore,
f’](l) = —le(l) +5L = - G(I]R) +5 =0, so we
have v((#;) <v(t2). Moreover, from (2.2) we have

io(t2) = —Gna(t) + b = Y h(na(t), vi(12))
2
<h —h(0,v(8)) <L —h(0,vi (1))
= 1)2(!\) <0,
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where we have used the fact that h(x,y) is
monotonically nondecreasing in both x and y. This
contradicts the fact that v,(#,) > 0, and completes the
proof of the first part.

Next, we want to show the exponential conver-
gence. Let £y be the time instant which the trajectory
enters the WTA region C*. Then from the first part
of the theorem, for any ¢ >, we have

Ci’](t) = -—GV](I) + Iy

Cyi(t) = —Gvy(t) + L — k(1) m (1)),j # 1. (4.1)

Solving the first equation, we obtain
vi{f) = LR + Me U=,
where
M =v (%) +hR,a=1/RC.

Since the function h(x,y) is a Lipschitzian function,
there is a positive constant L >0 such that
th(x1,y) —h(x2,y)| <Llxi—x2|  and  |h(x,y1)
—h(x,y2)| <L{y1 —y2|- For any j#1, we have
vj = —av;+ I;/C — h(v;,v1)/C. Let v* be the WTA
point, then 0=-aV;+1;/C~h(v,hR). If
e(t) = vj(#) — v;, from the above two equations, we
obtain

é(t) = —ae(t) — C'(h(v(1), (1)) — h(¥;, 1R)).  (4.2)

For simplicity, we let

&) =

From (4.2), we obtain [noticing that v, (¢} <I,R]

) = — ae(r) — C! [h(vj(;), w () - h(v;, vl(t))]
= — [a+ C'gi(t)]e(r).

From the comparison principle and noticing that
£21(t) =0, we can easily obtain that

e(t) > exp (_ Jx (a+C g, (T))dr) > — Je(0)[e=),

10

(4.3)

On the other hand, from (4.2), we have
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é(1) = —ae(t) — C g1 (De(t) — C'g2 ()0 (1) — LR)
< - (a + C_lgl(t))e(t) + MC ' Ke—ol—10)

Following the same procedure as in the proof of
Lemma (b) and the fact that g;(¢) =0, we can easily
obtain that there exists a positive number M; > 0
such that e(f) <M;e""%) where v < a. Combining
this and (4.3), we can obtain that for any v < « there
exists a positive number M; >0 such that
le(£)| <Mae=%)_ This completes the proof. []

This theorem also suggests a speeding procedure
for decision making. If the network (2.2) has a fair
start, i.e., initiates near the origin, then whenever the
network enters the WTA region, we can stop. The
winner is found, because the corresponding WTA
region has the same property as the WTA point for
the purpose of maximum selection. This may reduce
the processing time significantly.

Now, in order to prove the global convergence, we
only need to show that the trajectory of (2.2) starting
from the origin cannot stay in the region where at
least two components are positive. However, for the
general function A(x,y), even under the conditions in
Property A, the convergence of the network (2.2) is
unknown. The general Cohen—Grossberg theorem
cannot be applied to the model (2.2) because of the
inseparability of the function A(x,y). We will only
give a global convergence analysis for the MOSFET
neural networks. Sufficient conditions are obtained so
that the trajectory of the MOSFET neural network
(2.2) will not stay forever in the region where at least
two components are positive; thus the network (2.2)
initiating from the origin will converge to the WTA
point.

THEOREM 5. Suppose that (3.2) or (3.3) holds. Let
Loy and Igunax be the largest and the second largest
inputs, respectively. Under (a), the resolution condi-
tion.

1
Imn.x - Isubmax > W;

(b) either the upper boundedness condition:

Toub max < KVT[ma-x{ VT, 2(Imax
+2KRVA — V1),

- Isu max R
baas) (4.4)

or the gain condition:

1
KVTR > 5;

the trajectory of the MOSFET neural network (2.2)
starting from the origin does not have an invariant set
in the region where at least two components are
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positive, i.e., the trajectory will not stay in such a
region forever and it will enter the WTA region.
Therefore, the trajectory of the MOSFET neural
network initiating from the fair start will always
converge to the WTA point. This implies that the
network so fabricated is a WTA network.

Proof. Without loss of generality, we assume that
C=1land I > 5 >--->Iy>0. From the order-
preserving property, we have vy (£) > v2(¢) - - - > va(1).
Suppose that the claim in the theorem is not true,
then for any t > 0, we must have v((z) > v,(2) > 0.
The first two network equations in (2.2) become

b= =G+ — A, y) (4.5)
J#

vo=—-Gva+ 1 — Zh(Vz, ). (4.6)
j#2

Let e(?) = vi(£) — v2(2); then we have

e(t) = —Ge(t) —+ (I] - 12) + [h(V2, V[) - h(V], Vz)]
+ 37 [A(v2, ) = h(n, ). (4.7)

Jj#12

Since for any x >y >0, we have x >y — V', hence
h(x,y) = Ky*. Moreover, for y <0, h(x,y)=0.
Taking these into (4.7), we obtain

é=—Ge + (I — ) + h(vs, ) — Kv3. (4.8)
If vy <vy — V7, Le., v + VT <y, then

h(va,v1) — Kv} = K[2(v2 + V)vi — (2 + VT)z] - Kv}
>K(v + Vi) =K > 0.

If vy > vy — VT, then
h(v2,m) — Kv3 = Kv} — Kv3 > 0.

Since the system (2.2) is initiated from the origin, the
system starts in the region v >v;— Vg, le,
e(t) < V1. In this region, we have (noticing that
v2 > 0)

é=—-Ge+ 1l —L+KV¥—Kv#?
1 2

=—Ge+ 1 — L+ K(e+2v)e

2
> ~Ge + 1 —12+Ke2:K( _£.>

2K
Y 7
PR T aKR?

1
211_12_4_1(715>0’
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where we have used the resolution condition (a).
Thus, for e(f) < V7, e(f) will eventually exceed the
threshold Vr. Let Tp be such time instant that
e(t) =V for t = Ty. This means that the system will
stay in the region v; < v; — Vr; therefore, we have

¢ > —Ge+ (I — ) + K(va + V1)’ —Kv?
> —Ge + (I, - I,) + KV3.

From the comparison principle, we obtain for ¢t =Ty

e(t) > e =Te(To) + [(h — L)R + KRVE] (1 — 71T},

1e.,

vi(t) > va(t) + e CTle(Ty)
+ [(1 — B)R + KRVZ] (1 — 70U~ T).

Then, for ¢t > Ty, we have v;(¢) <v(¢) — Vr, and
substituting into (4.6)

1-12(t) < - GVz(t) + 12 - h(VZ, V])
= —GVZ(I) + 12 - K[Z(Vz + VT)vl - (Vz(t) + VT)Z].
(4.9)

Suppose that the boundedness condition holds. Let
a(6) = max{ V1, [2(Inax — Fsub max) R + 2KRVE](1 — 6) — V1}.

If (4.4) is true, then there is a sufficiently small § > 0
such that 5 < KVT[a(é)]z. Also, there exists a
T > To > 0 such that

e %" Te(Ty) + [(I) — L)R + KRVE|(1 — e 7))
> [(I — L)R+ KRVZ](1 - 6).

Thus, for ¢ > T, we have v(t) > vo(t) + [(I; — )R
+KRVZ|(1 — &) and w(f) =vy(t) + V1. Taking this
into (4.9), we have for t > T

\}z(t) = —GVZ(I) + Iz - K(Vz(t) + VT)[2V1(t) - (V2 + VT)}
< = Gna(0) + L — K(n() + V1) (2 (1) + a(8))-
(4.10)

Let m(¢) be the solution of the equation:

m(f) = ~Gm(t) + b — K(m(t) + V1) (m(t) + a(6)),m(T)
= w(T).
If I < KVr[a(6))?, this system has a negative stable

equilibrium point (similar procedure as in the proof
of Theorem 1) and when m(7) = v,(T) > 0, m(¢) will
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become negative for sufficiently large ¢. However,
using the comparison principle in (4.10), we have
v2(t) <m(t) for ¢t >T. Hence for sufficiently large ¢,
v2(f) will become negative. This contradicts the
assumption that v,(z} > 0. Therefore, the first part
of the theorem is proved if the boundedness condition
holds.

Suppose that the gain condition holds, following
the same procedure, we know that for sufficiently
large ¢, we have e(f) = V7, so, in a similar manner,
from (4.8) we have

é = —Ge+ 1, ~ I+ h(v2, 1) — KV}
=—Ge+ 1 — L+ K[2(v; + V1)v — (v, + V1)?] — Kv?
=—Ge+ I — L+ K(v, + V1)(2v, — v, — V1) — K¥2
=—Ge+ 5 — L+ K(v+ V1)(2e — V1 + v;) — Kv2
=(2KVr~Gle+ 5 — I, — KV2 + 2Kwe
>(KVr~Gle+ 1, —hL — KV: =ae+ b, (4.11)

where a =2KVr — G and b=1, — I, — KV2. From
the gain condition, we know that a > 0. Let #y be the
time instant that e(f) > Vr, then from the compar-
ison principle and (4.11), we have for all 1 >

1
e(t) =e"e(ty) + bJ e dr
fo
4.12
b (4.12)

= (s D
a a

Since e(2p) = V1, we have

b (h - L) - KV3
L)+= 2Vp+ 2 T
o) +2 2Vr+"—5 —5
(h — L)R— KVAR
=V
Tt T kIR =1
_2KVEZR-Vr+ (I — h)R— KVZR
- 2KViR -1
_ KV%R - Vr+ (11 - Iz)R
- 2KVTR -1
L KVAR— V1 + (gr)R
- 2KViR—1
(k¥R -Y)’

= 3KREKVR-1) "

where we have used the resolution condition. From
this and (4.12), we obtain lim, ,,, e(t) = +o0; hence
v1(?) is unbounded. This contradicts the fact that the
trajectory is bounded. This completes the proof for
the case when the gain condition holds. The rest of
the theorem can be obtained from the previous
theorems. []

Notice that the resolution condition involves the
difference between the largest input and the second
largest input. This is reasonable, because we can
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easily observe that when these two are equal, the
system will not go to the WTA region; the voltages
corresponding to these two inputs will be identical.
We also notice that the gain condition is independent
of the inputs, which is a desirable property for
practical design.

As we have mentioned before, in order to
effectively use this kind of WTA network (2.2), we
have to start from the origin, i.e., the fair starting
point. One way is to use switches to reset the network
to the origin whenever a new input vector is about to
be tested, i.e., discharge the capacitors before the
network is used. However this needs some additional
circuits to implement. Fortunately, the network (2.2)
has an intrinsic resetting procedure, which will be
discussed next. The following result shows that we
only need to switch off the input currents for some
time and the network (2.2) will finish the resetting
task.

THEOREM 6. (Self-Resetting Theorem) If the function
h(x,y) has the Property A and also satisfies Lipschitz
condition, then when the external inputs are switched
off, ie, I =0(i=1,2,...,N), the neural network
(2.2) will globally exponentially converge to the origin,
the fair starting point, with the convergence rate =y for
any v < 1/RC; hence the network has an intrinsic
resetting property.

Proof. When the external inputs are switched off, the
network reduces to the system: (without loss of
generality, we assume that C = 1)

b= =Gvi— Y h(vi,v), i=12,...,N. (4.13)
i#i

First, we want to show that (4.13) has a unique
equilibrium point. Obviously, the origin is an
equilibrium point of (4.13). Let v=(v,...,vx)" be
the equilibrium point. Then

—-Gv; — Eh(vi, v,-) =0,

J#i

so v; <0 for any i=1,2,...,N. According to the
Property A, we have h(x,y) = 0 for y <0. Therefore,
we have

0=-Gv; — Zh(v;, v,-) = —Gv;,
Jj#i

so v; =0, i.e., the origin is the unique equilibrium
point of (4.13).

Next, we want to show that if there exists a ¢; such
that v;(#) <0, then for all ¢+ >#, v() <0. This is
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almost obvious, because if there exists another #; such
that v,(#,) >0, we have

\'),‘(Iz) = —Gv,'(tz) - Zh(v,-(tz), Vj(tz)) < - GV;(I2) QO,
J#i

so v;(?) cannot cross the boundary.

From this argument, we obtain that there exists a
T > 0 and m such that for all 7 > T, we have (without
loss of generality, we can still use such indexing)

vi(t) 20, i=12,....m; (1) <0, j=m+1,...,N.

Then the system (4.13) reduces to the following
system:

b=—Gvi— 3 h(v,w),i=1,2,...,m. (4.14)
k#i

b=—Gv— > h(vw),j=m+1,...,N.  (415)
k=1

From (4.14), we have v; <Gv;, and from the
comparison principle, we have 0 <v{s) <
e‘G("nv,-(T); thus, there exists an M > 0 such that
[vi(2)] < Me=CU-1) e, (4.14) globally exponentially
converges to its origin.

Because h(x,y) satisfies the Lipschitz condition,
there exists a constant L > 0 such that 4(0,y) <Lly|.
Also, since vi(t) <0 for t ZT(j=m+1,...,N), we
have A(v;(t),y) <|y|. Thus, from (4.15), for t > T and
Jj€{m+1,...,N}, we have

50) > = Gyl) = 3RO m() > — Gyl — LY wld)
k=1 j=1

Applying the same procedure as in the proof of the
lemma (b) and noticing that 0 <<w(¢)
<MeCU=0)(k=1,2,...,m), we can conclude that
v;(¢) will globally exponentially converge to zero with
convergence rate -y < 1/RC. This completes the
proof. [J

It is useful to extract from the previous results a set
of conditions which is easier to use for network
design. The following corollary gives simplified
conditions for the MOSFET neural network to
always converge to a WTA point.

COROLLARY 3. For the MOSFET neural network (2.2)

with the MOSFET function defined in (2.3), under (i)
the gain condition

KViR > 1;
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(ii) the resolution condition and lower bound condition:

1 1
Jinax — Tsubmax Zmylmax > ﬁi;

the trajectory of the MOSFET network (2.2) starting
from the fair condition, i.e., the origin, will exponen-
tially converge to the WTA point, hence the network
has WTA behavior. Moreover, the network also has the
self-resetting property: when the network external
inputs are switched off, then the network will globally
exponentially converge to the fair condition, hence in
order to effectively use this WTA network, switch off
the inputs before applying the new inputs. The time
constant for the overall network is approximately equal
to the time constant of the RC circuit, i.e., RC; hence
the convergence rate for the WTA network is
approximately equal to 1/RC.

Proof. From Corollary 2, the gain condition and
the lower bound condition guarantee the existence
of a WTA point. From Theorem 5, the gain
condition and resolution condition assure the
convergence property. []

Remarks.

(1) The conditions for the existence of a WTA point
and the convergence do not depend on the
capacitance; this may be helpful in practical
design. However, the capacitance does affect the
convergence speed.

(2) Since if Toax — Tubmax > 1/KR2, then
Tpax > 1 / KR? can be guaranteed, so simpler
conditions for the MOSFET network (2.2) to
have WTA behavior are (a) the gain condition
KVrR>1 and (b) the resolution condition
Inax — Tsubmax > 1/KR?. The basic design guide-
line is to choose R and K to be appropriately
large. However, R should not be too large
because that will slow down the convergence
speed. A compromise has to be made.

Examples show that when the resolution, gain, and
boundedness conditions are not satisfied, the network
still often exponentially converges to the WTA point
if it exists. We conjecture that without the resolution,
gain and boundedness conditions, as long as the
WTA point exists, the MOSFET network (2.2)
starting from the fair starting point will always
converge to the WTA point. However, we have not
been able to prove this yet. This forms a fruitful
research direction for the future.

5. ILLUSTRATIVE SIMULATIONS

In this section, we present a simulation to demon-
strate the use of the theoretical results. A circuit
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FIGURE 4(a). WTA behavior of a two-neuron MOSFET neural network; (b) WTA behavior of a two-neuron network with self-resetting.

implementation of this network has been reported by
Kane and Kincaid (1995); however, the parameters
were not optimized and the circuit was rather slow. In
our present example, let N =2, assume that
I > I, > 0 and use a capacitor of 1 pF. In practice,

this may actually have to be an integrated capacitor
to avoid using the variable stray capacitances.
Choose a resistor of 100 k2, and a MOSFET with
physical parameters K = 40 pA / V2 and a threshold
voltage V1 = 0.7V. From the simplified conditions of
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Corollary 3, the resolution is 1) — I, > 1/(4KR?)
=0.625 uA, and the current lower bound is
I > 2.5 uA. Since KVtR =2.8 > 1, the gain condi-
tion is satisfied. Figure 4 shows the results of the
differential equation (2.2) associated with this net-
work. The current inputs are Iy = 20 pA, L = 17 pA.
Notice that the first condition in Corollary 1 is also
easily established. Therefore, the network with these
inputs will converge to the WTA point. Figure 4a is
the time history of the voltage outputs. Although the
network is not settling down in 100 ns, from our
convergence analysis we know that a decision can be
made at 43 ns, because at that instant, the network
gets in the WTA region (v; > 0 and v, < 0), so the
neuron 1 corresponds to the winner.

Figure 4b shows that the WTA network is self-
resetting. We first test the WTA behaviour with
above input currents, switch off the input at 100 ns
for about 250 ns, then swap the input values between
I, and I, at 350 ns. The simulation shows that at the
beginning, the network picks up the winner I,. After
we switch off the currents, the network will settle
down automatically to the fair starting condition.
When the values of I} and I, are swapped, the
network can then pick up the new winner I;. This
simulation confirms our theoretical results for the
MOSFET WTA networks.

6. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the modelling, analysis,
and MOSFET implementation of dynamical WTA
neural networks. Motivated from this, a new class of
WTA networks is formalized. We have obtained a set
of necessary and sufficient conditions for the
existence of a WTA point for this class of neural
networks; then a rigorous proof for the convergence
of the MOSFET network is given. The computer
simulations and experimental results show that the
network so designed worked according to the theory.
However, the convergence analysis of this general
class of neural networks has not been done; it is still
under investigation,

REFERENCES

Andreaou, A. G. et al. (1991). Current-mode subthreshold MOS
circuits for analog VLSI neural networks. IEEE Transactions on
Neural Networks, 2(2), 205-213.

Choi, J., & Sheu, B. J. (1993). A high-precision VLSI winner-take-
all circuit for self-organizing neural networks. JEEE Journal of
Solid-State Circuits, 28(5), 576-594.

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global
pattern formation and parallel pattern formation by competi-
tive neural networks. IEEE Transactions on Systems, Man and
Cybernetics, SMC-13, 815-826.

Ermentrout, B. (1992). Complex dynamics in winner-take-all
neural nets with slow inhibition. Neural Networks, 5, 415-431.

1153

Fang, W. C,, Sheu, B. J., Chen, O. T. C,, & Choi, J. (1992). A VLSI
neural processor for image data compression using self-
organizing neural network. IEEE Transactions on Neural
Networks, 3(3), 506-518.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and
their properties. Cognitive Science, 6, 205-254.

Grossberg, S. (1973). Contour enhancement, short term memory,
and constancies in reverberating neural networks. Studies in
Applied Mathematics, 52, 213-257.

Grossberg, S. (1978). Competition, decision, and consensus.
Journal of Mathematical Analysis and Applications, 66, 470-493.

Grossberg, S. (1988). Nonlinear neural networks: principles,
mechanisms, and architectures. Neural Networks, 1, 17-61.

Haykin, S. (1994). Neural networks; a comprehensive foundation.
New York: Macmillan College Publishing Company.

Hirsch, M. W. (1982). Systems of differential equations which are
competitive or cooperative, I: Limit sets. SIAM Journal of
Mathematical Analysis, 13, 167-179.

Hirsch, M. W. (1989). Convergent activation dynamics in
continuous time networks. Neural Networks, 2, 331-349.

Hopfield, J. J. (1984). Neurons with graded responses have
collective computational properties like those of two-state
neurons. Proceedings of the National Academy of Sciences USA,
81, 3088-3092.

Horenstein, M. N. (1990). Microelectronic circuits and devices.
Englewood Cliffs, NJ: Prentice-Hall.

Kane, J. S., & Kincaid, T. G. (1995). Optoelectric winner-take-all
VLSI shunting neural networks. IEEE Transactions on Circuits
and Systems II, to appear.

Kaski, S., & Kohonen, T. (1994). Winner-take-all networks for
physiological models of competitive learning. Neural Networks,
7, 973-984.

Kohonen, T. (1993). Physiological interpretation of the self-
organizing map algorithm. Neural Networks, 6, 895-905.

Lakshmikantham, V., & Leela, S. (1969). Differential and integral
inequalities: theory and applications, Vol. 1: ordinary differential
equations. New York: Academic Press.

Lazzaro, J., Ryckebusch, S., Mahowald, M. A., & Mead, C. A.
(1989). Winner-take-all networks of O(N) complexity. In D. S.
Touretzky (Ed.), Advances in neural information processing
systems I (pp. 703-711). San Mateo, CA: Morgan Kaufmann.

Lee, J. C., & Sheu, B. J. (1991). Analog neuroprocessors for early
vision processing. In H. S. Moscovitz, K. Yao & R. Jain (Eds)
(pp- 319-328). VLSI signal processing IV. New York: The IEEE
Press.

Lemmon, M., & Kumar, B. V. K. V. (1989). Emulating the
dynamics for a class of laterally inhibited neural networks.
Neural Networks, 2, 193-214.

Lippman, R. P. (1987). An introduction to computing with neural
nets. IEEE ASSP Magazine, 4, 4-22.

Mahowald, M. A., & Delbruck, T. (1989). Cooperative stereo
matching using static and dynamic image features. In C. Mead
and M. Ismail, Analog VLSI implementation of neural systems.
(Eds), Norwell, MA: Kluwer Academic.

Majani, E., Erlanson, R., & Abu-Mostafa, Y. (1989). On the K-
winners-take-all network. In D. S. Touretzky (Ed.), Advances in
neural information procesing systems I (pp. 634-642). San
Mateo, CA: Morgan Kaufmann.

Mead, C. A., Arreguit, X., & Lazzaro, J. (1991). Analog VLSI
model of binaural hearing. IEEE Transactions on Neural
Networks, 2(2), 230-236.

Nabet, B., Darling, R. B, & Pinter, R. B. (1989). Analog
implementation of shunting neural networks. In D. S§.
Touretzky (Ed.), Advances in neural information processing
systems I (pp. 695-702). San Mateo, CA: Morgan Kaufmann.

Nabet, B., & Pinter, R. B. (1991). Sensory neural networks: lateral
inhibition. Boston, MA: CRC Press.

Robinson, M. E., Yoneda, H., & Sanchez-Sinencio, E. (1992). A



1154

modular CMOS design of a Hamming network. IEEE
Transactions on Neural Networks, 3(3), 444-456.

Sedra, A. S., & Smith, K. C. (1991). Micro-electronic circuits, 3rd
edn. New York: HRW.

Serrano, T., & Linares-Barranco, B. (1995). A modular current-
mode high-precision winner-take-all circuit. IEEE Transactions
on Circuits and Systems—II: Analog and Digital Processing,
42(2), 132-134.

Sheu, B. J,, Choi, J., & Chang, C. F. (1992). An analog neural
network processor for self-organizing mapping. In ISSCC
digital technology papers (pp. 136-137). San Francisco. CA.

Simpson, P. K. (1990). Artificial neural networks: foundations,
paradigms, applications, and implementations. New York:
Pergamon Press.

Smedley, S., Taylor, J., & Wilby, M. (1995). A scalable high-speed

Y. Fang et al.

current-mode winner-take-all network for VLSI neural applica-
tions. JEEE Transactions on Circuits and Systems—I: Funda-
mental Theory and Applications, 42(5), 289-291.

Starzyk, J. A., & Fang, X. (1993). CMOS current mode winner-
take-all circuit with both excitatory and inhibitory feedback.
Electronics Letters, 29(10), 908-910.

Yang, J. F,, Chen, C. M, Wang, W. C,, & Lee, J. Y. (1995). A
general mean-based iterative winner-take-all neural network.
IEEE Transactions on Neural Networks, 6, 14-24.

Yen, I. C,, Chang, F. J., & Chang, S. (1994). A new winner-take-all
architecture in artificial neural networks. IEEE Transactions on
Neural Networks, 5, 838-843.

Yuille, A. L., & Geiger, D. (1995). Winner-take-all mechanism. In:
M. A. Arbib (Ed.), The handbook of brain theory and neural
networks (pp. 1056-1060). Cambridge, MA: The MIT Press.



