An Efficient Query Scheme for Privacy-Preserving
Lightweight Bitcoin Client with Intel SGX

Yukun Niu*, Chi Zhang*, Lingbo Wei*, Yankai Xie*, Xia Zhang', and Yuguang Fang'
*School of Information Science and Technology
University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
TDepartment of Electrical and Computer Engineering
University of Florida, Gainesville, Florida 32611, USA

Abstract—In Bitcoin, lightweight clients outsource most of the
storage and computation tasks to full nodes in order to run on
resource-limited devices. In the interaction with the full node,
the lightweight client leaks considerable information about which
address or transaction is relevant to it. The existing schemes to
solve this problem do not support efficient yet privacy-preserving
transaction search and verification due to the fact that the
blockchain is inherently inefficient for transaction query and
proposed schemes perform transaction search in a block-by-
block manner. Therefore, we propose an efficient transaction
query scheme for the privacy-preserving lightweight client with
the Intel SGX enclave running on the full node. Our main idea is
to leverage the secure enclave to serve transaction-query requests
from lightweight clients. However, the usage of secure enclave
alone does not achieve our goals. Our scheme reorganizes the
blockchain and leverages prefix hash tree to increase transaction-
search efficiency. Due to limited capacity, the enclave stores
reorganized blockchain data in the untrusted full node. Thus,
our scheme integrates prefix hash tree and oblivious search-
ing technologies to simultaneously support efficient transaction
search and protect access pattern of externally stored blockchain
data for the secure enclave. Security analysis and performance
evaluation show that our scheme provides efficient transaction
search and verification functionalities for lightweight Bitcoin
clients in a privacy-preserving way.

Index Terms—Lightweight Bitcoin client, transaction query,
privacy protection, Intel SGX

I. INTRODUCTION

In Bitcoin, the simplified payment verification (SPV)
method allows a lightweight client to outsource most of the
transaction-storage and transaction-verification tasks to full
nodes in order to run on resource-limited devices, such as
smart phones. Currently, a typical Bitcoin client requires
more than 200 GB of disk space to store a complete copy
of the blockchain. However, it is infeasible to store the
entire blockchain on resource-limited devices. To remedy that,
the simplified payment verification method, a method for
searching and verifying whether a particular transaction is
included in a block without downloading the entire block, is
proposed by Nakamoto in [1] to support lightweight clients.
The lightweight client only downloads and verifies the block
headers instead of the blocks, each of which contains a block

This work was supported by the National Key Research and Development
Program of China under Grant 2017YFB0802202, and by the Natural Science
Foundation of China (NSFC) under Grants 61702474 and 61871362.

header and a set of transactions. Each block header is only 80
bytes, so it requires less than 50 MB to store all block headers.
In a block, all transactions are hashed into a Merkle tree, and
the Merkle tree’s root node, called Merkle root, is included
in the block header. Given a transaction in a Merkle tree and
the Merkle root, the lightweight client can verify whether the
transaction is included in the block containing the Merkle root
with the help of the Merkle branch which binds the transaction
to the block header. To do so, the lightweight client should
first download the Merkle branch, also called SPV proof, from
the full node which maintains the complete blockchain.

However, a lightweight client leaks considerable informa-
tion about which address or transaction is relevant to it
when retrieving related transactions and their SPV proofs
from the full node. The full node can know which Bitcoin
addresses in the transactions belong to the lightweight client.
Moreover, the full node can link these Bitcoin addresses to the
lightweight client’s real identity, such as IP address or social
account. What was worse, the full node can even deduce a
lightweight client’s purchase propensity with the help of the
public merchant addresses [2].

Some Bitcoin developers proposed to utilize Bloom filter
[3] to make a tradeoff between the privacy and the com-
munication overhead of the lightweight client [4]. Bloom
filter is a space-efficient probabilistic data structure. In this
method, the lightweight client submits a Bloom filter, into
which the lightweight client can embed its Bitcoin addresses
as keywords, to full nodes. The false positives of the Bloom
filter make that the transaction through the Bloom filter is
possible not relevant to the lightweight client. In this way,
the lightweight client defines an anonymity set to hide its
real transactions from the full node. However, Gervais et al.
[5] demonstrated that this method offers almost no privacy
in practice. To solve the privacy problem, Kanemura et al.
[6] proposed a ~-deniability enabled Bloom filter to make
sure the transactions are really hidden by the false positives.
Osuntokun et al. [7] proposed the full node broadcasts a
filter, which is inserted by all transaction keywords (such as
Bitcoin addresses) in a block, to the lightweight client. The
lightweight client can check whether the transactions that it is
interested in are contained in the block, and then downloads
the block if the filter matches any transaction keyword.

However, all the filter-based methods cannot simultaneously
provide strong privacy protection and low communication
overhead for the lightweight client.

Intel’s Software Guard Extensions (SGX) technology makes
it possible to provide strong privacy protection for lightweight
clients with low communication overhead. Intel SGX’s en-
clave (a trusted execution environment) can protect sensitive
data and code from attackers even through the attackers
control the operating system and the hypervisor of the host
machine [8]. Thus, an enclave running on the full node can
work as a proxy to perform transaction search and protect
search results from the full node. However, the usage of the
enclave alone still has privacy leakage problem. This is due
to the fact that the enclave has limited capacity (128M [9]).
Thus, the blockchain will be stored in the full node. In this
case, the access pattern to the blockchain also threats the
transaction query privacy of the lightweight client. Matetic
et al. [10] have already proposed the usage of the enclave
to protect the lightweight client’s privacy. They proposed that
the enclave performs transaction search through scanning the
blockchain in a block-by-block manner to hide the access
pattern. However, this means that the total I/O cost in [10]
is linear with the size of the scanned blocks when performing
transaction search in the enclave.

In this work, we propose an efficient query scheme for
lightweight clients to hide the search patterns from the full
node with Intel SGX. To achieve this goal, our proposed
scheme reorganizes the blockchain into a new transaction
database. In the transaction database, a transaction file con-
tains a transaction and its SPV proof, so the lightweight client
can still utilize the SPV method to verify whether a transaction
is included in the blockchain. Index structures based prefix
hash tree are used to support efficient transaction search on the
transaction database. We built an index structure for txid-based
transaction search and for Bitcoin-address based transaction
search, respectively. The txid is the hash of a transaction, and
it can be seen as the identity of the transaction.

To protect access pattern of the enclave without scanning
all indexes into the enclave, we combine the oblivious data
structure (ODS) [11] technology with the prefix hash tree.
In this way, we provide a sublinear transaction search in an
oblivious way. Our query scheme decreases the total I/O cost
for the enclave into O(mlogN), where N is the total number
of tree nodes in our oblivious index-data structures and m is
the height of the prefix hash tree. Similarly, Path ORAM [12],
the building block of ODS, is used to load queried transaction
data into the enclave in an oblivious way.

Our main contributions are summarized below.

o We devise appropriate data structures to reorganize the
blockchain. The transaction index structure is organized
by a prefix hash tree, which allows the enclave to perform
a sublinear transaction search.

o We combine the oblivious data structure technology with
the prefix hash tree to support an efficient yet privacy-
preserving transaction search without scanning all the
transaction indexes.

e We demonstrate that our scheme provides an effici-
ent yet privacy-preserving transaction query service for
lightweight clients.

The remainder of this paper is organized as follows. In
Section II, we give a short description of the Path ORAM and
the oblivious data structures. Section III presents the system
model, threat model, and design goals. Proposed scheme is
introduced in Section IV. Security analysis and performance
analysis are given in Section V and Section VI, respectively.
Finally, we conclude this paper in Section VII.

II. PRELIMINARIES

In this section, we introduce the cryptographic building
blocks used in our scheme: Path ORAM [12] and oblivious
data structures [11].

A. Path ORAM

Path ORAM [12] is an efficient ORAM protocol, which
protects access pattern to external (server) memory for a
client, with low bandwidth and latency. Data in the external
(server) memory is organized as a binary tree with N buckets,
each of which contains Z chunks. The client maintains a
position map, which stores a path from the root to a leaf for
every chunk. When reading a chunk, the client retrieves all
chunks on the path. Then, the requested chunk is remapped to
another leaf, and all the data on the path will be re-encrypted
and written back to the external (server) memory.

B. Oblivious Data Structures

Oblivious data structures (ODS) [11] is framework for
building a data structure where memory access pattern of it
is protected. In general, the oblivious data structure can be
expressed as a tree of bounded degree. One way to build an
oblivious data structure is to run a classic data structure on
Path ORAM. To do so, the client can initialize an classic data
structure such as a binary tree containing some nodes and
pointers. Then, the client converts the nodes of the binary
tree into the ODS nodes through replacing their pointers with
ODS pointers. An ODS pointer is the position map of a child
node in the binary tree. To access a particular node, the client
follows ODS pointers from the root of the ODS to the node.
The access to every ODS node utilizes the Path ORAM, so the
client will update position maps of the accessed ODS nodes
to finish the access.

III. PROBLEM STATEMENT
A. System Model

The transaction query scenario in our scheme involves four
parties as shown in Fig. 1: a full node, an enclave running
on the full node, a lightweight client, and the Bitcoin peer-
to-peer network. Both the full node and the lightweight client
connect to the Bitcoin peer-to-peer network to synchronize the
blockchain. Note that the lightweight client only synchronizes
the block headers. The lightweight client can communicate
with the enclave through a secure channel which is established
through remote attestation.

The lightweight client performs transaction query to verify
a payment or track its balance. To do so, the lightweight
client sends the payment transaction’s hash or the lightweight
client’s Bitcoin addresses as keywords to the enclave through
the secure channel. To serve the lightweight client, the enclave
converts the blockchain stored in the full node into new data
structures to support efficient and privacy-preserving transac-
tion search. The new data structures are encrypted and stored
in the full node by sealing operation of the enclave. To respond
to the lightweight client, the enclave performs transaction
search on the new data structures using the keywords sent by
the lightweight client. If there is any matching, the enclave
sends transactions and the corresponding SPV proofs to the
lightweight client through the secure channel.

Enclave
Update or search

g @Sealing ﬁSearch

——————————— ~
\

[/ [ToDs- | [ORAM-|
\ [1x-px | | Tx-DB g_;
o= ===~ J

Full node

Lightweight client

Fig. 1: Transaction query scenario and overview of proposed
scheme

B. Threat Model

We consider the full node is curious about the lightweight
client’s privacy. Due to the fact that the full node controls
the operating system and the hypervisor, it can alter the data
sealed by the enclave and monitor which data is read by the
enclave. Moreover, The full node can launch traffic analysis
to the enclave.

As many literatures with the Intel SGX, we assume the full
node cannot access keys (e.g. attestation and sealing key) of
the enclaves, and it cannot access the enclave’s memory which
is encrypted and protected by the CPU.

Finally, we assume the cryptographic primitives (such as
encryption or signatures) used in the enclave are secure.

C. Design Goals

In light of the above adversary model, the following security
requirements are essential to ensure that the enclave serves the
lightweight client in an efficient yet privacy-preserving way:

1) Security: The lightweight client cannot be easily fooled
into thinking a transaction is in a block when it is not.

2) Privacy: The full node cannot know which transaction is
queried by the lightweight client and what the transaction
keywords in the transaction query request are.

3) Completeness: The query result should contain all valid
transactions relevant to the keywords in the transaction
query request.

4) Efficiency: On the one hand, transaction query should
have low communication and computation overhead for
the lightweight client. On the other hand, transaction
query should have low computation overhead for the
enclave and the full node.

IV. SYSTEM DESIGN
A. Blockchain Reorganization

In this work, the main objective is to perform an efficient
transaction search in an oblivious way. First, the enclave
reorganizes the blockchain to support efficient transaction
search. In this paper, the lightweight client wants the enclave
to respond with the queried transactions and the corresponding
SPV proofs. The SPV proofs are used to prove that the
transactions was included into the blockchain. Therefore,
the enclave stores a transaction and its SPV proof into a
transaction file.

Then, the enclave extracts transaction keywords from the
transaction files. In this paper, we only consider two types of
the transaction keywords: hash of the transaction (also called
TxID), and public key hash (denoted by PKH). Note that, the
other transaction-keyword types (such as public key, address,
or outpoint) can be converted into these two transaction-
keyword types.

The efficient transaction search is ensured by using a prefix
hash tree to build the transaction index structure. Although
both the TxID and the PKH are hash-keywords, they have
different length since they are obtained through different hash
functions. The TxID is 32 bytes and the PKH is 20 bytes.
Thus, we build two prefix hash trees for them. The two prefix
hash trees have the similar structure and we just introduce
the transaction index structure for TxID in the following. The
structure of a prefix hash tree is shown in Fig. 2. Suppose
a transaction keyword has n hexadecimal nibbles. That is
Tx_keyword = {s1, 82, -+ , $p . If the transaction keyword
is a TxID, n = 64. There are two kinds of nodes in the prefix
hash tree defined as follow:

e Branch nodes: They have seventeen items. The first item
stores a single nibble of the transaction keyword. Assume
the branch node is in the level ¢, the first item is s;. We
define that the root node is in the level 0, and its first
item is NULL no matter whether the root node is a
branch node or a leaf node. The following sixteen items
are child nodes. Each of the items contains the hash of
the child node and a pointer to the child node.

o Leaf nodes: They have at most B+ 1 items. The first item
stores s; if the leaf node is in the level ¢, and the fol-
lowing items store at most B (keyword, pointer, hash)

tuples in which hash is the hash of the chunk containing
the transaction file whose keyword is keyword. Note that
the height of the prefix hash tree is relevant to B.

To hide the access pattern of transaction files, the enclave
writes them into the ORAM-TX-DB data structure. Transac-
tion files whose TxID in the same leaf node are written into
the same chunk. If too many transaction files are added, the
chunk can be split into two and the pointers in the leaf node of
the prefix hash tree are updated. The ORAM-TX-DB supports
Path ORAM operations on it, so the pointer in the leaf node
of the prefix hash tree is a position map. That is, the leaf node
stores at most B (keyword, pos, hash) tuples. The position
map consists of a chunk identifier and a leaf of the ORAM-
TX-DB. Since the ORAM-TX-DB is stored in the full node,
the integrity for every access to the ORAM-TX-DB should be
protected. We utilize the hash in the above tuple to protect
the integrity of the access to the ORAM-TX-DB.

Txid-based prefix
hash tree

ODS-TX-IDX

. Real index blocks

Txid: OF23... P:position map
H: hash of chunk O Dummy blocks
- Search path - Search path

Fig. 2: Illustration of conversion between the prefix hash tree
and the ODS-TX-IDX

To hide the search pattern on the index tree without
accessing all the tree nodes, the enclave converts the prefix
hash tree into the ODS-TX-IDX data structure, as shown in
Fig. 2. The enclave randomly places the nodes of the prefix
hash tree into a new binary tree, and then replaces the pointers
of the prefix-hash-tree nodes with ODS pointers. For a branch
node, an ODS pointer is the position map of a child node
in the prefix hash tree. With the help of the position map,
the enclave can access the child node on the ODS-TX-IDX
through a Path-ORAM-read operation.

The blockchain reorganization is performed when the en-
clave is initialized by the full node or a new Bitcoin block
is generated by the Bitcoin network. In the initialization, the
enclave scans the whole blockchain from the genesis block to
convert the blockchain into the ORAM-TX-DB and the ODS-
TX-IDX. The enclave performs sealing operation to encrypt
and store the two data structures into the full node, and it only
stores the root nodes of them. When there is a new Bitcoin
block generated, the enclave verifies the validity of the Bitcoin
block and then updates the transaction information into the
ORAM-TX-DB and the ODS-TX-IDX data structures. The

root nodes of the two data structures are also updated and
stored in the enclave. Note that, the complexity of updating a
transaction is same as that of performing a transaction search.
Thus, updating a new block for the enclave is equate to
performing [transaction search, where [is the number of the
transactions in the block.

B. Transaction Query Request

When querying a transaction, the lightweight client first
performs a remote attestation protocol, provided by Intel SGX,
with the enclave to make sure that the enclave is correctly
instantiated. After the remote attestation, a secure channel is
established between the lightweight client and the enclave.
Then, the lightweight client sends a query request message,
containing some txids or Bitcoin addresses, through the secure
channel.

The size of the query request should be fixed to hide the
number of the transaction keywords. Moreover, encryption
using in the secure channel is semantically secure. If the size
of the transaction keywords is bigger than the size of the query
request message, the lightweight client can query several full
nodes to hidden its query pattern.

C. Transaction Search

Our scheme provides a sublinear transaction search. That
is, we do not need to load all indexes into the enclave to
perform a transaction search. We achieve this goal through
combining the prefix hash tree and ODS technology. On the
one hand, transaction search on the prefix hash tree reads m
nodes (m < n), where m is the height of the prefix hash
tree. On the other hand, reading a node in the ODS through
a Path ORAM operation which is a sublinear operation. The
total I/O cost is O(mlogN), where N is the total number of
nodes in the ODS-TX-IDX data structure.

Once receiving a transaction query request, the enclave
performs transaction-search operation as shown in Algorithm
1. First, the enclave distinguishes the type of the keyword(s).
We consider the transaction search uses the TxID or PKH
as the keyword. The other types of the keyword (such as
outpoint, or address) can be converted to TxID or PKH. Then,
the enclave decides to search on which ODS-TX-IDX based
on the type of the keyword, and converts the keyword to a set
of nibbles {s1,s2, -+ ,sn}.

Then, the enclave searches transactions from the root node
of the ODS-TX-IDX to a leaf node. A single nibble of the
transaction keyword is used to determine which child node
will be read, and then the next single nibble is used in
the child node. Every node stores the position map of its
child nodes. The enclave utilizes the position map to read
the child node via a Path-ORAM-read operation. The enclave
performs the same operation in the child node until a leaf
node is found. After that, the enclave verifies whether there
is a keyword in the (keyword, pos, hash) the same as the
transaction keyword. That is, queried transaction is in the
blockchain or not. If so, the enclave fetches the transaction
file through a Path-ORAM-read operation on ORAM-TX-DB

Algorithm 1: Transaction search

Input: The transaction keyword, tx_key; the root
nodes of the ODS-TX-IDX;
Output: Position map P and the hash of a chunk H;
1 Determine which root node is used based on the type
of tx_key;
2 Convert tx_key to the set of hexadecimal nibbles
{51,82,-+ , 80}
3 Push {s1,s9, - ,s,} into a stack S;
4 while S # NULL do

5 if node is a branch node then

6 pop s; from S;

7 access childnodes, by Path ORAM,;

8 verify the integrity of the child node;

9 reorder S;

10 else

11 if tx_key is found in a (keyword, pos, hash)
then

12 ‘ P = pos; H = hash; break;

13 else

14 LP:NULL;H:NULL; break;

15 return P and H;

with the pos. Note that, the enclave verifies the integrity of
the chunk with the hash in the (keyword, pos, hash). If the
position map is NULL, the enclave performs a dummy Path-
ORAM-read operation to hide the search pattern. Finally, the
enclave updates position map information in the ODS-TX-
IDX from the leaf node to the root node.

D. Transaction Query Response

After transaction search, the enclave returns the transac-
tion search results and its local newest block header to the
lightweight client. The straightforward way is to send matched
transaction files and the block header or a “no matching
found” message to the lightweight client. However, the full
node could learn whether the queried transaction is written
into the blockchain. Moreover, transaction size ranges from
more than 100 bytes to 100K bytes. The transaction file size
also leaks the search pattern.

In our scheme, the enclave responds to the lightweight
client with a fixed-size response message. There is a trade-off
between the communication overhead and the search pattern.
To mitigate this tradeoff, we obtain the distribution of the
transaction size via analyzing the blockchain and choose an
appropriate size of the response message. The details are
described in Section VI.

V. SECURITY ANALYSIS

Here, we analyze the security of our scheme to verify
that the security requirements mentioned in Section III-C
are satisfied. Note that, the efficiency requirement will be
analyzed in Section VI

A. Security

The lightweight client cannot be easily fooled into thinking
a transaction is in a block when it is not. This is due to the
fact that the enclave responds to the lightweight client with
transactions and their SPV proofs which cannot be forged.
The SPV method allows the lightweight client to make sure
that a transaction is in the blockchain if its SPV proof is valid.

B. Privacy

Our scheme protects the lightweight client’s privacy
from the full node. First, the communication between the
lightweight client and the enclave utilizes a secure channel,
which means that data transmitted through the channel is
encrypted by a session key. Moreover, the communication
pattern is protected via fixed-size messages. Second, trans-
action search is performed in the enclave which protects the
confidentiality of data and code in the enclave from the full
node. Finally, we use ODS and Path ORAM technologies to
protect the access pattern of the enclave when performing
transaction search and transaction fetch.

C. Completeness

In our scheme, the completeness is ensured by the verifi-
cations of the lightweight client and the enclave. On the one
hand, the lightweight client verifies its local block headers
and the SPV proofs of the queried transactions. In addition,
the lightweight client compares the newest block header in
the response message with its local newest block header to
ensure completeness of the transaction query. On the other
hand, the integrity of transaction search in the enclave is
protected through the hash pointer in the prefix hash tree
and the page integrity protection mechanism of SGX. Table
I compares the security functionality of our scheme with the
existing schemes.

TABLE I: Security functionality comparison between our
scheme and the existing schemes

Security | Privacy | Completeness | Efficiency
[41-17] Yes Weak No No
[10] Yes Strong Yes No
Our scheme Yes Strong Yes Yes

VI. PERFORMANCE EVALUATION

In this section, we analyze the lightweight client’s commu-
nication overhead and evaluate the computation overhead of
the enclave and the full node.

Note that, scheme in [10] has the best privacy protection
and lowest communication overhead for lightweight client.
Thus, we compare performance of our scheme with it.

A. Communication overhead of the lightweight client

In our scheme, the lightweight client’s communication
overhead is relevant to the size of the response message. In
order to choose an appropriate size of the response message,
we count the distribution of transaction size in the nearest
10,000 blocks!, as shown in Table II. We can see that more

IBlock height of the blocks is from 560,000 to 570,000.

TABLE II: Distribution of transaction size in 10,000 blocks

Transaction size less than (byte) 512 1,024 1,536 2,048 2,560 3,072 102,400
The number of the transactions 15,744,682 19,247,789 19,712,715 19,885,362 19,950,945 19,998593 20,258,611
Proportion of the transactions 77.71% 95.01% 97.31% 98.16% 98.48% 98.72% 100%

than 95.01% and 98.72% transactions are less than 1,024 and
3,072 bytes, respectively. In addition, the average size of a
SPV proof is 473 bytes?. The block header is 80 bytes. Thus,
more than 95.01% and 98.72% transaction queries can be
responded with a 1,577 and 3,625 bytes message, respectively.
In [10], the queried transaction is hid in a set of block
headers when synchronizing the block headers. In this way,
the communication overhead for querying a transaction can
be seen as the transaction’s size and the size of its SPV
proof. However, the communication overhead should contain
the transmitted block headers if the lightweight client has a
synchronized block headers. In this case, the size of 144,
which is the average number of generated blocks in one day,
block headers is already 11,520 bytes.

B. Computation overhead of the enclave

We evaluate the efficiency of our scheme by benchmarking
the operations of the Path ORAM leveraging a existing
implementation of the ZeroTrace [13]. We implemented and
evaluated the performance of Path ORAM on a Dell Optiflex
7050, with a 4 core Intel i7-7700 @ 3.60 GHz CPU, 8 GB
RAM, and 512 GB HDD.

In the worst case, the enclave performs m, where m is the
height of the prefix hash tree, Path ORAM operations on the
ODS-TX-IDX and one Path ORAM operation on the ORAM-
TX-DB. Note that, the size of ORAM-TX-DB is larger than
that of ODS-TX-IDX. Suppose the chunk size is 256 bytes,
the latency of one Path ORAM operation roughly logarithmic
increases with the number of chunk. We assume the number
of chunk is 10°, which can contain 256 GB data while the
whole blockchain is about 200 GB, for ORAM-TX-DB. In
this case, the latency of one Path ORAM operation is about
1.63ms. Moreover, m = 9 is enough for current size of the
transaction keywords. Thus, latency of one transaction-search
operation is about 1.63%(m+1) = 16.3ms. While in [10], the
response time is linear with the number of scanned blocks. It
is about 1s to scan 50 blocks and more than 5s to scan 300
blocks. Obviously, our scheme is more efficient than scheme
in [10].

As described in Section IV-B, updating a new Bitcoin block
for the enclave is equate to performing [transaction search,
where [is the number of the transactions in the block. The
average number of transactions per block is 2,7193. Thus, the
enclave needs 2,719 * 16.3ms = 44.32s to update a Bitcoin
block which is generated at the average 10min.

2This result is calculated based on the average size of the block and the
average number of transactions in a block. These data are retrieved from
https://www.blockchain.com/en/charts at September 19th, 2018.

3The data is retrieved from https://www.blockchain.com/en/charts/n-
transactions-per-block at April 14th, 2019

VII. CONCLUSION

Transaction query in a privacy-preserving way is very
important for the lightweight client in Bitcoin. However, ex-
isting schemes do not support efficient yet privacy-preserving
transaction search. In this paper, we have proposed an efficient
transaction query scheme for the lightweight client in a
privacy-preserving way with Intel SGX. The index organized
by a prefix hash tree allows the lightweight client to per-
form transaction search in an efficient way. ODS and Path
ORAM technology are used to protect the search pattern.
We have shown that our scheme simultaneously provides
efficient transaction query and strong privacy protection for
the lightweight client. Due to the space limited, we only
present transaction search based on the txid. In our future
work, we plan to support PKH-based transaction search and
UTXO search, and evaluate their performance.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] J. D. Nick, “Data-driven de-anonymization in Bitcoin,” Master thesis,
ETH-ziirich, 2015.

[3] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[4] M. Hearn and M. Corallo, “Connection Bloom filtering,”
2012. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0037.mediawiki

[5] A. Gervaisy, G. O. Karamez, D. Gruber, and S. Capkun, “On the privacy
provisions of Bloom filters in lightweight Bitcoin clients,” in Proc. of the
30th Annual Computer Security Applications Conference, New Orleans,
Louisiana, USA, December 2014.

[6] K.Kanemura, K. Toyoda, and T. Ohtsuki, “Design of privacy-preserving
mobile Bitcoin client based on ~-deniability enabled Bloom filter,”
in Proc. of IEEE 28th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC,
Canada, October 2017.

[7]1 O. Osuntokun, A. Akselrod, and J. Posen, “Client side block filtering,”
2017. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0157.mediawiki

[8] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A secure database
using SGX,” in Proc. of IEEE S&P, San Francisco, CA, USA, May
2018.

[9] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.

Sadeghi, “HardIDX: Practical and secure index with SGX,” in Proc. of

Data and Applications Security and Privacy XXXI, Philadelphia, PA,

USA, July 2017.

S. Matetic, K. Wiist, M. Schneider, K. Kostiainen, G. Karame, and

S. Capkun, “Bite: Bitcoin lightweight client privacy using trusted

execution,” Cryptology ePrint Archive, 2018. [Online]. Available:

https://eprint.iacr.org/2018/803.pdf

X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and

Y. Huang, “Oblivious data structures,” in Proc. of ACM CCS, Scottsdale,

Arizona, USA, November 2014.

E. Stefanovy, M. van Dijkz, E. Shi, C. Fletcher, L. Ren, X. Yu,

and S. Devadas, “Path ORAM: An extremely simple oblivious RAM

protocol,” in Proc. of ACM CCS, Berlin, Germany, November 2013.

S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious

memory primitives from Intel SGX,” in Proc. of NDSS, San Diego,

CA, USA, February 2018.

[10]

[11]

[12]

[13]

