曲阜师范大学
 研究生学位論交

论文臨：几个基础数䊦论
的问题研充

1987年5月

1．其一美指䑤方帛和的同系问题………1－10
2．上文血英文译稿…………．．．．．．．．11－21

6．上文的关文译程 \qquad

8．物捅三角形中素政的分布………64－71
9 整敞公拆中一个条件极值向题…… $72-79$ 。

某一类指敝方帘和的同余问题
1985．9． 15.
－引高
设 $S_{r}\left(p^{\alpha}, d\right)$ 表市在 $\bmod p^{\alpha}$ 的宽全剩余系中具有措敝d的元素之r次方䲞和，其中 p 为奇
中证明 $3 S_{1}(p, p-1) \equiv \mu(p-1)(\bmod p)$ 。随后，这个间题引起了许多故学家的兴趣。1830年，M．A． Stern ${ }^{[4]}$ 证明3 $S_{1}(p, d) \equiv \mu(d)(\bmod p)$ ；1883年。 A．R．Forsyth ${ }^{[5]}$ 讨论 $3 \operatorname{Sr}(p, p-1)$ 的同金情况，但其线量及其泟明都很复势：1952年，R．MoLler ${ }^{[2]}$证明 $3 \quad S r(p, d) \equiv \frac{S(d)}{\varphi\left(d_{i}\right)} \mu\left(d_{1}\right)(\bmod p)$ ，其中 $d_{1}=\frac{d}{(r, d)}$ ，但其评明记较复杂。H．Gupta ${ }^{[1]}$ 秘用原报的知识对 R．Moller 血结具给出了一个高年的河昅。车文目的边足把上述结里推广汾了模为 $p^{\alpha}(\alpha \geqslant 1)$

的一般情况。印海明了

$$
\text { 定理一 } S_{r}\left(p^{\alpha}, d\right) \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right)
$$

其中 $\alpha>0, p$ 为奇囊敞，$d /(d, r)=p^{m} l_{0}, p \nmid l_{0}, m \geqslant 0$ ．

$$
\text { 设 } h(d)=\frac{d}{(r, d)}, \quad p(d)=\operatorname{pot}_{p}(h(d)) \text { 表市 } h(d) \text { 中 } p
$$

围子的最高次弿。对于 $x \mid \varphi\left(p^{\alpha}\right)$ ，主义

$$
F(x, r)=\sum_{d \mid x} \frac{\varphi(d)}{\varphi\left(h(d) p^{-p(d)}\right)} \mu\left(h(d) p^{-p(d)}\right)
$$

我的有（以下＂三＂皆表交 $\bmod \rho^{\alpha}$ 同金号）
走理二。

$$
F(x, r) \equiv \begin{cases}x & \text { 当 } p^{-p t_{p}(x)} x \mid r \text { 时 } \\ 0 & \text { 䂞则 }\end{cases}
$$

二． 月 理 2
为得至交理的海略，雨要不述犾理：
引理1 存在 modpor向一个茖报g，使得

$$
g^{p^{(p-1)} \equiv 1+\mu g^{l+1}\left(\bmod p^{l+2}\right) \quad(l \geqslant 0 p \lambda \mu) . ~ . ~}
$$

晒明 设 g 为 \bmod 的一个厚极，不妨设 $g^{p-1} \equiv 1+\mu p\left(\bmod p^{2}\right)(p \nmid \mu)$（否则取 $g+p$ 代 $\left.g\right)$ 。对子此 g ，文必为 $\bmod p^{\alpha}$ 之原根，个面对子 ℓ用敝学归纳法。当 $l=0$ 时，由 9 的迷服可知引理成立；假设当 $\ell-1$ 时引理成立。设

$$
g^{p^{l-1}(p-1)}=1+\mu p l(p \nmid \mu) .
$$

西边 p 况方可得：

$$
g^{p^{l}(p-1)}=1+\mu p^{l+1}+\binom{p}{2}\left(m, p^{l}\right)^{2}+\cdots \equiv 1+\mu p^{l+1}\left(\bmod p^{l+2}\right)
$$

子是可知引理成立。
引理2．${ }^{[1]}$ 设 $f(n)$ 为一色制论函敕，则

$$
S^{\prime}(n)=\sum_{j<^{\prime} n} f(j)=\sum_{d \mid n} \mu(d)\{f(d)+f(2 d)+\cdots+f(n)\}
$$

其中 $j<\prime n$ 表 $j<n, ~$ 且 $(j, n)=1$ 。
引理 $3^{[1]} \operatorname{pot}_{p}\left(\binom{p^{c}}{r}\right)=c-\operatorname{pot}_{p}(r)\left(0 \leqslant r \leqslant p^{c}\right)$ ．

则引中与K至素的元素的个服为 $\varphi(k) / \varphi(d)$ 。

三。定理的证明
穴理一的晒明：
取引理1中的原桹，$\sum_{i} t=g^{\varphi\left(p^{\alpha}\right) / d}$ ，子是 $t^{r} \equiv g^{r^{r p}\left(p^{\alpha}\right) / d_{1}}\left(\bmod p^{\alpha}\right) \equiv a\left(\bmod p^{\alpha}\right)$ ，其中 $r_{1}=\frac{r}{(r, d)}$ ， $d_{1}=\frac{d}{(r, d)}, ~ a=g^{\varphi\left(p^{\alpha}\right)} r_{1} / d_{1}$ ．子是 $t^{r} 5 a$ 的指湤紫为 d_{1} ，令 $T=\left\{t^{\lambda r}: \lambda<^{\prime} d\right\}$ ，此中关子 $\bmod p^{\alpha}$
 K中每一个元素在T中关于 $\bmod p^{\alpha}$ 同金的美义系

 $\left.\lambda<^{\prime} d\right\}$ ，由乎 t^{r} 指指敞为 d_{1} ，故上隹的个敏平草了下集的个故：$\left\{\lambda: \lambda \equiv j\left(\bmod d_{1}\right)\right\}$（其中 $\left.\lambda<^{\prime} d\right)$ 。

 $\varphi(d) / \varphi\left(d_{1}\right)$ ．记 $k_{a}=\left\{a^{k}: k<^{\prime} d_{1}\right\}, 子$, 是

$$
\begin{equation*}
S_{r}\left(p^{\alpha}, d\right) \equiv \sum_{b \in T} b \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \sum_{b \in K_{a}} b \tag{1}
\end{equation*}
$$

程用引理2，有

$$
\begin{aligned}
\sum_{b \in k_{a}} b & =\sum_{h \mid d_{1}} \mu(h)\left\{a^{h}+a^{2 h}+\cdots+a_{4}^{d_{1}}\right\} \\
& \equiv \sum_{h \mid d_{1}} \mu(h) \frac{a^{d_{1}}-1}{a^{h}-1} a^{h} \\
\text { 乏 } d_{1} & =p^{r_{0}} l_{0}, \left.\frac{H}{\partial} \neq l_{0} \right\rvert\, p-1, \quad l(n)= \begin{cases}0 & n=0 \\
1 & n>0\end{cases}
\end{aligned}
$$

则

$$
\begin{align*}
& \sum_{b \in k_{a}} b=\sum_{h \mid p^{r}-l_{0}} \mu(h) \frac{a^{d_{1}}-1}{a^{h}-1} a^{h}=\sum_{\substack{0 \leqslant \leq \leq r_{0} \\
l \mid l_{0}}} \mu\left(p^{k} l\right) \frac{a^{d_{1}}-1}{a^{k}-1} a^{a^{k} \ell} \\
& =\sum_{l \mid l_{0}} \mu(l) \frac{a^{d_{1}}-1}{a^{l}-1} a^{l}+l\left(r_{0}\right) \sum_{l \mid l .} \mu(p l) \frac{a^{d_{1}}-1}{a^{l}-1} a^{p l} \\
& =\sum_{\ell \mid \ell_{0}} \mu(l) \frac{a^{d_{1}}-1}{a^{l}-1} a^{l}-\ell\left(r_{0}\right) \sum_{l \mid \ell_{0}} \mu(l) \frac{a^{d_{1}}-1}{a^{p l}-1} a^{p l} \tag{3}
\end{align*}
$$

对子l，当 $\left(a^{l}-1, p^{\alpha}\right) \neq 1$ 时，则必有 $a^{l} \equiv 1(\bmod p)$ ，价 $g^{\varphi\left(p^{\alpha}\right) l r_{1} / \alpha_{1}} \equiv 1(\bmod p)$ ，由于 g 为 $\bmod p$ 的原报，故 $p-1 \left\lvert\, \frac{\varphi\left(\alpha^{\alpha}\right)}{\alpha_{1}} r_{1} l=p^{\alpha-1-r_{0}} r_{1}(p-1) \ell_{h_{0}}\right.$ ，又 $\ell . \mid d_{1},\left(d_{1}, r_{1}\right)=1 . \beta\left(l_{0}, p\right)=1$ ，故偶有 $l_{0} \mid l$ ．

圈此当 $0<l<l$ 。时，必有 $\left(a^{l}-1, ~ p^{\alpha}\right)=1$ ，进了有 $\frac{a^{d_{1}}-1}{a^{d}-1} \equiv 0\left(\bmod p^{\alpha}\right)$ ；

同解可证明当 $0<l<l_{0}$ ，$\frac{a^{d_{1}}-1}{a^{p l}-1} \equiv 0\left(\bmod p^{\alpha}\right)$ ．
子思（3）变为

$$
\begin{equation*}
\sum_{b \in k a} b \equiv \mu\left(l_{0}\right) \frac{a^{d_{1}}-1}{a^{l_{0}-1}} a^{l_{0}}-l\left(r_{0}\right) \mu\left(l_{0}\right) \frac{a^{d_{1}}-1}{a^{l_{0}}-1} a^{p l_{0}}\left(\bmod p^{\alpha}\right) \tag{4}
\end{equation*}
$$

由引理了可得：当 $\beta \geqslant \alpha-r, 1 * r<\alpha, \beta 2 \leqslant k \leqslant p^{r}$
时，必布 $\left.\operatorname{pot}_{p}\binom{p^{r}}{k} p^{k \beta}\right) \geqslant \alpha+\beta$ 。
韦宾上，上式左边粉：

$$
\operatorname{pot}_{p}\binom{p^{r}}{k}+\operatorname{pot}_{p}\left(p^{k \beta}\right)=r-p^{\prime} p(k)+k \beta
$$

故 口需要明 $r-\operatorname{pot}_{p}(K)+(K-1) \beta \geqslant \alpha$ ，又 $\beta \geqslant \alpha-r$ ，故只需店牟 $r-\operatorname{potp}(k)+(k-f)(\alpha \cdot \gamma) \geqslant \alpha$ ，或证

$$
(k-2)(\alpha-\gamma) \geqslant \operatorname{pot}_{p}(k) .
$$

当 $k=2$ 时，此式㖇边线为 0 ，豆多成立；当 $k>2$ 明。
的结易，敌（5）式或主。

有由列理1：存在 μ ，阶 μ ，㹬得：

$$
\begin{equation*}
a^{l_{0}}=\left(g^{\varphi\left(\rho^{\beta}\right) r_{1} / d_{1}}\right)^{l_{0}}=g^{p^{\alpha-r_{0}-1}(p-1) r_{1}}=1+\mu p^{\beta} \tag{6}
\end{equation*}
$$

其中 $\beta \geqslant \alpha-\gamma_{0}$ ．子多

$$
\begin{align*}
& \frac{a^{d_{1}}-1}{a^{l \cdot}-1}=\frac{\left(a^{l_{0}}\right)^{r_{0}}-1}{a^{l \cdot}-1}=\frac{\left(1+\mu p^{\beta}\right)^{p^{r_{0}}-1}}{\mu p^{\beta}}=p^{r_{0}}+ \\
& \quad+l\left(r_{0}\right) \frac{1}{p^{\beta}} \sum_{k=2}\binom{p^{r_{0}}}{k} \mu^{k-1} p^{k \beta} \equiv p^{r_{0}}\left(\bmod p^{\alpha}\right) . \tag{7}
\end{align*}
$$

络合（6）知：$\frac{a^{d_{1}-1}}{a^{l_{0}-1}} a^{l_{0}} \equiv p^{r_{0}}\left(\bmod p^{\alpha}\right)$
同标的讨论可得：

$$
\begin{aligned}
& \frac{a^{d_{1}}-1}{a^{p_{0}-1}} a^{p l_{0}} \equiv p^{r_{0}-1}\left(\bmod p^{\alpha}\right) \quad\left(\text { 若 } r_{0} \geqslant 1\right) \\
& \text { 将 }(7) g_{0}(8) \text { 代入(4) 可得 } \\
& \sum_{b \in k_{a}} b \equiv \mu\left(l_{0}\right) p^{r_{0}}-l\left(r_{0}\right) \mu\left(l_{0}\right) p^{r_{0}-1}\left(\bmod p^{\alpha}\right) \\
& \\
& \equiv \mu\left(l_{0}\right)\left(p^{r_{0}}-l\left(r_{0}\right) p^{r_{0}-1}\right)\left(\bmod p^{\alpha}\right) \equiv \mu\left(l_{0}\right) \varphi\left(p^{r_{0}}\right)
\end{aligned}
$$

代入（1）。

$$
\begin{aligned}
S_{r}\left(p^{\alpha}, d\right) & \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \mu\left(l_{0}\right) \varphi\left(p^{r}\right)\left(\bmod p^{\alpha}\right) \\
& \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right)
\end{aligned}
$$

当 $\alpha=1$ 时，由于 $d \mid p-1, r_{0}=0$ ，故 $l_{0}=\frac{d}{\left(r_{1} d\right)}=d_{1}$ ，
\＆时 $S_{r}\left(p^{\alpha}, d\right)=S_{r}(p, d) \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \mu\left(d_{1}\right)(\bmod p)$ ．
这就走 R．MoLler的结里。 定理一泟毕
定理二的劭明
 す知：$\varphi(d) \mu\left(h(d) p^{-p(d)}\right) / \varphi\left(h(d) p^{-p(d)}\right) \omega-$ 积性出

设 q 白一个事攻，当 $(q, p)=1$ 时，

$$
\begin{aligned}
& F\left(q^{\alpha_{1}}, r\right)=\sum_{d \mid q_{0}^{\alpha}} \frac{\varphi(d)}{\varphi(h(d))} \mu(h(d))=\sum_{k=0}^{\alpha_{1}} \varphi\left(q^{k}\right) \mu\left(\frac{q^{k}}{\left(q^{x} \cdot r\right)}\right) / \varphi\left(\frac{q^{k}}{\left(q^{k}, r\right)}\right) \\
& \text { 当 }\left(q^{\alpha_{1}}, \gamma\right)=q^{\beta}, 0<\beta<\alpha_{1} \text { 时, 有 } \\
& F\left(q^{\alpha_{1}}, r\right)=\sum_{i=0}^{\beta} \frac{\varphi\left(q^{i}\right)}{\varphi(1)} \mu(1)+\frac{\varphi\left(q^{\beta+1}\right)}{\varphi(q)} \mu(q) \\
& =\sum_{i=0}^{\beta} \varphi\left(q^{i}\right)-\frac{\varphi\left(q^{\beta+1}\right)}{\varphi(q)}=q^{\beta}-q^{\beta}=0 . \\
& \text { 当 }\left(q^{\alpha_{1}}, \gamma\right)=q^{\alpha_{1}} \text { 时, } F\left(q^{\alpha_{1}}, \gamma\right)=\sum_{d \mid q^{\alpha_{2}}} \varphi\left(d_{1}\right)=q^{\alpha_{1}} \text {. } \\
& \text { 当 } q=p \text { 时, } \\
& F\left(p^{\beta} \cdot r\right)=\sum_{\alpha+p} \frac{\varphi(d)}{\varphi\left(h(d) p^{p(\alpha)}\right)} \mu\left(h(\alpha) p^{-p(\alpha)}\right) \\
& =\sum_{d+p} \varphi(d)=p^{\beta} .
\end{aligned}
$$

没 $x=p^{\beta} p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{\alpha}} \quad \ddot{\alpha} \times$ 的豊型分解式，则

$$
\begin{aligned}
& F(x, \gamma)=F\left(p^{\beta}, \psi^{\mu}\right) F\left(p^{\alpha_{1}}, \psi\right) \cdots F\left(p_{k}^{\alpha_{x}}, \psi\right) \\
& =\left\{\begin{array}{c}
p^{\beta} \gamma_{x}^{\alpha} \ldots p_{k}^{\alpha}=x \\
0
\end{array}\right. \\
& \text { 当 } r^{-p p_{1}(x)} x \mid r \text { 时 } \\
& \text { 当 } p^{- \text {potp }^{2}(x)} x \text { 人 } r \text { 时. } \\
& \text { 定理二泟皆。 }
\end{aligned}
$$

对于伿書般 $\mathrm{P}=2$ 的鞋况，我的也获々了，一
个较尚争的线里

$$
S_{r}\left(2^{\alpha}, 2^{n_{0}}\right) \equiv(-1)^{r} \Delta\left(n_{0}\right)+\left[1+(-1)^{r}\right] \varphi\left(2^{n_{0}}\right)\left(\bmod z^{\alpha}\right) .
$$

其中 $\alpha \geqslant 3,0 \leq n_{0} \leq n-2, \quad \Delta\left(n_{0}\right)=\left[\frac{1}{n_{0}}\right]=\left\{\begin{array}{cc}1 & n=1 \\ 0 & n \geqslant 1\end{array}\right.$

$$
S_{r}(2,1) \equiv 1(\bmod 2) . \quad S_{r}(4,2) \equiv(-1)^{r}(\bmod 4) .
$$

这个结里将另文讨论。
在本大的写作过程中，我的指导老唃郘品璋教援一直伶予热情的拐导，库此我表示深幺的感谢。 \qquad

参放文献
［1］H．Gupta，Selected Topics in Number Theory， ABACUS Press，1980．Pp．55－57
［2］R．MoLLer，Sums of Powers of Numbers Having a Given Exponent ModuLo a Prime．Amer．Math． Monthly 59 （1952）．
［3］Gauss，C．F．Disquisitions Arithmetical，Arts．80－81．
［4］Stern．M．A．Bemerkungen über hohere Arithmetik． Journal für Mathematic．Vol．VI（1830）PP．147－153．
［5］Forsyth．A．R．Primitive Roots of Primes and Their Residues．Messenger of Mathematics．Vol：XIII （1883－4）PP．180－185．
［6］Apostal，T．An Introduction to Analytic Number Theory，Springer－Verlag，1976．PP． 124.

On Sums of Powers of Numbers Having a Given Exponent Modulo a Power of a Prime

FANG Yuguang
61. Introduction

Let $S_{r}\left(p^{\alpha}, d\right)$ denote the sum of r-powers of numbers having given order (or exponent) d modulo a p^{α}, where P is odd prime, r, d, α are positive integers and $d \mid \varphi\left(p^{\alpha}\right)$. C.F. Gauss have proved in his masterpiece. [3] that $S_{1}(p, p-1) \equiv \mu(p-1)(\bmod p)$. Afterward, this problem was considered by many mathematician. In 1830. M.A. $S_{t e r n}{ }^{[4]}$ proved that $S_{1}(p, d) \equiv \mu(d)(\bmod p)$, where $d \mid p(p)$. In 1883. A,R. Forsyth ${ }^{[5]}$ discussed the congruence of $S_{r}(p, p-1)$, but his results and proofs are too complicated: In 1952, R.Moller ${ }^{[2]}$ proved

his method is not helpful for generalization. H. Gupta ${ }^{[1]}$ have a simple proof given for R. Moller's result by means of primitive roots.

In this paper, we shall give a generalization on above result to the case that modulo is a power of prime $p^{\alpha} \quad(\alpha \geqslant 1)$, that is, we have proved the following

Theorem 1. $\quad \operatorname{Sr}\left(p^{\alpha}, d\right) \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right)$ where $\alpha>0, p$ is odd prime and $\left.d /(r, d)=p^{m} l_{0}, p\right\rangle l_{0}, m \geqslant 0$.

Let $h(d)=\frac{d}{(r, d)} \cdot p(d)=\operatorname{pot}_{p}(h(d))$, the highest power of p in $h(d)$. For $x \mid \varphi\left(p^{\alpha}\right)$, define

$$
F(x, r)=\sum_{d \mid x} \frac{\varphi(d)}{\varphi\left(h(d) p^{-p(d)}\right)} \mu\left(h(d) p^{-p(d)}\right)
$$

We have (From then on, \equiv denote the congruence modulo p^{α})
Theorem 2

$$
F(x, r)= \begin{cases}x & \text { If } p^{-p o t p(x)} x \mid r \\ 0 & \text { otherwise }\end{cases}
$$

$\frac{6}{3} 2$ Lemmas
To obtain the proofs of theorem 1 and 2, we need Lemma There exsits a primitive root g mod. such that $g^{p^{l}(p-1)} \equiv 1+\mu g^{l+1}\left(\bmod p^{l+2}\right)$ where $l \geqslant 0, p \nmid \mu$.

Proof Suppose g is a primitive root $\bmod P$, without lasing generality, assume $g^{p-1} \equiv 1+\mu p\left(\bmod p^{2}\right)$, where $p \nmid \mu$. It is well known that g is a primitive root $\bmod p^{\alpha}$. When $l=0$, from the choice of g, we know the Lemma l is true. Suppose Lemma is true for $\ell-1$, that is.

$$
g^{p l-1(p-1)}=1+\mu p^{l} \quad(p \nmid \mu)
$$

then $g^{p l}(p-1)=\left(1+\mu p^{\ell}\right)^{p}=1+\mu p^{p+1}+\binom{p}{2}\left(\mu p p^{2}+\cdots\right.$

$$
\equiv 1+\mu p^{l+i}\left(\bmod p^{l+z}\right) \text {. }
$$

By induction, we complete the proof.
Lemma $2^{[1]}$ Let $f(n)$ denote an arithmetical function, then

$$
S^{\prime}(n) \triangleq \sum_{j<\prime} f(j)=\sum_{d \mid n} \mu(d)\{f(d)+f(2 d)+\cdots+f(n)\}
$$

Where $j<$ represents $j<n$ and $(j, n)=1$ ．
Lemma $3^{[1]} \quad \operatorname{Pot} p\left(\binom{p^{c}}{r}\right)=c-\operatorname{pot}_{p}(r) \quad\left(0 \leqslant r \leqslant p^{c}\right)$ ．
Lemma $4^{[b]}$ Given integers r, d and k such that $d \mid k, d>0, k \geqslant 1$ and $(r, d)=1$ ．Then the number of elements in the set $S=\{r+t d ; t=1,2, \ldots \mathrm{k} / \mathrm{d}\}$ which are relatively prime to k is $\varphi(k) / \varphi(d)$ ．

6 Proofs of theorems
Proof of theorem $1 \quad g$ is the one in Lemmal，set $t=g^{\varphi\left(p^{\alpha}\right) / d}$ ，then $t^{r} \equiv g^{\varphi\left(p^{\alpha}\right) r_{1} / d_{1}}\left(\bmod p^{\alpha}\right) \equiv a\left(\bmod p^{\alpha}\right)$ ． where $r_{1}=\frac{r}{(r, d)} \quad d_{1}=\frac{d}{(r, d)}$ and $a=g^{\varphi\left(p^{d}\right) r_{1} / d_{1}}$ ．Then both t^{r} and a have order d_{1} ．Set $T=\left\{t^{\lambda r}, \lambda<^{\prime} d\right\}$ and $K=\left\{t^{r j}: j<d_{1}\right\}$ are all elements of T not Congruent with each other．Every element in K will自然版学牧编掛部
reappear many times in T in the sense that if $a \equiv b\left(\bmod y^{a}\right)$ then we regard a and b. as the same element. Let $t^{r j}$ be un arbitary element in k, for t^{r} has an order l_{1}, the number of the set $\left\{t^{r \lambda}: t^{r \lambda} \equiv t^{r j}\left(\bmod p^{\alpha}\right), \lambda<d\right\}$ is equal to the number of the set $\left\{\lambda: \lambda \equiv j\left(\bmod d_{1}\right), \lambda<^{\prime} d\right\}$ and equals to $\varphi(d) / \varphi\left(d_{1}\right)$ by means of Lemma 4. Thus every element in K will reappear $\varphi(d) / \varphi\left(d_{1}\right)$ times in T.
Set $k_{a}=\left\{a^{k}: k \ll_{1}\right\}$, then

$$
\begin{equation*}
S_{r}\left(p^{\alpha}, d\right) \equiv \sum_{b \in T} b \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \sum_{b \in K} b \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \sum_{b \in \mathcal{K}_{a}} b \tag{1}
\end{equation*}
$$

From Lemma 2, we have

$$
\begin{equation*}
\sum_{b \in k_{a}} b=\sum_{h\left[d_{1}\right.} \mu(h)\left\{a^{h}+a^{2 h}+\cdots+a^{d_{1}}\right\} \equiv \sum_{h \mid d_{1}} \mu(h) \frac{a^{d_{1}}-1}{a^{h}-1} a^{h} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
\sum_{b \in k_{a}} b & =\sum_{h \mid p^{p_{0}} \ell_{0}} \mu(h) \frac{a^{d_{1}}-1}{a^{h}-1} a^{h}=\sum_{\substack{k|k| r_{0}}} \mu\left(p^{k} l\right) \frac{a^{d_{1}}-1}{a^{p^{l}}-1} a^{p^{p l} l} \\
& =\sum_{l=1 l_{0}} \mu(l) \frac{a^{d_{1}}-1}{a^{l}-1} a^{l}+\ell\left(r_{0}\right) \sum_{l \mid l_{0}} \mu(p l) \frac{a^{d_{1}}-1}{a^{p l}-1} a^{p l} \\
& =\sum_{l \mid l_{0}} \mu(l) \frac{a^{d_{1}}-1}{a^{l}-1} a^{l}-l\left(r_{0}\right) \sum_{l \mid l_{0}} \mu(l) \frac{a^{d_{1}}-1}{a^{p l}-1} a^{p l} \tag{3}
\end{align*}
$$

For l. if $\left(a^{l}-1, p^{\alpha}\right) \neq 1$, then we have $a^{l} \equiv 1(\bmod p)$, that is, $g^{\varphi\left(p^{2}\right) l r_{1} / d_{1}} \equiv 1(\bmod p)$. Because g is a primitive root of $\bmod p$, then $p-1 \mid \varphi\left(p^{\alpha}\right) \ell r_{0} / d_{1}$ that is. $p-1 \mid p^{\alpha-1-r_{0}} r_{1}(p-1) l / l_{0}$. But $l_{0} \mid d_{1},\left(d_{1}, r_{1}\right)=1$ and $\left(l_{0}, P\right)=1$, we have loll.

Therefore, when $0<l<l_{0}$, we must have $\left(a^{l}-1, p^{2}\right)=1$, then $\frac{a^{d_{1}-1}}{a^{l-1}} \equiv 0\left(\bmod p^{\alpha}\right)$;

With the same derivation, we have $\frac{a^{d_{1}}-1}{a^{p l}-1} \equiv 0\left(\bmod p^{\alpha}\right)$ for $0<l<l_{0}$.

From (3), we obtain

$$
\begin{equation*}
\sum_{b \in K_{a}} b \equiv \mu\left(l_{0}\right) \frac{a^{d_{0}}-1}{a^{l_{0}}-1} a^{l_{0}}-l\left(r_{0}\right) \mu\left(l_{0}\right) \frac{a^{d_{0}-1}}{a^{p_{0}-1}} a^{p l_{0}}\left(\bmod p^{\alpha}\right) \tag{4}
\end{equation*}
$$

Using Lemma 3, we arrive at the following $\operatorname{pot}_{p}\left(\binom{p^{r}}{k} p^{k \beta}\right) \geqslant \alpha+\beta$, when $\beta \geqslant \alpha-r, 1 \leq r<\alpha$ and $2 \leqslant k \leqslant p^{r}$.

In fact, we only need to prove

$$
\operatorname{pot}_{p}\left(\binom{p^{r}}{k} p^{k \beta}\right)=\operatorname{pot}_{p}\left(\left(p_{k}^{p^{k}}\right)\right)+\operatorname{pot}_{p}\left(p^{k \beta}\right)=r-\operatorname{pot}_{p}(k)+k \beta
$$

$\geqslant \alpha+\beta$ ．or．$r-\operatorname{potp}(k)+(k-1) \beta \geqslant \alpha$ ．Because
$\beta \geqslant \alpha-r$ ，we only prove $r-\operatorname{pot} p(k)+(k-1)(\alpha-r) \geqslant 0$ or $(k-2)(\alpha-r) \geqslant \operatorname{pot}_{p}(k)$ ．But this is easy to see，so we get the conclusion．

By means of Lemma l，there exits $\mu, p+\mu$ ，such that $a^{l \cdot}=\left(g^{q\left(p^{\alpha}\right) r_{1} / d_{1}}\right)^{l_{0}}=g^{p^{\alpha-r_{0}-1(p-1)}}=1+\mu p^{\beta}$ where $\beta \geqslant \alpha-r_{0}$ ．Then

$$
\begin{aligned}
& \frac{a^{d_{1}}-1}{a^{p_{0}}-1}=\frac{\left(a^{p_{0}}\right)^{p_{0}}-1}{a^{p_{0}}-1}=\frac{\left(1+\mu p^{l}\right)^{p^{\gamma_{0}}-1}}{\mu p^{p^{p}}}=p^{\gamma_{0}}+ \\
& +\ell\left(r_{0}\right) \frac{1}{p^{\beta}} \sum_{k \geqslant 2}\binom{p^{r_{0}}}{k} \mu^{k-1} p^{k \beta} \equiv p^{\gamma_{0}}\left(\bmod p^{\alpha}\right)
\end{aligned}
$$

Reminding of（6），we obtain

$$
\begin{equation*}
\frac{a^{d_{0}}-1}{a^{l_{0}}-1} a^{l_{0}} \equiv p^{r_{0}}\left(\bmod p^{\alpha}\right) \tag{7}
\end{equation*}
$$

We can also derive by the same method that

$$
\begin{equation*}
\frac{a^{d_{1}-1}}{a^{p^{k_{0}}-1}} a^{p l_{0}} \equiv p^{r_{0}-1}\left(\bmod p^{\alpha}\right) \quad\left(\text { if } r_{0} \geqslant 1\right) \tag{8}
\end{equation*}
$$

Combining（7）and（8）with（4），we finally get

$$
\sum_{b \in k_{a}} b \equiv \mu\left(l_{0}\right) p^{\gamma_{0}}-l\left(\gamma_{0}\right) \mu\left(l_{0}\right) p^{\gamma_{0}-1}\left(\bmod p^{\alpha}\right)
$$

自然版学服编推部

$$
\equiv \mu\left(l_{0}\right)\left(p^{r_{0}}-l\left(r_{0}\right) p^{r_{0}-1}\right)\left(\bmod p^{\alpha}\right) \equiv \mu\left(l_{0}\right) \varphi\left(p^{r_{0}}\right)\left(\bmod p^{\alpha}\right)
$$

Put this into（1），we obtain

$$
\begin{aligned}
S_{r}\left(p^{\alpha}, d\right) & \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \mu\left(l_{0}\right) \varphi\left(p^{r_{0}}\right)\left(\bmod p^{\alpha}\right) \\
& \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right) .
\end{aligned}
$$

This complete the proof of theorem．
When $\alpha=1, d \mid p-1, r_{0}=0$ ，and $l_{0}=\frac{d}{(r, d)}=d_{1}$ ．then $S_{r}(p, d) \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \mu\left(d_{1}\right)(\bmod p)$ ．This is what R．Molter obtained in 1952.

Proof of theorem 2．Notice that $h(d)$ is multiplicative and $p(d)$ is additive，therefore $\varphi(d) \mu\left(h(d) p^{-p(d)}\right) / \varphi\left(h(d) p^{p(d)}\right)$ is multiplicative，to 00．Moreover，we obtain $F(x, r)$ is multiplitive for x ．

Suppose that q is a prime，when $(q, p)=1$ ．

$$
F\left(q^{\alpha_{1}}, r\right)=\sum_{d \mid q_{1}} \frac{\varphi(d)}{\varphi(h(d)))} \mu(h(d))=\sum_{k=0}^{\alpha_{1}} \varphi\left(q^{k}\right) \mu\left(\frac{q^{k}}{\left(q^{k}, r\right)}\right) / \varphi\left(\frac{q^{k}}{\left(r_{1}, q^{k}\right)}\right)
$$

If $\left(g^{\alpha_{1}}, \gamma\right)=q^{\beta}, 0<\beta<\alpha_{1}$ ，then

$$
\begin{aligned}
F\left(q^{\alpha}, r\right) & =\sum_{i=0}^{\beta} \frac{\varphi\left(q^{i}\right)}{\varphi(1)} \mu(1)+\frac{\varphi\left(q^{\beta+1}\right)}{\varphi(q)} \mu(q) \\
& =\sum_{i=0}^{\beta} \varphi\left(q^{i}\right)-\frac{\varphi\left(q^{\beta+1}\right)}{\varphi(q)}=q^{\beta}-q^{\beta}=0
\end{aligned}
$$

If $\left(q^{\alpha_{1}}, r\right)=q^{\alpha_{1}}$ ，then $F\left(q^{\alpha_{1}}, r\right)=\sum_{\alpha_{1} q^{\alpha_{1}}} \varphi\left(\alpha_{1}\right)=q^{\alpha_{1}}$ ．
When $q=p, \quad F\left(p^{\beta}, \gamma\right)=\sum_{d \mid p^{\beta}} \frac{\varphi(d)}{\varphi\left(h(d) p^{+(d)}\right)} \mu\left(h(d) p^{-p(d)}\right)$

$$
=\sum_{d / p^{\beta}} \varphi(d)=p^{\beta} .
$$

Therefore，if $x=p^{\beta} p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ is canonical decomp－ sition of x ，then

$$
\begin{aligned}
F(x, r) & =F\left(p^{\beta}, y\right) F\left(p^{\alpha_{1}}, r\right) \cdots F\left(p_{x}^{\alpha_{x}}, y\right) \\
& = \begin{cases}p^{\beta} p_{1}^{\alpha_{1}} \cdot-p_{x}^{\alpha_{x}}=x & \text { when } p^{-p^{p+p_{p}(x)} x \mid r} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This completes the proof．
When $p=2$ ，we have also obtain an interesting result，that is．

$$
S_{r}\left(2^{\alpha}, 2^{n_{0}}\right) \equiv(-1)^{r} \Delta\left(n_{0}\right)+\left[1+(-1)^{r}\right] \varphi\left(2^{n_{0}}\right)\left(\bmod 2^{\alpha}\right)
$$

Where $\alpha \geqslant 3, \quad 0 \leqslant n_{0} \leqslant n-2, \quad \Delta\left(n_{0}\right)=\left[\frac{1}{n_{0}}\right]$ ．

$$
S_{r}(2,1) \equiv 1(\bmod 2) \quad S_{r}(4,2) \equiv(-1)^{r}(\bmod 4) .
$$

This will be discussed in anther paper．

In writing the paper，I have got a Lot of instruction from my tutor，Professor SHAO．Pinzong．I am greatly indebted to him．

References
［1］H．Gupta，Selected Topics in Number Theory， ABACUS Press， 1980 pp．55－57．
［2］R．Molter，Sums of powers of Numbers Having Given Exponent Modulo a prime．Amer．Math．Monthly $59(1952)$
［3］Gauss，C．F．Disquisitions Arithmetical，Arts．80－81．
［4］Stern，M．A．Bemerkungen über hohere Axithmetik．白然版毞㸭綃維都

Journal für Mathematic, Vol.VI (1830) pp.147-183.
[5] Forsyth. A.R. Primitive Roots of Primes and their Residues. Messenger of Mathematics. Vol. ZIII (1883-4) PP. $180-185$.
[6] Apostal . T. An Introduction to Analytic Number Theory, Springer-Verlag, New York Heidelberg BerLin. 1976 , PP. 124.

关于其一类揭敞方帘和的用讨论 1985．9．15．
设 $S_{r}\left(p^{\alpha}, d\right)$ 表市占 $\bmod p^{\alpha}$ 的电一个完全剩余务中揘做为d向元素之方军和。1985年，本文
 $d \mid \varphi\left(p^{\alpha}\right)$ 的情况下

$$
S_{r}\left(p^{\alpha}, d\right) \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right)
$$

其中 $d /(r, d)=p^{r o l} l_{0}$ ．$p k l_{0}$
本文的日的在于证明横在 2^{α} 白性况，即
定理 $\quad \operatorname{sr}\left(2^{\alpha}, 2^{n_{0}}\right) \equiv(-1)^{r} \Delta\left(n_{0}\right)+\left[1+(-1)^{r}\right] \varphi\left(2^{n_{0}}\right)\left(\bmod 2^{\alpha}\right)$
其中 $\alpha \geqslant 3,0<n_{0} \leqslant \alpha-2 \quad \Delta\left(n_{0}\right)=\left[\frac{1}{n_{0}}\right]$

$$
S_{r}(2,1) \equiv 1(\bmod 2), \quad \operatorname{Sr}(4,2) \equiv(-1)^{r}(\bmod 4) .
$$

证明当 $\alpha \geqslant 3$ 时， $\pm 5^{\circ}, \pm 5^{\prime}, \cdots \pm 5^{2^{\alpha-2}-1}$ 构成 $\bmod z^{\alpha}$ 的一个间化剩分乐（［2］）。

下石分两种㤬况证明
（i）当 $n_{0}=1$ 时，若 n 向抬䍩可 2 ，设 $n \equiv(-1)^{\nu} 5^{\nu}\left(\bmod 2^{\alpha}\right)$ ，则 $由$

$$
\begin{aligned}
\operatorname{Sr}\left(2^{\alpha}, 2\right) & =(-1)^{r}+\left(1+(-1)^{\gamma}\right] 5^{2^{\alpha-3} r} \\
& \equiv\left\{\begin{aligned}
-1\left(\bmod 2^{\alpha}\right) & b^{\prime} 2 \lambda r \text { 时 } \\
3\left(\bmod 2^{\alpha}\right) & \text { 当 } 2 \mid r \operatorname{Br}
\end{aligned}\right. \\
& \left.\equiv 1+2(-1)^{r}\left(\bmod 2^{\alpha}\right) \equiv(-1)^{r} \Delta(1)+[1+1-1)^{r}\right] \varphi\left(2^{1}\right)\left(\bmod 2^{\alpha}\right)
\end{aligned}
$$

（ii）当 $n_{0}>1$ 时，设 n 的拈板放 $2^{n_{0}}, n \equiv(-1)^{y} 5^{\nu}\left(\bmod 2^{\alpha}\right)$由 $n^{2^{n_{0}}} \equiv 1\left(\bmod 2^{\alpha}\right)$ ，没両 $15^{\gamma_{0} 2_{0}} \equiv 1\left(\bmod 2^{\alpha}\right)$
$从 32^{\alpha-2} \mid 2^{n_{0}} v_{0}$ ，即 $2^{\alpha-n_{0}-2} \mid V_{0}$ ．没

$$
V_{0}=2^{\alpha-n_{0}-2} n_{1}
$$

す倞明 $\left(n_{1}, 2\right)=1$ ，䂞则：若 $2 \mid n_{1}$ 时，必力

$$
n^{2^{v_{0}-1}} \equiv\left[(-1)^{v} 5^{v_{0}}\right]^{2^{n_{0}-1}} \equiv 5^{2^{\alpha-3} n_{1}} \equiv 1\left(\bmod 2^{\alpha}\right),
$$

这与 n 白栝枚为 2^{n} 极矛屠。

$$
\text { 反之, 若 } \nu_{0}=2^{\alpha-2-n_{0}} n_{1}, ~ 2 \$ n_{1} \text {. 则 }(-1)^{\nu} 5^{\nu_{0}}
$$

的情䌾为 $2^{n_{0}}$ 。周子 $\left\{(-1)^{\nu} 5^{\nu} \mid v=0,1,2^{\alpha-n_{0}-2} \| V_{0}\right\}$

即以（ $j<1 n$ 表京 $j<n$ ．皿 $(j, n)=1)$

$$
\begin{aligned}
\operatorname{Sr}_{r}\left(2^{\alpha}, 2^{n_{0}}\right) & \equiv \sum_{\gamma_{0}=2^{\alpha-n_{0}-2}}^{v=0.1}\left[(-1)^{\nu} 5^{v_{0}}\right]^{r} \\
& =\left[1+(-1)^{r}\right] \sum_{\nu_{0}: 2^{\alpha-n_{0}-2} \| v_{0}} 5^{r v_{0}} \\
& =\left[1+(-1)^{r}\right] \sum_{k \ll^{\prime} 2^{n_{0}}}\left(5^{r} 2^{\alpha-n_{0}-2}\right)^{k} \\
& =\left[1+(-1)^{r}\right] \sum_{k \ll^{\prime} 2^{n_{0}}}\left(5^{l}\right)^{k} \quad\left(\text { i } l=r 2^{\alpha-n_{0}-2}\right)
\end{aligned}
$$

应用下述结男：（见［3］）

$$
S^{\prime}(n)=\sum_{j<n} f(j)=\sum_{d \mid n} \mu(d)[f(d)+f(2 d)+\cdots+f(n))
$$

便力

$$
\begin{aligned}
S_{r}\left(2^{\alpha}, 2^{n_{0}}\right) & \left.\equiv(-1)^{r}+1\right] \sum_{d / 2^{n_{0}}} \mu(d)\left[\sum_{k=1}^{2^{n / / d}}\left(5^{l}\right)^{k d}\right] \\
& \equiv\left[1+(-1)^{r}\right] \sum_{d / 2^{n_{0}}} \mu(d) \frac{5^{l \cdot 2^{n_{0}}}-1}{5^{l d}-1} \cdot 5^{l d}
\end{aligned}
$$

$$
\begin{align*}
& \equiv\left[1+(-1)^{r}\right]\left(\mu(1) \frac{5^{l \cdot 2^{n_{0}}-1}}{5^{l}-1}+\mu(2) \frac{5^{l \cdot 2^{n_{0}}}-1}{5^{2 l}-1} \cdot 5^{2 l}\right) \\
& \equiv\left(1+(-1)^{r}\right) \frac{5^{l \cdot 2^{n_{0}}-1}}{5^{2 l}-1} \cdot 5^{l} \tag{1}
\end{align*}
$$

当 $2 \nmid r$ 时 $\left.\quad S_{r}\left(2^{\alpha}, 2^{n_{0}}\right) \equiv 0, \bmod 2^{\alpha}\right)$
当 $21 r$ 时，讨论其同系情况。
很家另田制学归纳法证明

$$
5^{2^{l-2}} \equiv 1+2^{l}\left(\bmod 2^{l+1}\right)
$$

其中 $2 \leqslant l \leqslant \alpha-1$ 。故必有

当 $2 \mid r$ 时， $5^{\gamma \cdot 2^{\alpha-n_{0}-2}} \equiv 1+2^{r_{0}}\left(\bmod 2^{r_{0}+1}\right)$
ep $\quad 5^{l} \equiv 1+2^{\gamma_{0}}\left(\bmod 2^{\gamma_{0}+1}\right)$
其中 $r_{0} \geqslant \alpha-n_{0}+1$ ．
设 $5^{l}=1+\mu 2^{r_{0}}$ ，其中 $2+\mu$ 。这指必方

$$
5^{2 l}=1+\mu_{1} 2^{r_{0}+1} \quad\left(2+\mu_{1}\right)
$$

子是

$$
\frac{5^{l .2^{n_{0}}-1}}{5^{2 l}-1}=\frac{\left(1+\mu_{1} 2^{r_{0}+1}\right)^{2^{n_{0}-1}}-1}{\mu_{1} 2^{r_{0}+1}}=2^{n_{0}-1}+
$$

$$
\begin{aligned}
& +\frac{1}{2^{r_{0}+1}} \sum_{k \geqslant 2}\binom{2^{n_{0}-1}}{k} \mu_{1}^{k-1} 2^{k\left(r_{0}+1\right)} \\
& \equiv 2^{n_{0}-1}\left(\bmod 2^{\alpha}\right) .
\end{aligned}
$$

其中同到 $\operatorname{pot}_{2}\left(\left(2^{n_{0}-1}\right) 2^{k\left(r_{0}+1\right)}\right) \geqslant \alpha+r_{0}+1 .(k \geqslant 2)$面结合（2）$\alpha r_{0} \geqslant \alpha-n_{0}+1 \quad$ す．B ：

$$
\frac{5^{l \cdot 2^{n_{0}}}-1}{5^{2 l}-1} \cdot 5^{l} \equiv 2^{n_{0}-1}\left(\bmod 2^{\alpha}\right)
$$

代入（1）す得

$$
\begin{aligned}
S_{r}\left(2^{\alpha}, 2^{n_{0}}\right) & \equiv\left[1+(-1)^{r}\right] 2^{n_{0}-1}\left(\bmod 2^{\alpha}\right) \\
& \equiv\left[1+(-1)^{r}\right] \varphi\left(2^{n_{0}}\right)\left(\bmod 2^{\alpha}\right)
\end{aligned}
$$

若定义

$$
\Delta(n)=\left[\frac{1}{n}\right]= \begin{cases}1 & n=1 \\ 0 & n>1\end{cases}
$$

络交（i）（ii） 3 得：

$$
\begin{aligned}
& S_{r}\left(2^{\alpha}, 2^{n_{0}}\right) \equiv \Delta\left(n_{0}\right)(-1)^{r}+\left[1+(-1)^{r}\right] \varphi\left(2^{n_{0}}\right)\left(\bmod 2^{\alpha}\right) . \\
& 3 \leqslant \operatorname{Sn} S_{r}(2,1) \equiv 1(\bmod 2) \quad \xi_{r}(4,2) \equiv(-1)^{r}(\bmod 4) .
\end{aligned}
$$

参 考 文 献

［2］K．Ireland \＆M．Rosen．A Classical Introduction to Modern Number Theory．Springer－Verlag

New York Heidebberg BerLin（1980）43－45．
［3］H．Gupta，Selected Topics in Number Theory． ABACUS Press，1980．PP．55－57

关子其一类指板方塞和一个定理的有
话的
1986．3． 17
没 $\operatorname{Sin}\left(p^{\alpha}, d\right)$ 表市 $\bmod p^{\alpha}$ 而完全剩会舟中措
 α, d, n a s 梦放。1952年，R．Moller ${ }^{[2]}$ 证明 3

$$
\zeta_{n}\left(p^{\alpha}, d\right) \equiv \frac{\varphi(d)}{\varphi\left(d_{1}\right)} \mu\left(d_{1}\right)(\bmod p)
$$

$$
S_{n}\left(p^{\alpha}, d\right) \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right) .
$$

共中 $\alpha \geqslant 0$ ，p主等書放，$d /(n, \alpha)=p^{r_{0}} l_{0}$ ，（ptlo）本文改进了 H．S，Zukurman ${ }^{[1]}$ 的方法，话岩 3 上连结男的昌一个河明。

设 $h(d)=\frac{d}{(n, d)} . \quad p(d)=\operatorname{potp}(h(d)), \quad$ 对于 $x \mid \varphi\left(p^{\alpha}\right)$.
全义

$$
F(x, n)=\sum_{d+x} \frac{\varphi(d)}{\varphi(h(d) p-p(d))} \mu\left(h(d) p^{-p(d)}\right)
$$

对与剈 $F(x, n)$ ，我的得到叓似 Zukerman 笑周
定理一

$$
F(x, n)=\left\{\begin{array}{lc}
x & \text { 当 } p^{-p o t p(x)} x \mid n \text { 时 } \\
0 & \text { 硆 } x \cdot j
\end{array}\right.
$$

设 q 分一个砉板，当 $(q, p)=1$ 时，

$$
F(x, n)=\sum_{d \mid q^{\alpha},} \frac{\varphi(d)}{\varphi(n(d))} \mu(h(d))=\sum_{k=0}^{\alpha_{1}} \frac{\varphi\left(q^{k}\right)}{\varphi\left(\frac{q^{k}}{\left(q^{k}, n\right)}\right)} \mu\left(\frac{q^{k}}{\left(q^{k}, n\right)}\right)
$$

当 $\left(q^{\alpha_{1}}, n\right)=q^{\beta}, ~ e \leq \beta<\alpha_{1}$ 日寸，我的有

$$
\begin{aligned}
& F\left(q^{\alpha_{1}}, n\right)=\sum_{i=0}^{\beta} \frac{\varphi\left(q^{i}\right)}{\varphi(-1)} \mu(1)+\frac{\varphi\left(q^{\beta+1}\right)}{\varphi(q)} \mu(q) \\
& =\sum_{i=0}^{\beta} \varphi\left(q^{i}\right)-\frac{\varphi\left(q^{\beta+1}\right)}{\varphi(q)}=q^{\beta}-q^{\beta}=0 . \\
& \text { 当 }\left(q^{\alpha_{1}} \cdot n\right)=q^{\alpha_{1}} \cdot \text {. } \\
& F\left(q^{\alpha_{1}}, n\right)=\sum_{d \mid q^{\alpha_{1}}} \varphi(d)=q^{\alpha_{1}} .
\end{aligned}
$$

当 $q=p$ 时，

$$
\begin{aligned}
F\left(p^{\beta}, n\right) & =\sum_{d \mid p^{\beta}} \frac{\varphi(d)}{\varphi\left(h(d) p^{-p(d)}\right)} \mu\left(h(d) p^{-p(d)}\right) \\
& =\sum_{d \mid p^{\beta}} \varphi(d)=p^{\beta}
\end{aligned}
$$

没 $x=p^{\beta} p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{\alpha}}$ 为 x 的典型分解式，则

$$
\begin{aligned}
& F(x, n)=F\left(p^{\beta}, n\right) F\left(p_{1}^{\alpha_{1}}, n\right) \cdots F\left(p_{k}^{\alpha_{n}}, n\right) \\
& =\left\{\begin{array}{cc}
p^{6} p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}=x & \text { 当 } p^{-p p_{1}(x)} x \mid n \text { 时 } \\
0 & \text { 鿬分 }
\end{array}\right. \\
& \text { 定理一证钝。 }
\end{aligned}
$$

H．S．Zukurman 在 $\alpha=1$ 有对 R．Moller 结 B 5
出了一个简予证明（见［2］Additional Remark）。
它足先证明了共似了 定理一白一个 铬果，多 后
向续易。

$$
\begin{aligned}
& \text { 定理 }=S_{n}\left(p^{\alpha}, d\right) \equiv \frac{\varphi(d)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right) \text {, }
\end{aligned}
$$

有晒明几个引理
设 $x \mid \varphi\left(p^{\alpha}\right)$ ，度义

$$
F_{1}(x, n)=\sum_{d \mid x} f(d, n), f(d, n)=\sum g_{d}^{n}
$$

引理1 $\quad F_{1}(x, n) \equiv \sum_{u^{x}=\left(p^{\alpha}\right)} u^{n}$ ，其中汽尽对一比 $u^{x} \equiv 1\left(P^{\alpha}\right)$ 的不同台的椟权的。

证明 只雪此较 $\sum_{d i x} \sum g_{d}^{n}-5 \sum_{u^{x}=1\left(p^{x}\right)} u^{n}$ 的对应位，交印得谂。

引理 $2 F_{1}(x, n)$ 对于 $\varphi\left(p^{\alpha}\right)$ 的肉手 系 $\left\{\bmod p^{\alpha}\right.$的积显的，即 $d_{1} d_{2} \mid \varphi\left(p^{\alpha}\right),\left(d_{1}, d_{2}\right)=1$ ．则

$$
F_{1}\left(d_{1}, n\right) F_{1}\left(d_{2}, n\right) \equiv F_{1}\left(d_{1} d_{2}, n\right) \quad\left(\bmod p^{\alpha}\right) .
$$

证明 的用列理1。

$$
\begin{aligned}
F_{1}\left(d_{1}, n\right) F_{2}\left(d_{2}, n\right) & =\left(\sum_{u_{1} d_{i=1}\left(p^{\alpha}\right)} u_{1}^{n}\right)\left(\sum_{u_{2}^{d_{2}} \sum_{1}\left(p^{\alpha}\right)} u_{2}^{n}\right) \\
& =\sum_{\substack{u_{0}^{d} \equiv 1\left(p^{\alpha}\right) \\
i=1,2}}\left(u_{1} u_{2}\right)^{n}
\end{aligned}
$$

我价䐜交当 u_{1}, u_{2} 分别通过 $u^{d_{1}} \equiv 1\left(\bmod p^{\alpha}\right)$
持侭版学服编辞裉
$u_{2}^{d_{2}} \equiv 1\left(\bmod p^{\alpha}\right)$ 而解务时，$\left\{u_{1} u_{2}\right\}$ 也週过 $u^{d_{1} d_{2}} \equiv 1\left(\bmod p^{\alpha}\right)$ 的解事。韦寞上，当 $(a . m)=1$ ．
则 $x^{n} \equiv a\left(\bmod p^{\alpha}\right)$ 的解攼为 $\left(n, \varphi\left(p^{\alpha}\right)\right)($ 育立 $[4])$国此 $u_{1}^{d_{1}} \equiv 1\left(\bmod p^{\alpha}\right) \quad 5 \quad u_{2}^{d_{2}} \equiv 1\left(\bmod p^{\alpha}\right)$ 多有 d_{1}, d_{2}个解，当 $u^{d_{1} d_{2}} \equiv 1\left(\bmod p^{\alpha}\right)$ 有 $d_{1} d_{2}$ 个解。又专 u_{1}, μ_{2}
解。质之立 あ u a $u^{d_{1} d_{l}} \equiv 1\left(\bmod p^{\alpha}\right)$ 向解时，设其指枚为 l ，没 $l=l_{1} l_{2}$ ，其中 $l_{1} \mid d_{1}, l_{L}=d_{2}$ ，内子 $\left(d_{1}, d_{2}\right)=1$ ．战存乐 q_{1}, q_{2} 。使得 $q_{1} q_{1}+q_{2} l_{2}=1, 子$是 $u=u^{q_{1} l_{1}} \cdot u^{g_{2} l_{2}}$ ，浬 $u^{g_{1} l_{0}}$ 为 $u^{d_{2}} \equiv 1\left(\bmod p^{\alpha}\right)$ 的
 $U^{d_{1} d_{L}} \equiv 1\left(\bmod p^{\alpha}\right)$ 的解可分解成 $u^{d_{1}} \equiv 1\left(\bmod p^{\alpha}\right)$ 与

（d）挡，$\quad F_{1}\left(d_{1}, n\right) F_{2}\left(d_{L}, n\right) \equiv \sum_{u^{d_{1} a_{2}} \equiv 1\left(p^{\alpha}\right)} u^{n}$

㢭，则 $a^{p s} \equiv b^{p s}\left(\bmod p^{n+s}\right)$ 之充分必要条件为 $a \equiv b\left(\bmod p^{\alpha}\right)$ ．
定理三

$$
F_{1}(x, n)=\left\{\begin{array}{lc}
x & \text { 当 } p^{-p t_{p}(x)} x \mid n \text { 时 } \\
0 & \text { 䂞则 }
\end{array}\right.
$$

论明：令 $x=p^{l} x_{1}\left(p \nmid x_{1}\right)$ 则由列观 2 多
縕 $F_{1}(x, n) \equiv F_{1}\left(p^{\ell}, n\right) F_{1}\left(x_{1}, n\right)\left(\bmod p^{\alpha}\right)$
设 u_{0} 为一指䍩为 x_{1} 白元素，子是当 $\left\{u_{0} u\right\}$当 u 通过 $u^{x_{1}} \equiv 1\left(\bmod p^{\alpha}\right)$ 的解数时，交通过其解理。故

$$
\begin{aligned}
F_{1}\left(x_{1}, n\right) & \equiv \sum_{u^{x_{1}} \equiv 1}\left(p^{\alpha}\right) \\
& u^{n} \equiv \sum_{u^{x_{1}} \equiv 1}(u, u)^{n}=u_{0}^{n} \sum_{u^{x_{1}} \equiv 1} u^{n} \\
& \equiv u_{0}^{n} F_{1}\left(x_{1}, n\right)\left(\bmod p^{\alpha}\right)
\end{aligned}
$$

周蹋

$$
\begin{aligned}
& \left(u_{0}^{n}-1\right) F_{1}\left(x_{1}, n\right) \equiv 0\left(\bmod p^{\alpha}\right) \\
& * x_{1} x n \text { 时, 则 }\left(u_{0}^{n}-1, p\right)=1 \quad\left(\text { 右则 } u_{0}^{n} \equiv 1(\bmod p)\right.
\end{aligned}
$$

$\left(x_{1}, p\right)=1, ~$ 故 $x_{1} \mid n$ ，予居）
于是各 $\quad F_{1}\left(x_{1}, n\right) \equiv O\left(\bmod p^{\alpha}\right)$
当 $x_{1} \mid n$ 时，$F_{1}\left(x_{1}, n\right) \equiv \sum_{u^{x}=1} 1 \equiv x_{1}(\bmod p \alpha)$ ．
这物，我他有

$$
F_{1}\left(x_{1}, n\right)= \begin{cases}x_{1} & \text { 当 } x_{1} \mid n \text { 时. } \\ 0 & \text { 名刘 }\end{cases}
$$

设 u_{0} 为关子揞枚为 p^{β} 向充書，由于 $\left\{u: u^{p^{\beta}} \equiv 1\left(\bmod p^{\alpha}\right)\right\}$ 均成一个以 $\mathrm{u}_{0} 2$ 生成元的㡒玟群，放必灰

$$
F_{1}\left(p^{\beta}, n\right) \equiv \sum_{r=1}^{p^{\beta}} u_{0}^{n \lambda} \equiv \frac{u_{0}^{n p^{\beta}-1}}{u_{0}^{n}-1}\left(\bmod p^{\alpha}\right) .
$$

引）诠 3 可知：存在 a ，PKa．使得 $u_{0}^{n}=1+a p^{\alpha-r}$ $(r \leq \beta)$ 。从石者

$$
\begin{aligned}
\frac{u_{0}^{n}{ }^{n}-1}{u_{0}^{n}-1} & =\frac{1}{a p^{\alpha-1}}\left[\left(1+a p^{\alpha-r}\right)^{p^{\beta}}-1\right] \\
& =p^{\beta}+\frac{1}{p^{\alpha-1}} \sum_{k \geq 2}\binom{p^{\beta}}{k} a^{\alpha-k} p^{k(\alpha-r)}
\end{aligned}
$$

$\equiv p^{\beta}\left(\bmod p^{\alpha}\right)$
（最后一第用到了 $\operatorname{pot}_{p}\left(\binom{\rho^{\beta}}{\alpha} p^{\mu(\alpha-r)}\right)=\beta-\operatorname{pot}_{p}(\kappa)+\kappa(\alpha-r)$

$$
\geqslant 2 \alpha-r)
$$

即：$\quad F_{1}\left(p^{\beta}, n\right) \equiv p^{\beta}\left(\bmod p^{\alpha}\right)$
熔上所述すら

$$
\begin{aligned}
& \sum_{d \mid x} f(d, n) \equiv\left\{\begin{array}{cc}
x\left(\bmod p^{\alpha}\right) & \text { 当 } p^{-p o t}(x) \\
x \mid n \text { 时 } \\
0 & \text { 名 }
\end{array}\right.
\end{aligned}
$$

由 Möbius 逆转力式 5 得 $\left(x=p^{l} x_{1}, ~ p l x_{1}\right)$

$$
\begin{aligned}
& f(x, n)=\sum_{d \mid-x} F_{1}(d, n) \mu\left(\frac{x}{d}\right) \equiv \sum_{\substack{d+x \\
p}} d \mu\left(\frac{x}{d}\right)
\end{aligned}
$$

$$
=\varphi\left(p^{\ell}\right) \frac{\varphi\left(x_{1}\right)}{\varphi\left(\frac{x_{1}}{\left(x_{1}, n\right)}\right)} \mu\left(\frac{x_{1}}{\left(x_{1}, n\right)}\right)=\frac{\varphi\left(x_{1}\right)}{\varphi\left(\frac{x_{1}}{\left(x_{1}, n\right)}\right)} \mu\left(\frac{x_{1}}{\left(\frac{\left.x_{1}, n\right)}{}\right)}\right.
$$

没 $\frac{x}{(x, n)}=p^{r} l_{0}$ ，其中 p $p l_{0}$ ，乃知 $\frac{x_{1}}{\left(x_{1}, n\right)}=l_{0}$ 。
A䟚，$S_{n}\left(p^{\alpha}, x\right) \equiv f(x, n) \equiv \frac{\varphi(x)}{\varphi\left(l_{0}\right)} \mu\left(l_{0}\right)\left(\bmod p^{\alpha}\right)$
这就是定现二的结里。
＊）这圣用边 H．S．Zukurman 的结里！［2］

著名的 Ramanujan 和已句起许复枚学家的注着，这是这抆之义：

$$
C_{k}(n)=\sum_{(m, \ldots, j)=1} e^{2 \pi i m n / k}
$$

已知：$:^{[5]} C_{R}(n)=\frac{\varphi(k)}{\varphi\left(\frac{k}{(n, k)}\right)} \mu\left(\frac{k}{(n, \alpha)}\right)$ ，这 心65 天理

个当结探讨的问题！

参 考文献
［1］方玉光，其一类拐做方军和白同金当起。
［2］R．Molter，Sums of Powers of Numbers Having a Given Exponent Modulo a Prime．Amer． Math．Monthly 54（1952）226－230．
［3］W．J．Leveque．Topics in Number Theory Vol I．Addison－Wesley Publ．Co．，Reading，Mass． 1955.
［4］K．Ireland \＆M．Rosen．A Classical Introduction to Modern Number Theory，Springer－Verlag．
New York Heidelberg Berlin．（1980）45－46．
［5］T．Apostal．An Introduction to Analytic Number Theory The Springer－Verlag New York Heidelberg Berlin $(1976) \quad 160-164$.
\qquad
关于百整服比进绾表家中的一个定理

$$
1985 \cdot 9.20
$$

系以唯一表京成下述叚式

$$
x=a_{1} k^{n_{1}}+a_{2} k^{n_{2}}+\cdots+a_{t} k^{n_{t}}
$$

其中 $n_{1}>n_{2}>\cdots>n_{t} \geqslant 0$ 足整制，$a_{1}, a_{2}, \cdots a_{t}$ 为

$$
\alpha(x)=\sum_{i=1}^{t} a_{i}, \quad A(x)=\sum_{y \leqslant x} \alpha(y)
$$

在1940年．Bush ${ }^{[1]}$ 证明3

$$
A(x) \sim \frac{k-1}{2 \log k} x \log x
$$

在1948年，Bell man 和 Shapiro ${ }^{[2]}$ 证明了

$$
A(x)=\frac{k-1}{2 \log k} x \log x+0(x \log \log x)
$$

对重 $k=2$ 的性况。
在 1949 年，Mirsky ${ }^{[3]}$ 把 O下的项政进成

路合黄敞的估计严田也不能断定不把 $O(x)$ 中改进成更低防的形式。

在1955年，周伯識和严士健［4］也证昭了

$$
\begin{equation*}
A(x)=\frac{k-1}{2 \log k} \times \log x+O(x) \tag{1}
\end{equation*}
$$

形式。促我用他的面方法，我只影给发 $O(x)$ 中
较烦㙂。

本交心用 Lagrange 向一个情等式，不仅洛出了 $O(x)$ 中既会事雨的一个软好的估计，亚四

$$
\text { 定红: } \quad A(x)=\frac{k-1}{2} \frac{x \log x}{\log k}+v(x) x \quad(k \geq 2)
$$

其中 $-\frac{5 x-4}{8} \leq \theta(x) \leq \frac{k+1}{2}$ ．
先给 Lagrange 䌸等式一个何数

证明．治 $M=a_{0}+a_{1} k+\cdots+a_{n} k^{h}$ ．则

$$
\begin{aligned}
\frac{n-\alpha(n)}{k-1} & =\frac{1}{k-1} \sum_{r=1}^{n} a_{r}\left(k^{r}-1\right)=\sum_{r=1}^{k} a_{r}\left(k^{r-1}+k^{r-2}+\cdots+1\right) \\
& =\sum_{r=1}^{n}\left(a_{n} k^{h-r}+a_{n-1} k^{n-r-1}+\cdots+a_{r}\right) \\
& =\sum_{r=1}^{n}\left[\frac{n}{k^{r}}\right]=\sum_{r=1}^{\infty}\left[\frac{n}{k^{r}}\right] \quad \text { 拄叟 }
\end{aligned}
$$

廷现的证昭 的用引理，截们有

$$
\begin{align*}
& A(x)= \sum_{n \leq x}\left(n-(k-1) \sum_{r=1}^{n}\left[\frac{n}{k^{r}}\right]\right) \\
&= \frac{1}{2} x(x+1)-(k-1) \sum_{i=1}^{\infty} \sum_{n \leq x}\left[\frac{n}{k^{i}}\right] \\
&= \frac{1}{2} x(x+1)-(k-1) \sum_{1 \leqslant i \leq \log _{k} x}\left(\frac{1}{2}\left[\frac{x}{k^{i}}\right]\left(\left[\frac{x}{k^{i}}\right]-1\right) k^{i}+\right. \\
&\left.+\left[\frac{x}{k^{i}}\right]\left(x-\left[\frac{x}{k^{i}}\right] x+1\right)\right) \\
&= \frac{1}{2} x(x+1)+\frac{1}{2}(k-1) \sum_{1 \leqslant i \leq \log _{k} x} k^{i}\left[\frac{x}{k^{i}}\right]-(k-1) \sum_{i \leq i \leq R_{g x} x}\left[\frac{x}{k^{i}}\right] \\
&-(k-1) \sum_{1 \leq i \leq \log _{n} x}\left(x\left[\frac{x}{k^{i}}\right]-\frac{1}{2}\left[\frac{x}{k^{i}}\right]^{2} k^{i}\right) \tag{2}
\end{align*}
$$

用 3

$$
\begin{aligned}
& \sum_{1 \leq i \leq \log _{k} x} k^{i}\left[\frac{x}{k^{i}}\right]=x\left[\log _{k} x\right]+\sum_{1 \leqslant i \leqslant \log _{x} x} k^{i}\left(\left[\frac{x}{k^{i}}\right]-\frac{x}{k^{i}}\right) \\
& =x \log _{k} x-\theta_{1} x+\sum_{1 \leq i \leqslant \log _{k} x} k^{i}\left(\left[\frac{x}{k^{j}}\right]-\frac{x}{k^{i}}\right) \quad\left(0 \leq \theta_{1} \leq 1\right) \\
& \sum_{1 \leqslant i \leq \log _{k} x}\left(x\left[\frac{x}{k^{2}}\right]-\frac{1}{2}\left[\frac{x}{k^{i}}\right]^{2} k^{i}\right)=\sum_{1 \leqslant i \leq \log _{x} x}\left(\frac{1}{2} \frac{x^{2}}{k^{i}}-\frac{1}{\Sigma} k^{i}\left(\left[\frac{x}{k^{2}}\right]-\frac{x}{k^{i}}\right)\right)
\end{aligned}
$$

$$
=\frac{1}{2} x^{2} \sum_{i \leqslant i \leqslant \log _{x} x} \frac{1}{k^{2}}-\frac{1}{2} \sum_{i \leqslant i \leqslant \log _{4} x} k^{i}\left(\left[\frac{x}{k^{i}}\right]-\frac{x}{k^{2}}\right)^{2} 41
$$

故伐入（2）可組

$$
\begin{align*}
A(x)= & \frac{1}{2} x(x+1)+\frac{k-1}{2} x \log _{k} x-\frac{k-1}{2} v_{1} x-(k-1) \sum_{1 \leqslant i \leqslant \log _{k} x}\left[\frac{x}{k^{i}}\right] \\
- & \frac{1}{2}(k-1) \sum_{1 \leqslant i \leq \log _{k} x}\left(\left\{\frac{x}{k^{i}}\right\}-\left\{\frac{x}{k^{i}}\right\}^{2}\right) k^{i} \\
& -\frac{k-1}{2} x^{2} \sum_{1<i \Sigma \log _{4} x} \frac{1}{k^{i}} \tag{3}
\end{align*}
$$

准晒

$$
\begin{aligned}
& \sum_{1 \leqslant i \leqslant e_{g_{k} x}}\left[\frac{x}{k^{i}}\right]=v_{2} \frac{x}{k-1} \quad\left(0 \leq v_{2} \leq 1\right) \\
& \sum_{1 \leqslant i \leq k_{y_{k} x}}\left(\left\{\frac{x}{k^{i}}\right\}-\left\{\frac{x}{k^{i}}\right\}^{2}\right) k^{i}=v_{3} \frac{k x}{4(k-1)} \quad\left(0 \leqslant \theta_{3} \leq 1\right) .
\end{aligned}
$$

$$
x^{2} \sum_{i \leqslant i \leqslant \log _{k} x} \frac{1}{k^{2}}=\frac{x^{2}}{k-1}-\frac{1}{k-1} \frac{x^{2}}{k^{\left[\log _{k} x\right]}}
$$

国此代入（3），裁不有

$$
\begin{aligned}
A(x) & =\frac{k-1}{2} x \log _{k} x-\left(\frac{k-1}{2} v_{1}+v_{2}-\frac{1}{2}+\frac{k}{8} v_{3}-\frac{1}{2} \frac{x}{\left.k^{[\log x x}\right)}\right) x \\
& \triangleq \frac{k-1}{2} \frac{x \log x}{\log k}+v(x) x
\end{aligned}
$$

参 考 文 南献
［1］L．E．Bush．An Asymptotic formula for the average sums of the digits of integers． Amer．Math．Monthly 47 （1940）154－156．
［2］R．Bellman \＆H．N．Shapiro，On a problem in additive number theory，Ann．Math． princeton II $49(1948) \quad 333-340$ ．
［3］L．Mirsky，A theorem on representations of integers in the scale of r ．Scripta Math．New York 15（1949）11－12．
［4］周伯熄与严士健，关于k进位表示法的一个问题，由效学学报 Vol 5 No． 4 1955．12．
［5］H．Gupta．Selected topics in number theory． ABACUS Press． 1980.

On a theorem in the K－adic representation of positive integers

FANG Yuguang
Let $k \geqslant 1$ be a fixed integers，then any positive integer x can be uniquely represented by the following form

$$
x=a_{1} k^{n_{1}}+a_{2} k^{n_{1}}+\cdots+a_{t} k^{n_{t}}
$$

where $n_{1}>n_{2}>\ldots>n_{t} \geqslant 0$ ．are integers，and $a_{1}, a_{2}, \ldots a_{t}$ are also positive integers not exceeding $k-1$ ．Define

$$
\alpha(x)=\sum_{i=1}^{t} a_{i} \text {, and } A(x)=\sum_{y \leqslant x} \alpha(y)
$$

In 1940，Bush ${ }^{[1]}$ has shown $A(x) \sim \frac{k-1}{2 \log k} x \log x$
In 1948．Bellman and Shapiro［2］has proved

$$
A(x)=\frac{k-1}{2 \log k} x \log x+O(x \log \log x) \quad \text { for } k=2 ; \operatorname{In} 1989 \text {, }
$$

Mirsky［3］improved the 0 －term to $O(x)$ for any $k \geq 2$ ． but using his method，we can＇t give the estimation of （20×：5－300）
the implied constant in $O(x)$.
In 1955. Cheo Peh-Hsuin and Mien Sze-Chien ${ }^{[4]}$ also proved $\quad A(x)=\frac{k-1}{2 \log k} \times \log x+O(x)$

Although by means of their method, we can estimate the implied constant in $O(x)$, it is too unaccurate and more importantly, their method is too complicated.

In this paper, we shall give a linear inequality on K for the estimation of the implied constant and give a very simple proof of (1) as the same time, that is, we have proved

Theorem $\quad A(x)=\frac{k-1}{2} \frac{x \log x}{\log k}+\theta(x) x \quad(k \geq 2)$ where $-\frac{5 k-4}{8} \leqslant \theta(x) \leqslant \frac{k+1}{2}$.

$$
\text { Lemma }^{[5]} \text { (J.L. Lagrange) } \frac{n-\alpha(n)}{k-1}=\sum_{k=1}^{\infty}\left[\frac{n}{k^{r}}\right]
$$

Proof Set $n=a_{0}+a_{1} k+\cdots+a_{n} k^{h}$, then

$$
\frac{n-\alpha(n)}{k=1}=\frac{1}{k-1} \sum_{r=1}^{n} a_{r}\left(k^{r}-1\right)=\sum_{r=1}^{n} a_{r}\left(k^{r-1}+k^{r-2}+\cdots+1\right)
$$

$$
=\sum_{r=1}^{n}\left(a_{n} k^{h-r}+a_{n-1} k^{n-r-1}+\cdots+a_{r}\right)=\sum_{r=1}^{n}\left[\frac{n}{k^{r}}\right]
$$

Proof of Theorem Using the Lemma，we have

$$
\begin{align*}
& A(x)=\sum_{n \sum x}\left(n-(k-1) \sum_{r=1}^{n}\left[\frac{n}{k^{*}}\right]\right) \\
& =\frac{1}{2} x(x+1)-(k-1) \sum_{r=1}^{\infty} \sum_{n \leqslant x}\left[\frac{n}{k^{r}}\right] \\
& =\frac{1}{2} x(x+1)-(k-1) \sum_{1 \leqslant r \leq \log _{k} x}\left(\frac{1}{2}\left[\frac{x}{k^{r}}\right]\left(\left[\frac{x}{k^{r}}\right]-1\right) k^{r}+\left[\frac{x}{k^{r}}\right]\left(x-\left[\frac{x}{k^{r}}\right] k^{k^{r}+1}\right)\right) \\
& =\frac{1}{2} x(x+1)+\frac{1}{2}(k-1) \sum_{1 \leqslant v \leqslant \log _{x} x} k^{v}\left[\frac{x}{k^{\nu}}\right]-(k-1) \sum_{i \leqslant r \leqslant L_{g_{k} x} x}\left[\frac{x}{k^{v}}\right] \\
& -(k-1) \sum_{1 \leqslant r \leqslant \log _{k} x}\left[x\left[\frac{x}{k^{v}}\right]-\frac{1}{2}\left[\frac{x}{k^{v}}\right]^{2} k^{v}\right) \tag{2}
\end{align*}
$$

Since $\sum_{1 \leq r \leq \log _{k} x} k^{r}\left[\frac{x}{k^{r}}\right]=x\left[\log _{k} x\right]+\sum_{1 \leq r \leq \log _{k} x} k^{x}\left(\left[\frac{x}{k^{\top}}\right]-\frac{x}{k^{r}}\right)$

$$
\begin{aligned}
& =x \log _{k} x-v_{1} x+\sum_{1 \leq r \leq \log _{x} x} k^{r}\left(\left[\frac{x}{k^{r}}\right]-\frac{x}{k^{r}}\right)\left(0 \leq 0_{1} \leq 1\right) \\
& \sum_{1 \leqslant r \leqslant \operatorname{lognx}}\left(x\left[\frac{x}{k^{r}}\right]-\frac{1}{2}\left[\frac{x}{k^{v}}\right]^{2} k^{r}\right)=\sum_{i \in r \leq \operatorname{Lg}_{k} x}\left(\frac{1}{2} \frac{x^{2}}{k^{v}}-\frac{1}{2} k^{r}\left(\left[\frac{x}{k^{v}}\right]-\frac{x}{k^{v}}\right)^{2}\right) \\
& =\frac{1}{2} x^{2} \sum_{1 \leqslant r \leq \log _{k} x} \frac{1}{k^{r}}-\frac{1}{2} \sum_{1 \leqslant r \leq \log _{k} x^{2}} k^{v}\left(\left[\frac{x}{k^{r}}\right]-\frac{x}{k^{r}}\right)^{2}
\end{aligned}
$$

（2）Change into the following

$$
\begin{align*}
& A(x)=\frac{1}{2} x(x+1)+\frac{k-1}{2} x \log _{k} x-\frac{k-1}{2} Q_{1} x-(k-1) \sum_{1 \leqslant k \in \log _{k} x}\left[\frac{x}{k^{r}}\right] \\
& \quad-\frac{1}{2} \sum_{1 \leqslant k \leqslant \log _{x} x}\left(\left\{\frac{x}{k^{2}}\right\}-\left\{\frac{x}{k^{v}}\right\}^{2}\right) k^{r}-\frac{k-1}{2} x^{2} \sum_{1 \leqslant k \leqslant \log _{g k} x} \frac{1}{k^{r}} \tag{3}
\end{align*}
$$

It＇s easy to derive

$$
\begin{aligned}
& \sum_{1 \leqslant r \leqslant \log _{k^{\prime}} x}\left[\frac{x}{k^{i}}\right]=v_{2} \frac{x}{k-1} \quad\left(0 \leqslant \theta_{L} \leqslant 1\right) \\
& \sum_{1 \leqslant v \leq \log _{x} x}\left(\left\{\frac{x}{k^{i}}\right\}-\left\{\frac{x}{k^{k}}\right\}^{2}\right) k^{i}=\theta_{3} \frac{k x}{4(k-1)} \quad\left(0 \leqslant v_{3} \leq 1\right)
\end{aligned}
$$

Here we use the following： $0 \leq x-x^{2} \leq \frac{1}{4}$ for $0 \leq x \leq 1$ ．

$$
x^{2} \sum_{1 \leq r \leq \log _{x} x} \frac{1}{k^{r}}=\frac{x^{2}}{k-1}-\frac{1}{k-1} \frac{x^{2}}{k^{\left[\operatorname{lom}_{x} x\right]}}
$$

Therefore，notice（3），we obtain

$$
\begin{aligned}
& \begin{aligned}
A(x) & =\frac{k-1}{2} \frac{x \log x}{\log k}-\left(\frac{k-1}{2} u_{1}+a_{2}-\frac{1}{2}+\frac{k}{8} a_{3}-\frac{1}{2} \frac{x}{\left.k^{[\log x}\right]}\right) x \\
& \leqslant \frac{k-1}{2} \frac{x \log x}{\log k}+\theta(x) x \\
\text { where } & -\frac{5 k-4}{8} \leqslant \theta(x) \leqslant \frac{k+1}{2}
\end{aligned} .
\end{aligned}
$$

I am greatly indebted to my tutor，Professor SHAD． Pingzong for instruction and suppling references．

References
［1］L．E．Bush．An asymptotic formula for the average sum of the digits of integers．Amer．Math．Monthly ＜20：15＝300，
$47(1940) \quad 154-156$
［2］R．Bellman \＆H．N．Shapiro，On a problem in additive number theory，Ann．Math．Princeton II 49（1949）333－340．
［3］L．Mirsky，A theorem on representations of integers in the scale of r ．Scripta．Math． New York 15（1949）11－12．
［4］CHEO Peh－Hsuin \＆Yien Sze－Chien，A problem on the k－adic representation of positive integers Act Mattiematia（Chinese edition）Vol 5 No． 4 （1955）．
［5］H．Gupta，Selected topics in number theory． ABACUS Press（1980）．
 1985．8． 10.

设 $\theta_{j}(n)$ 表市 $\binom{n}{0}\binom{n}{1} \cdots\binom{n}{n}$ 中恰被 p^{j} 繁揨向 个敞，p a 事敞，又设 $n=c_{0}+c_{1} p+\cdots+c_{r} p^{r}$ $\left(0 \leqslant c_{i}<p\right)$ ．

1947年N．J．Fine 晒明 3

$$
\theta_{n}(n)=\left(c_{0}+1\right)\left(c_{1}+1\right) \cdots\left(c_{r}+1\right) .
$$

1967年，L．Carlitz 谧的 3

$$
\theta_{1}(n)=\sum_{k=0}^{r-1}\left(c_{0}+1\right) \cdots\left(c_{k-1}+1\right)\left(p-c_{k}-1\right) c_{k+1}\left(c_{k+2}+1\right) \cdots\left(c_{r+1}\right) .
$$

并对 $n=a p^{r}+b p^{r+1} \quad(0 \leqslant a<p . \quad 0 \leqslant b<p)$

$$
n=b+a p+a p^{2}+\cdots+a p^{p+j} \quad(0<a<p, b=a \text { ह }(a-1)
$$

络出了数应的出式。
1971年，F．T．Harward考豦3 P＝2白蛙况，得出了胡应向蛙式；

1973年，Harward 又证明 3

$$
\begin{aligned}
\theta_{2}(n)= & \sum_{k=0}^{r-1}\left(p-C_{k}-1\right)\left(p-C_{k+1}\right) C_{k+2} A_{k}+ \\
& +\sum_{m=k+2}^{r-1} \sum_{k=0}^{r-1}\left(p-C_{k}-1\right) C_{k+1}\left(p-C_{m}-1\right) C_{m+1} B_{k, m} .
\end{aligned}
$$

其中 $A_{k}=\left[\prod_{i=1}^{r}\left(c_{i}+1\right)\right] /\left(c_{k+1}\right)\left(c_{k+1}+1\right)\left(c_{k+2}+1\right)$ ．

$$
B_{k, m}=\left[\prod_{i=1}^{r}\left(c_{i}+1\right)\right] /\left(c_{k+1}\right)\left(c_{k+1}+1\right)\left(c_{m+1}\right)\left(c_{m+1}+1\right)
$$

周时对于 $n=a p^{k}+b p^{r} \quad(0<a<p, \quad D<b<p, k<r)$

$$
n=c_{1} p^{k}+\cdots+\left.c_{m}\right|^{k_{m}} \quad\left(0<c_{i}<p, j \leqslant k_{1}, j \leqslant k_{i+1}-k_{i}\right)
$$

给出了计鞜出式。
本文考虑，一般的㤬况，给出了 $\theta_{j}(n)$ 的一般求法出式，并对子 $\theta_{j}(n)$ 的产均结给出了一个小尽传计。

引理（Kummer）${ }^{[5]}$ 设（1）$s=a_{0}+a_{1} p+\cdots+a_{r} p^{r}$ ．
$(0 \leqslant a i<p)$ ，（2）$n-s=b_{0}+b_{1} p+\cdots+b_{p} p^{r}, \quad\left(\quad 0 \leq b_{i}<p\right)$ ．
（3）$a+b=c_{0}+\varepsilon_{0} p, \varepsilon_{0}+a_{1}+b_{1}=c_{1}+\varepsilon_{1}, \cdots$

$$
\varepsilon_{r-1}+a_{r}+b_{r}=c_{r}+\varepsilon_{r} P .
$$

（20＜15－300）

其中 $\varepsilon_{0}=0$ 成！，则 $\binom{n}{s}$ 中 p 的最高次勇 $\operatorname{pot}_{p}\left(\binom{n}{s}\right)=\varepsilon_{0}+\varepsilon_{1}+\cdots+\varepsilon_{r}$ ．万縕 $\varepsilon_{r}=0$ 。
一．$\theta_{j}(n)$ 的求淢
創使 $\operatorname{potp}\left(\binom{n}{5}\right)=j$ 充分必要条作为

$$
\varepsilon_{0}+\varepsilon_{1}+\cdots+\varepsilon_{r}=j \text {. 印 } \varepsilon_{0}+\varepsilon_{1}+\cdots+\varepsilon_{r-1}=j \text {, 宣表明 }
$$

$\varepsilon_{0}, \varepsilon_{1}, \cdots \varepsilon_{r-1}$ 中画好有 j 个取 1 分其金取 0 。没

$$
\varepsilon_{n_{1}}=\varepsilon_{n_{2}}=\cdots=\varepsilon_{n_{j}}=1 \text {, 没 } B\left(n_{1}, n_{2}, \cdots n_{j}\right) \text { 表市 }\binom{n}{s}
$$

$(s=0,1, \cdots n)$ 中通过所仅（1）（2）（3）过程新到的
$\varepsilon_{0}, \varepsilon_{1}, \cdots \varepsilon_{k-1}$ 中 $\varepsilon_{n_{1}}=\varepsilon_{n_{2}}=\cdots=\varepsilon_{n_{j}}=1$ ，了其全2 0
的（ $\binom{n}{s}$ 的广皮，则乃知

$$
\begin{equation*}
\vartheta_{j}(n)=\sum_{0 \leqslant n_{1}<n_{<}<\cdots<n_{j} \leqslant r-1} B\left(n_{1}, n_{2}, \ldots n_{j}\right) \tag{1}
\end{equation*}
$$

故只要求出 $B\left(n_{1}, n_{2}, \ldots n_{j}\right)$ 印可。把 $n_{1}, n_{1} \ldots n_{j}$

$$
\begin{aligned}
& n_{1}=m_{1}, m_{1}+1, \cdots m_{1}+l_{1} ; m_{2}, m_{2}+1, \cdots, m_{2}+l_{1} ; \cdots m_{n}, m_{k}+1 . \\
& -2 m_{n}+l_{k}=n_{j} .
\end{aligned}
$$

期中 $\quad m_{i}>m_{i-1}+1 \quad(2 \leqslant i \leqslant k)$
将 $\varepsilon_{n_{1}}=\varepsilon_{n_{2}}=\cdots=\varepsilon_{n_{j}}=1$ ，了其会 $\varepsilon_{i}=0$ 代入 $3 \mid$ 理
的（3）式印得一个方程

$$
\begin{align*}
& a_{0}+b_{0}=c_{0} \tag{1}\\
& \text { i } \\
& a_{m_{1}}+b_{m_{1}}=c_{m_{1}}+p \\
& 1+a_{m, 1}+b_{m, 1}=c_{m, 1}+p \\
& \text {; } \\
& 1+a_{m_{1}+l_{1}+1}+b_{m_{1}+l_{1}+1}=C_{m_{1}+l_{1}+1} \\
& a_{m_{1}+l_{1}+2}+b_{m_{2}+l_{1}+2}=C_{m_{1}+l_{1}+2} \\
& \vdots \\
& a_{m_{L}-1}+b_{m_{L}-1}=c_{m_{L}-1} \\
& a_{m_{2}}+b_{m_{2}}=c_{m_{2}}+p \\
& \vdots \\
& 1+a_{m_{2}+l_{1}}+b_{m_{1}+l_{1}}=c_{m_{2}+l_{2}} \\
& a_{m_{k}}+b_{m_{k}}=c_{m_{k}}+p \\
& 1+a_{m_{k}+1}+b_{m_{k}+1}=c_{m_{k}+1}+p \\
& \vdots \\
& 1+a_{m x}+l_{x}+b_{m x}+l_{x}+1=C_{m u t h x+1} \\
& a_{m k+l_{k}+2}+b_{m_{k}+l_{k}+2}=c_{m_{k}+l_{k}+2} \\
& \left(m_{1}+l_{1}+1\right)^{\prime} \\
& \left(m_{1}+l_{1}+2\right)^{\prime} \\
& \left(m_{2}-1\right)^{1} \\
& \left(m_{2}\right)
\end{align*}
$$

$$
\begin{aligned}
& a_{r-1}+b_{r-1}=c_{r-1} \\
& \hat{a}_{r}+b_{r}=c_{r}
\end{aligned}
$$

$$
(\gamma-1)^{\prime}
$$

$$
(r)^{\prime}
$$

可絽这个方雅组的解（ $a_{0}, a_{1}, \cdots a_{r}$ ）的个制即是 $\binom{n}{s}(s=0.1,2, \cdots n)$ 中弦求 $i<$ 故 $B\left(n_{1}, n_{2}, \cdots n_{j}\right)$ 。由方程组可以人看出（ $a_{0}, a_{1}, \cdots a_{r}$ ）作出解时，$a_{0}, a_{1}, \cdots a_{r}$
得 a_{0} 方（ $c_{0}+1$ ）种取法，由（2）縕 a_{1} 方 $(1+1)$ 种敢法，
 $\left(m_{1}\right)^{\prime}$ 知 a_{m} 加 $\left(p-c_{m_{1}}-1\right)$ 种取法，四 $\left(m_{1}+1\right)^{\prime}$ 納 $a_{m_{1}+1}$ 有（ $p-C_{m_{1}}$ ）种取法，由 $\left(m_{2}+2\right)^{\prime}$ 知 $a_{m_{2}+2}$ 艻 $\left(p-C_{m_{1}+2}\right)$ 种取法，…内 $\left.m_{1}+l_{1}\right)^{\prime}$ 知 $a_{m_{1}+l_{1}}$ 力 （ $p-c_{m_{1}+l_{1}}$ ）种欧法，由 $\left(m_{1}+l_{1}+1\right)^{\prime} k n, ~ a_{m_{1}+l_{1}+1} 力_{0} C_{m_{1}+l_{1}+1}$种取法，内 $\left(m_{1}+l_{4}+2\right)^{\prime}$ 縕 $a_{m_{1}+l_{1}+2} 力_{0}\left(C_{m_{1}+l_{1}+2}+1\right)$ 种取法（若 $\left.m_{2} \neq m_{1}+l_{1}+2\right), \cdots a_{m_{2}-1}$ 有 $\left(c_{m_{2}-1}+1\right)$ 种取
（20－15－300）

渱，a_{m} 有 $\left(p-c_{m_{2}}-1\right)$ 釉欧法，$\cdots a_{m_{2}+l_{2}}$ 有 $\left(p-C_{m_{2}+l_{1}}\right)$糔取法，…这持维续下去，当上建 $a_{0}, a_{1},-a_{r}$ 中
解。 子是

$$
\begin{aligned}
& B\left(n_{1}, n_{2}, \cdots n_{j}\right)=\left(c_{0}+1\right)\left(c_{1}+1\right) \cdots\left(c_{m,-1}+1\right)\left(p-c_{m},-1\right) \cdots \\
& \left(p-c_{m_{1}}+1\right) \cdots\left(p-c_{m_{1}+l_{1}}\right) c_{m_{1}+l_{1}+1}\left(c_{m_{1}+l_{1}+2}+1\right) \cdots\left(c_{m_{2}-1}+1\right) \\
& \left(p-C_{m_{2}}-1\right)\left(p-C_{m_{2}}\right) \cdots\left(p-C_{m_{1}+l_{1}}\right) C_{m_{2}+l_{2}+1}\left(C_{m_{2}+l_{2}+2}+1\right) \\
& \cdots\left(p-m_{k-1}\right)\left(p-c_{m_{x+1}+}\right) \cdots\left(p-c_{m_{x}+l_{x}}\right) c_{m_{x}+l_{x}+1} * \\
& \left(c_{m_{x}+k_{k}+2}+1\right) \cdots\left(c_{r}+1\right) \\
& =\left[\prod_{i=0}^{k}\left(c_{i}+1\right)\right]\left[\prod_{i=1}^{k} \frac{\left(p-c_{m_{i}}-1\right)\left(p-c_{m_{i}+1}\right) \cdots\left(p-c_{m_{i}+l_{i}}\right) c_{m_{i}+l_{i}+1}}{\left(c_{m_{i}}+1\right)\left(c_{m_{i}+1}+1\right) \cdots\left(c_{m_{i}+l_{i}}+1\right)\left(c_{i+}+l_{i}+1\right)}\right]
\end{aligned}
$$

子是我的有
定记一

$$
\begin{aligned}
& \text { H }{ }^{H}\left(n_{1}, n_{2} \cdots n_{j}\right)=\left(m_{1}, m_{1}+1, \cdots m_{1}+l_{1} ; m_{2}, m_{1}+1, \cdots m_{1}+l_{2} ; \cdots\right. \\
& \left.m_{k}, m_{k+1}, \ldots m_{n}+l_{n}\right), \quad m_{i+1}-m_{i}>1 \quad(i=1, \ldots, k-1) .
\end{aligned}
$$

推论 $v_{3}(n)=\prod_{i=0}^{r}\left(c_{i}+1\right)\left(\sum_{k=0}^{r-3} \frac{\left(p-c_{n-1}\right)(p-i n+1)\left(p-c_{k+1}\right)\left(c_{k+1}\right.}{\left(c_{k+1}\right)\left(c_{k+1}\right)\left(c_{k n}+1\right)\left(c_{k+1}+1\right)}\right.$

$$
\begin{aligned}
& +\sum_{k=2}^{k_{1}=1} \sum_{m=0}^{k=1} \frac{\left(p-c_{m-1}\right) c_{m+1}\left(p-c_{k}-1\right)\left(p-c_{k+1}\right) c_{k+2}}{\left(c_{m+1}\right)\left(c_{m+1}+1\right)\left(c_{k}+1\right)\left(c_{k+1}+1\right)\left(c_{k+1}+1\right)}+ \\
& +\sum_{k=2}^{r-1} \sum_{m=k+2}^{r=1} \frac{\left(p-c_{k}\right)\left(p-c_{k+1}\right) C_{k+2}\left(p-c_{m}\right) c_{m+1}}{\left(C_{k+1}\right)\left(C_{k+1}+1\right)\left(C_{k+2}+1\right)\left(C_{m+1}\right)\left(c_{k+1}+1\right)}+ \\
& \left.\sum_{2 \leqslant i+2<j+1 \leqslant m(r-1} \frac{\left(p-c_{i}-1\right) c_{i+1}\left(p-c_{j}-1\right) c_{j+1}\left(p-c_{m}-1\right)\left(c_{m+1}\right.}{\left(c_{i+1}\right)\left(c_{j}+1\right)\left(c_{j+1}+1\right)\left(c_{m+1}\right)\left(c_{m+1}+1\right)}\right) \text {. }
\end{aligned}
$$

注求，这些出式对于克分大的n与p是有效的，百日报据其规伸䖵，可以生计较机上的以负现。（见二道推为式）。
$=O_{j}(n)$ 的均值传计．
命题1．$\quad \theta_{j}\left(p^{n}\right)=\varphi\left(p^{j}\right) \quad(n \geq j>0) \quad \theta_{0}\left(p^{n}\right)=2$.

 $\varphi\left(p^{j}\right) \uparrow(\Leftrightarrow$ 表禾光分必要委件）证毕。对于 $\theta_{j}(n)$ ，我们有一个通推出式。的从一中的方程㘿出发，由（r $)^{4}$ 式，当
$\varepsilon_{r-1}=0$ 时，$a_{r} 万_{2}\left(c_{r}+1\right)$ 钟取法。务 $\left(a_{0}, \cdots a_{r-1}\right)$ 有 $0 ;\left(n-c_{r} p^{r}\right)$ 种取強；故至 $\varepsilon_{r-1}=0$ 时，$\left(a_{0}, a_{1}, \ldots a_{r}\right)$共有 $\left(c_{r}+1\right) \theta_{j}\left(n-c_{r} p^{r}\right)$ 种取法；当 $\varepsilon_{r-1}=0$ 时。色 $\varepsilon_{r-2}=0$ 时，a_{r} 力 c_{r} 邲取法，a_{r-1} 有 $\left(p-c_{r-1}-1\right)$种取法，当（ $a_{0}, a_{1} \ldots a_{r-2}$ 其办 $v_{j-1}\left(n-c_{r} p^{r}-c_{r-1} p^{r-1}\right)$种敢法，这辁（ $a_{0}, \cdots a_{r}$ ）出务

$$
c_{r}\left(p-c_{r-1}-1\right) \theta_{j-1}\left(n-q^{r}-c_{r-1} p^{r-1}\right), \cdots
$$

命题 2．$\theta_{j}(n)=\left(c_{r}+1\right) \theta_{j}\left(n-c_{r} p^{r}\right)$

$$
\begin{aligned}
& +C_{r}\left(p-c_{r-1}-1\right) \theta_{j-1}\left(n-c_{r} p^{r}-c_{r-1} p^{r-1}\right)+ \\
& +C_{r}\left(p-c_{r-1}\right)\left(p-c_{r-2}-1\right) \theta_{j-2}\left(n-c_{r} p^{r}-c_{r-1} p^{r-1}-c_{r-1} p^{r-2}\right) \\
& +\cdots+c_{r}\left(p-c_{r-1}\right) \cdots\left(p-c_{r-j+1}\right)\left(p-c_{r-j}-1\right) \theta_{0}\left(n-c_{r} p^{r}\right. \\
& \left.-\cdots-c_{r-j} p^{r-j}\right) . \\
& \text { 足义 } \Delta_{j}(x)=\sum_{n \leq x} \theta_{j}(n) \text {, 我的方 }
\end{aligned}
$$

证明。妯命题二可知，当 $n>j$ 时。

$$
\theta_{j}\left(a p^{n}+b\right) \geqslant(a+1) \theta_{j}(b) \quad\left(0<a<p, b<p^{n}\right) .
$$

子是（ $n>j$ ）

$$
\begin{aligned}
& \Delta_{j}\left(p^{n}\right)=\sum_{0 \leq l<p^{n-1}} \theta_{j}(l)+\sum_{p \leq l \leq 2 p^{n-1}} \theta_{j}(l)+\cdots \\
& +\sum_{(p) x^{3}=l<p^{n}} \theta_{j}(R)+\theta_{j}\left(p^{n}\right) \\
& =\sum_{0 \leq 1 \times p^{n-1}} \theta_{j}(l)+\sum_{0 \pm \ell^{[}\left(p^{n-1}\right.} \theta_{j}\left(p^{n-1}+l\right)+\cdots \\
& +\sum_{0 \leq l<p^{-1}} \theta_{j}\left((p-1) p^{n-1}+l\right)+\theta_{j}\left(p^{n}\right) \\
& \geqslant \sum_{0 \leq R<p p^{n-1}}+2 \sum_{0 \leq R<p^{n-1}} O_{j}(l)+\cdots+p \sum_{0 \in \ll p^{n-1}} \theta_{j}(l) \\
& +\theta_{j}\left(p^{n}\right) \\
& =\frac{p(p+1)}{2} \sum_{0 \in\left\{\in p^{n-1}\right.} \theta_{j}(l)+\theta_{j}\left(p^{n}\right) \\
& \geqslant \frac{p(p+1)}{2} \sum_{\operatorname{Dol} l \leq p^{n-1}} \theta_{j}(l)-\frac{P(p+1)}{2} \theta_{j}\left(p^{n-1}\right) \text {. }
\end{aligned}
$$

子是裁的办

$$
\begin{aligned}
\Delta_{j}\left(p^{n}\right) & \geqslant \frac{P(p+1)}{2} \sum_{0=l} \leqslant p^{n-1} \\
& \left(Q_{j}(l)-\frac{p(p+1)}{2} \varphi\left(p^{j}\right)\right. \\
= & \frac{p(p+1)}{2} \Delta_{j}\left(P^{n-1}\right)-\frac{p(p+1)}{2} \varphi\left(P^{j}\right) .
\end{aligned}
$$

当 $p^{n} \leqslant x<p^{n+1}$ 时 则 $n \leqslant \log _{p} x \leqslant n+1$
周 3

$$
\begin{aligned}
& \Delta j(x) \geqslant \Delta j\left(p^{n}\right) \geqslant \frac{p(p+1)}{2} \Delta ;\left(p^{n-1}\right)-\frac{p(p+1)}{2} \varphi\left(p^{j}\right) \\
& \geqslant \cdots \geqslant\left[\frac{p(p+1)}{2}\right]^{n-j} \Delta ;\left(p^{j}\right)-(n-j) \frac{p(p+1)}{2} \varphi\left(p^{j}\right) \\
&=\left[\frac{p(p+1)}{2}\right]^{n+1} \frac{\Delta j\left(p^{j}\right)}{\left(\frac{p(p+1)}{2}\right)^{j+1}}-(n-j) \frac{p(p+1)}{2} \varphi\left(p^{j}\right) \\
& \geqslant \geqslant\left(\frac{p(p+1)}{2}\right)^{\log _{p} x} \frac{\Delta j\left(p^{j}\right)}{\left(\frac{p(p+1}{2}\right)^{j+1}}-\left(\log _{p} x-(j+1)\right) \frac{p(p+1)}{2} \varphi\left(p^{j}\right) \\
& \geqslant x^{\log _{p}\left(\frac{p(p+1)}{2}\right) \frac{\Delta j\left(y^{j}\right)}{\left(\frac{p(p+1)}{2}\right)^{i+1}}-\left(\log _{p} x-(j+1)\right) \frac{p(p+1)}{2} \varphi\left(p^{j}\right)}
\end{aligned}
$$

子是方

$$
\lim _{x \rightarrow \infty} \frac{\Delta_{j}(x)}{\left(\frac{p(p+1)}{2}\right)^{2-p_{p} x}} \geqslant \frac{\Delta_{j}\left(p^{j}\right)}{\left(\frac{\rho(p+1}{2}\right)^{j+1}} \geqslant \frac{\theta_{j}\left(p^{j}\right)}{\left(\frac{p^{j}(+1)}{2}\right)^{j+1}}=\frac{\varphi\left(p^{j}\right)}{\left(\frac{p^{(p+1)}}{2}\right)^{i+1}}
$$

事宾上，我们白到而是比此数服不控式更好的 $\Delta_{j}(x)$ 的估计式 $(*)$ 。

明这是对的，实烸上的到是 $\Delta_{0}(x) \leqslant 3 x^{\log _{2} 3}$ 。对

$$
\text { 六理三. } \overline{\lim }_{x \rightarrow \infty} \Delta_{1}(x) / x^{\log _{p} \frac{p(p+1)}{2}} \log _{p} x \leqslant\left(\frac{p-1}{p+1}\right)^{2}\left(\frac{p(p+1)}{2}+2\right) .
$$

晒明 由命题已す知

$$
\theta_{1}(n)=\left(c_{r}+1\right) \theta_{1}\left(n-c_{r} p^{r}\right)+c_{r}\left(p-c_{r-1}-1\right) \theta_{0}\left(n-c_{r} p^{r}-c_{r-1}\right)^{p}
$$

足是当 $n>2$ 的

$$
\begin{aligned}
& \Delta_{1}\left(p^{n}\right)=\sum_{i \leqslant p^{n}} \theta_{i}(j)=\sum_{j<p-1}\left(\theta_{1}(j)+\theta_{1}\left(p^{n-1}+j\right)+\cdots+\theta_{1}\left(\left(p^{-1}\right) p^{n-1}+j\right),\right. \\
& +\theta_{1}\left(p^{n}\right) \\
& \leqslant \frac{p(p+1)}{2} \Delta_{1}\left(p^{n-1}\right)+\theta_{1}\left(p^{n}\right)+\frac{p(p-1)}{2} \sum_{\substack{j<p n-1 \\
j=8 p^{n-1}+k \\
0 \leqslant 1 \leqslant p+1, k<p+-1}}(p-l-1) \theta_{0}(k) \\
& \leqslant \frac{p(p+1)}{2} \Delta_{1}\left(p^{n-1}\right)+\theta_{1}\left(p^{n}\right)+\frac{p(p-1)}{2}\left(\sum_{l=0}^{p-1}(p-l-1)\right)\left(\sum_{k \leqslant p^{n-2}} \theta_{0}(k)\right) \\
& =\frac{p(p+1)}{2} \Delta_{1}\left(p^{n-1}\right)+\varphi(p)+\left(\frac{p(p-1)}{2}\right)^{2} \Delta_{0}\left(p^{n-2}\right)
\end{aligned}
$$

衣比通稚为式す的

$$
\begin{aligned}
\Delta_{1}\left(P^{n}\right) & \leqslant\left(\frac{P(P+1)}{2}\right)^{n-2} \Delta_{1}\left(p^{2}\right)+\left(\frac{p(P+1)}{2}\right)^{n-3} \varphi(P) \\
& +\left(\frac{P(p+1)}{2}\right)^{n-4} \varphi(p)+\cdots+\varphi(p) \\
& +\left(\frac{p(p+1)}{2}\right)^{n-3}\left(\frac{p(p-1)}{2}\right)^{2} \Delta_{0}(p)+\left(\frac{P(p+1)}{2}\right)^{n-4}\left(\frac{p(p-1)}{2}\right)^{2} \Delta_{0}\left(P^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
+\cdots+\left(\frac{p(p+1)}{2}\right)\left(\frac{p(p-1)}{2}\right)^{2} \Delta_{0}\left(p^{n-3}\right)+\left(\frac{p(p-1)}{2}\right)^{2} \pm 0\left(p^{n-2}\right) . \tag{2}
\end{equation*}
$$

周上还处促方法，お的

$$
\begin{aligned}
\Delta_{p}\left(p^{2}\right) & =\sum_{j<p}\left(Q_{1}(j)+Q_{1}(p+j)+\cdots+Q_{1}((p-1) p+j)\right)+\theta_{1}\left(p^{2}\right) \\
& =\sum_{j<p}(1 \cdot(p-j-1)+2(p-j-1)+\cdots+(p-1)(p-j-1)]+\varphi(p) \\
& =\frac{p(p-1)}{2} \sum_{j<p}(p-j-1)+\varphi(p)=\left[\frac{p(p-1)}{2}\right)^{2}+\varphi(p)
\end{aligned}
$$

泣害上向用到 $3 \quad \theta_{1}(\ell p+j)=\ell(p-j-1)$（掊中 $0<\ell \leqslant p-1,0 \leqslant j \leqslant p-1$ ），这可问一中妾轻把推知。

$$
\begin{aligned}
& \Delta_{0}\left(p^{n}\right)= \sum_{j<p^{n-1}}\left(\theta_{0}(j)+\theta_{0}\left(p^{n-1}+j\right)+\cdots+\theta_{0}\left((p-1) p^{n-1}+j\right)\right) \\
&+\theta_{0}\left(p^{n}\right) \\
&= \sum_{j<p^{n-1}} \theta_{0}(j)(1+2+\cdots+p)+2 \\
&= \frac{p(p+1)}{2} \sum_{j \leqslant p^{n-1}} \theta_{0}(j)-p(p+1)+2 \\
& \leqslant \frac{p(p+1)}{2} \Delta_{0}\left(p^{n-1}\right) \quad(n>1) \\
& \text { 故 } \quad \Delta_{0}\left(p^{n}\right) \leqslant\left(\frac{p(p+1)}{2}\right)^{n-1} \Delta_{0}(p)
\end{aligned}
$$

伐入（2）可知

$$
\Delta_{1}\left(p^{n}\right) \leqslant\left(\frac{p(p+1)}{2}\right)^{n-2}\left(\frac{p(p-1)}{2}\right)^{2}+\varphi(p)\left(\left(\frac{p(p+1)}{2}\right)^{n-2}+\left(\frac{p(p+1)}{2}\right)^{n-3}+\right.
$$

$$
\begin{align*}
& \left.+\cdots+\frac{p(p+1)}{2}+1\right)+\left(\frac{P(p-1)}{2}\right)^{2}\left[\Delta_{0}(p) \frac{p(p+1)}{2}\right)^{n-3}+\left(\frac{p(P+1)}{2}\right)^{n-4} \Delta_{0}\left(p^{2}\right) \\
& \left.+\cdots+\Delta_{0}\left(p^{n-2}\right)\right] \\
& \leqslant\left(\frac{p(p+1)}{2}\right)^{n-1}\left(\frac{p(p-1)}{2}\right)^{2}+\varphi(p)\left[\left(\frac{p(p+1)}{2}\right)^{n-1}-1\right] / \frac{p(p+1)}{2}-1 \\
& +\left(\frac{p(p-1)}{2}\right)^{2}(n-2) \Delta_{0}(p)\left(\frac{p(p+1)}{2}\right)^{n-3}
\end{align*}
$$

设 $p^{n} \leqslant x_{1}<p^{n+1}$ 。则 $n \leqslant \log _{p} x$ ，㥸（3）3縕。

$$
\begin{aligned}
\Delta_{1}(x) \leqslant & \Delta_{1}\left(p^{n+1}\right) \leqslant\left(\frac{p(p+1)}{2}\right)^{n-1}\left(\frac{p(p-1)}{2}\right)^{2} \\
+ & \varphi(p)\left[\left(\frac{p(p+1)}{2}\right)^{n-1}-1\right] / \frac{p(\beta+1)}{2}-1 \\
& +\left(\frac{p(p-1)}{2}\right)^{2}(n-1) \Delta_{0}(p)\left(\frac{p(p+1)}{2}\right)^{n-2} \\
\leqslant & \left(\frac{p(p+1)}{2}\right)^{n-1}\left(\frac{p(p-1)}{2}\right)^{2}+\varphi(p)\left[\left(\frac{p(p+1)}{2}\right)^{n}-1\right] \frac{p(p+1)}{2}-1 \\
& +\left(\frac{p-1}{p+1}\right)^{2} \Delta_{0}(p)\left(\frac{p(p+1)}{2}\right)^{\frac{l p+1}{x}} \log _{p} x \\
= & \left(\frac{p(p+1)}{2}\right)^{n-1}\left(\frac{p(p-1)}{2}\right)^{2}+\psi(p)\left[\left(\frac{p p+1)}{2}\right)^{n}-1\right] / \frac{p(p+1)}{2}-1 \\
& +\left(\frac{p-1}{p+1}\right)^{2} \Delta_{0}(p) x^{\log _{p} \frac{p(p+1)}{2}} \log _{p} x
\end{aligned}
$$

于是

$$
\begin{gathered}
\overline{\lim _{x \rightarrow \infty} \Delta_{1}(x) / x^{\log _{p} \frac{p(p+1)}{2}} \log _{p} x} \leqslant\left(\frac{p-1}{p+1}\right)^{2} \Delta_{0}(p) \\
=\left(\frac{p-1}{p+1}\right)^{2}\left(\frac{p(p+1)}{2}+2\right) .
\end{gathered}
$$

这就克成了定观三的洏明。

$$
\text { 上定难传明, } \Delta_{1}(x)=O\left(x^{\log _{p}\left(\frac{(f+1)}{2}\right)} \log _{p} x\right) \text {, 若 }
$$

能把 $\log _{\mathrm{p}} x$ 去掉，则本说明娃测星 $j=1$ 向情次下成立，对于j？2的情况，应用上述方法似手不实用，百所的 出的估计并石影逼近到磁路测的程度。

$$
\begin{aligned}
& \text { 记 } A_{0}=\log _{p}\left(\left(\frac{\rho(A+1)}{2}\right)\right), \quad A(n)=\Delta_{j}(n) / A^{A_{0}}, \quad \text { 则 } 力 \\
& \left|A_{j}(n)-A_{j}(n+1)\right| \leqslant \frac{\Delta_{j}(n+1)-\Delta_{j}(n)}{n^{A_{0}}}+\Delta_{j}(n+1)\left(\frac{1}{n^{k_{0}}} \frac{1}{(n+1)^{4_{0}}}\right) \\
& \leq \frac{n}{n^{A_{\theta}}}+\Delta_{j}(n+1) \cdot \frac{1}{(n+1)^{A_{0}}} \cdot\left[\left(1+\frac{1}{n}\right)^{A_{0}}-1\right] \\
& =\frac{1}{n^{A_{0}-1}}+\frac{(n+1)(n+2)}{2} \cdot \frac{1}{(n+1)^{A_{0}}} \cdot\left(\frac{A_{0}}{n^{m}}+0\left(\frac{1}{n^{2}}\right)\right) \\
& =\frac{1}{n^{A_{0}-1}}+\frac{(n+1)(n+2)}{2} \cdot 0\left(\frac{1}{n^{1+A_{C}}}\right) \rightarrow 0(n \rightarrow \infty) \cdot\left(: A_{0}>+1\right) \text {. }
\end{aligned}
$$

立

$$
\begin{aligned}
\text { ie } \alpha & =\lim _{x \rightarrow \infty} \Delta_{j}(x) / x^{\log p\left(\frac{p(p+1)}{2}\right)} \\
\beta & \left.=\overline{\lim }_{x \rightarrow \infty} \Delta_{j}(x) / x^{\log p} \frac{p(p+1)}{2}\right)
\end{aligned}
$$

又怎扬对 $\alpha \beta$ 作出估计呢？者结碚京。

参 考 文 献
［1］N．J．Fine，Binomial cofficients modulo a prime，
Amer．Math．Monthly． 54 （1947）．
［2］L．Cartitz．The number of binomial cofficients divisible by a fixed power of a prime．Rend．

Circ．Mat．Palermo（2） 16 （1967）299－320 MR． 40 \＃ 2554
［3］F．T．Harward．The number of binomial cofficients divisible by a fixed power of 2 ．Proc．Amer．

Math．Soc．29（1971）236－242．
［4］F．T．Harward．Formulas for the number of binomial coefficients divisible by a fixed power of a prime．Proc．Amer．Math．Soc． 37 （1973）． ［5］L．E．Dickson．History of the theory of numbers Vol．1．Publication no． 256 ，Carnegie Institution of Washington．D．C． 1919.
［6］方业光，扬㹿三角形中昰畋分分布。

数辉三角形中步股的分布
1985．4． 25
娌合与故论中三个焉妙结思之一：（ $\left.\begin{array}{l}n \\ 0\end{array}\right),\binom{n}{1} \cdots\binom{n}{n}$
复妿。文［2］中虽然给出了其佂明用到了 Lucas情业式及同务式的知识。本交只用整的的整狺性
予且对于杨辉三角形中步敝的分布作出了估计。
§1（ $\left.\begin{array}{l}n \\ 0\end{array}\right)\binom{n}{1}, \cdots\binom{n}{n}$ 中步的的个敕
穴玨一 设 $n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{2}}$ ，其中 $n_{1}>n_{2}>$ $>n_{3}>\cdots>n_{t} \geqslant 0$ ．则 $\binom{n}{0},\binom{n}{1}, \cdots\binom{n}{n}$ 中各 2^{t} 个奇敞。先晒明两个引理，页其伞为也具盾其赫唼 﨡。

引理1。设 p a 童枚， $0 \leq m \leq p^{r}$ ，则有
$\operatorname{pot}_{p}\left(\binom{l^{r}+m}{l}\right)=\operatorname{pot}_{p}\left(\binom{m}{l}\right)$ ，对一戉 $0 \leqslant l \leqslant m$ 成

㕶明 $\quad \operatorname{pot} p\left(\binom{p^{r}+m}{l}\right)=\sum_{k=1}^{r}\left(\left[\frac{p^{r}+m}{p^{k}}\right]-\left[\frac{l}{p^{k}}\right]-\left[\frac{p^{r}+m-l}{p^{k}}\right]\right)$ $=\sum_{k=1}^{k}\left(p^{r-k}+\left[\frac{m}{\rho^{k}}\right]-\left[\frac{l}{p^{k}}\right]-p^{r-k}-\left[\frac{m-k}{p^{k}}\right]\right)$

$$
=\sum_{k=1}^{r}\left(\left[\frac{m}{p^{k}}\right]-\left[\left[\frac{l}{p^{k}}\right]-\left[\frac{m-l}{p^{k}}\right]\right)=\operatorname{pot}_{p}\left(\binom{m}{l}\right)\right.
$$

引理2．当 $m<l<2^{k}$ 时， $2 \left\lvert\,\binom{ 2^{k}+m}{l}\left(0 \leq m<2^{k}\right)\right.$
伍明 $\quad \operatorname{pot}_{p}\left(\binom{2^{k}+m}{l^{k}}\right)=\sum_{r=1}^{k}\left(\left[\frac{2^{k}+m}{2^{r}}\right]-\left[\frac{t}{2^{k}}\right]-\left[\frac{2^{k}+m-l}{2^{r}}\right]\right)$
$\Rightarrow\left[\frac{2^{k}+m}{2^{k}}\right]-\left[\frac{\ell}{2^{k}}\right]-\left[\frac{2^{k}+m-l}{2^{k}}\right]=1$ ，号要演黄到
$l<2^{k}, 2^{k}+m-l<2^{k}$ 印可得证。故 $21\binom{2^{k}+m}{l}$
这就完成了引理河明。
设 $\delta(n)=\left\{\begin{array}{ll}0 & 21 n \\ 1 & 2 i_{n}\end{array} \quad \Delta(n)=\sum_{k \leqslant n} \delta\left(\binom{n}{k}\right)\right.$
定理－的证明 涉若到 $\Delta(n)$ 而 $\binom{n}{0}\binom{n}{1} \cdots$

$\delta\left(\binom{2^{n}+m}{l}\right)=\delta\left(\binom{m}{l}\right)$ 时一别 $0 \leq m<2^{k}, 0 \leq l \leqslant m$ 或

主。印方

$$
\begin{aligned}
\Delta\left(2^{k}+m\right)= & \sum_{l \leq m} \delta\left(\binom{2^{k}+m}{l}\right)+\sum_{l \geqslant 2^{k}} \delta\left(\binom{2^{k}+m}{l}\right) \\
& +\sum_{m<l<2^{k}} \delta\left(\binom{2^{k}+m}{l}\right) \\
= & 2 \sum_{l \leq m} \delta\left(\binom{m}{l}\right)=2 \Delta(m)
\end{aligned}
$$

对子 $n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{t}}, n_{1}>n_{2}>\cdots>n_{t} \geqslant 0$ ．，有

$$
\Delta(n)=2 \Delta\left(2^{n_{2}}+\cdots+2^{n_{t}}\right)=\cdots=2^{t-1} \Delta\left(2^{n_{t}}\right)=2^{t}
$$

\}2. 先理二

$$
\begin{aligned}
& \text { 设 } f(x)=\sum_{n \leqslant x} \Delta(n) \\
& \frac{1}{3}<f(x) / x^{\log _{2} 3} \leq 3
\end{aligned}
$$

证楽 对子 $k \geqslant 1, \quad f\left(2^{k}-1\right)=f\left(2^{k-1}+2^{k-2}+\cdots+1\right)$

$$
\begin{align*}
& =f\left(2^{n-2}+2^{k-3}+\cdots+1\right)+\sum_{n \leqslant 2^{k-1}} \Delta\left(2^{k-1}+n\right) \\
& =f\left(2^{k-2}+2^{k-3}+\cdots+1\right)+2 \sum_{n \leqslant 2^{k-1}-1} \Delta(n) \\
& =3 f\left(2^{k-1}+1\right)=\cdots=3^{k} f(0)=3^{k} . \tag{*}
\end{align*}
$$

假设 $2^{k} \leqslant x<2^{k+1}$
则有 $k \leqslant \log _{2} x<k+1, \quad f\left(2^{k}-1\right) \leqslant f(x) \leqslant f\left(2^{k+1}-1\right)$ ， p．$\quad 3^{k} \leqslant f(x) \leqslant 3^{k+1}$ ．

有的用（为）即得 $\frac{1}{3} \leqslant f(x), x^{t y_{0} 3} \leq 3$ 。

余 1 的蜘记在 1 ，平且为用 $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$ i2 $0+1=1,0+0=0, \quad 1+1=0$ 之这教㧚则那白：

$$
\begin{aligned}
& , 1110,1,1,1,111
\end{aligned}
$$

从用中可以香出：当 $n=2^{n}-1$ 的，（ $\binom{n}{0}, ~\binom{n}{1}, \cdots\binom{n}{n}$

业式的存星面又由其对特蜾，故有走现一之2的易次的出现。

万肉 $m_{k}=2^{k}$ 与 $\quad m_{k}=3 \cdot 2^{k-1}-2$ 知 $f\left(m_{1}\right) / m^{\log _{3} 3 \text { 昗 }}$ $m \rightarrow \infty$ 时数很石存禹。设 $\alpha=\lim _{n \rightarrow t} f(n) / n^{\log , 3}$ 。

$$
\beta=\overline{\lim _{n \rightarrow \infty}} f(n) / n^{\log 3} .
$$

我似方
定记三序到 $\{f(n) / n \log , 3\}$ 在 $[\alpha, \beta]$ 之间鸼亳的。

证明．记 $A(n)=f(n) / n^{\log 23}$ ，只晋证明 $A(n)-A(n+1) \rightarrow(n \rightarrow \infty)$ ．由 $f(n)$ 分走义平的 $f(n+1)-f(n) \leq n+1$ ，子是

$$
|A(n)-A(n+1)|=\left|\frac{f(n)}{n^{\log (3)}}-\frac{f(n+1)}{n^{\log _{2} 3}}\right| \leqslant
$$

$$
\begin{aligned}
& \leqslant f(n)\left|\frac{1}{n^{\log _{2} 3}}-\frac{1}{(n+1)^{\operatorname{lon}_{n} 3}}\right|+\frac{f(n+1)-f(n)}{(n+1)^{\log _{2} 3}} 69 \\
& \leqslant 3\left[\left(1+\frac{1}{n}\right)^{\log _{2} 3}-1\right]+\frac{1}{(n+1)^{\log _{2} 3}} \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

肉此 $A(n)$ 专 $[\alpha, \beta]$ 内租番。
页由度理 $=3$ 納 $\alpha \geqslant \frac{1}{3}, ~ 3 \beta \leqslant 3$ ，现卓的
就！

对了 $\Delta(n)$ 的均传不了研急，现是事其对敞均佔的㤬况，我的右：

定理口 $\sum_{n \leqslant x} \log \Delta(n)=\frac{1}{2} x \log x+Q(x) x$ ，芳
中 $-\frac{3}{4} \log 2 \leqslant \theta(x) \leqslant \frac{3}{2} \log 2$ ．
我估直［3］已证明 3
引设3 设 $x=a_{1} k^{n_{1}}+a_{2} k^{n_{2}}+\cdots+a_{k} k^{n_{t}}$ ，其 ψ

为不夷子 $k-1$ 向 $\$$ 负妼胀，记 $\alpha(x)=\sum_{i=1}^{t} a_{i}$ ，

$$
A(x)=\sum_{n \leqslant x} \alpha(n) \text {. 则 } A(x)=\frac{k-1}{2} \frac{x \ln x}{\log k}+\theta(x) x
$$

其 $\uparrow=\frac{5 x-1}{8} \leqslant \theta(x) \leqslant \frac{x+1}{2}$ ．
走现的晒明若 $n=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n_{t}}, n_{1}>n_{2}>\cdots>n_{2} \geqslant 0$则 $\alpha(n)=t$ 。 从百 $\alpha(n)=2^{\alpha(n)}$ ，故

$$
\sum_{n \leqslant x} \log \Delta(n)=\log 2 \sum_{n \leq x} \alpha(n)=\log 2 \cdot A(x)
$$

由引证 3 中 $k=2$ 向情况可細

$$
\begin{aligned}
& \sum_{n \leq x} \log \Delta(n)=\log 2\left(\frac{x \log x}{2 \log 2}+\theta_{1}(x) x\right) \\
& =\frac{1}{2} x \log x+\left(\theta_{1}(x) \log 2\right) x \triangleq \frac{1}{2} x \log x+Q(x) x .
\end{aligned}
$$

对手 $f(x)$ ，我们运加
走现五 设 $x=2^{x_{1}}+2^{x_{2}}+\ldots+2^{x_{k}}$ ，其中 $x_{1}>x_{2}>\cdots>x_{k} \geqslant 0 . \quad B_{i}(x)$ 表京在大于 x 的 $\alpha(n)=i$ 的
解白个敞，则 $f(x)=\sum_{i=6}^{x_{1}} 2^{i} B_{i}(x)$ ，$⿴ x_{1}=\left[\frac{\log x}{\operatorname{Eog} 2}\right]$ 。

$$
\begin{aligned}
& \text { i= } \quad f(x)=\sum_{n \leqslant x} \Delta(n)=\sum_{n \leqslant x} 2^{\alpha(n)}=\sum_{i=0}^{x_{1}} \sum_{\alpha(n)=i^{2}} 2^{i} \\
= & \sum_{i=0}^{x_{1}} 2^{i} \sum_{\alpha(n)=i} 1=\sum_{i=0}^{x_{1}} 2^{i} B_{i}(x) \quad \text {, 由 } x=2^{x_{1}}+2^{x_{i}+\cdots+2^{x_{n}}}
\end{aligned}
$$

維 $x_{1}=\left[\frac{\log x}{\log 2}\right]$ ．

参 考 文 献
［1］R．Honsberger．Three surprising results in combinatorial analysis and number theory，Mathematical Germs II．
［2］N．J．Fine，Binomial confficients modulo a prime．Amer．Math．Monthly． 54 （1947）589－592．
 22．
个问题，流学学报，节五春事の斯，1955年12月。 ［5］华累质，枚论导到 PP．15，科学出版社（1975）。

1985.3.

设 n 为一个已繁政，若 $n=a_{1}+a_{2}+\cdots+a_{k}$ ，其
一个分拆（partition）。蚊论中一个绕有风越的间题就是处㻇分斩种欧 $P(n)$ 及 $\operatorname{Pr}(n)$ 句题。周知： $\lim _{n \rightarrow \infty} \frac{\log p(n)}{n^{\frac{1}{2}}}=\pi \sqrt{\frac{2}{3}}$（见［丁）。这记明当 n 充分大时，n 的分拆敞变的级夫。师下集合

$$
A(n)=\left\{\left(a_{1}, a_{1}, \cdots, a_{k}\right): \quad n=a_{1}+a_{2}+\cdots+a_{k}, a_{k}>1, \ldots, i=1, \cdots\right\}
$$

的方素有很变 论 $p\left(a_{1}, \cdots a_{k}\right)=a_{1} a_{2}-a_{k}$ ，现在会，句 $P(A(n)) \cong \max _{a \in A(n)} P(a)$ 为多少呢？又当 $A(n)$ 中当k为周定值时，㐫向充素各分量乘积的最大与最小值又又多小？夲文就是处理这一贵问䞨。

当先，我的省不述结易：

$$
P(A(n))=\max _{\left(a_{1}, \cdots a_{n}\right) \in A(n)} a_{1} a_{2} \cdots a_{k}= \begin{cases}3^{l} & \text { 当 } n=3 \ell \text { 时 } \\ 4 \times 3^{l-1} & \text { 当 } n=3 \ell+1 k \\ 2 \cdot 3^{l} & \text { 当 } n=3 \ell+2^{2}\end{cases}
$$

证明：设 $n=a_{1}+a_{2}+\cdots+a_{k}$ 是 は $B P(A(n))=a_{1} a_{1} \cdots a_{k}$百一个分新。

若 a_{i} 中有一个大马4，不始设 $a_{1}>4$ ，作这

$$
\begin{aligned}
& \text { 捅一个分折 } n=2+\left(a_{1}-2\right)+a_{2}+\cdots+a_{k}, ~ 子 N \\
& P\left(2, a_{1}-2, a_{2}, \cdots a_{k}\right)=2\left(a_{1}-2\right) a_{n} \cdots a_{k}=2 a_{1} a_{2} \cdots a_{k}-4 a_{2} \cdots a_{k} \\
& \left.=P(A(n))+\left(a_{1}-4\right) a_{2} \cdots a_{k}>P(A(n)), \text { 这 }-5 P(A(n))\right),
\end{aligned}
$$

义矛 禹。
若 a_{i} 中务一个取1，对始没 $a_{1}=1$ 。则作 1
述分析 $n=\left(1+a_{2}\right)+a_{3}+\cdots+a_{k}, 子$ 是

$$
p\left(1+a_{2}, a_{3}, \cdots a_{k}\right)=\left(1+a_{2}\right) a_{3} \cdots a_{k}=p(A(n))+a_{2} a_{2} \cdots a_{k}>p(a n n
$$

又产生矛居。
 $\sum_{i} P(A(n))=2^{m} 3^{l}$ ．
时 $2+2+2=3+3$ 可知， $2 \times 2 \times 2<3 \times 3$ 平知 $a_{1} \cdots a_{k}$ 京不会达最大，周此必方 $m=0.1 .2$ 。

周戏，当 $n=3 l$ 时，$m=0$ ，故 $P(A(n))=3^{l}$ 。当 $n=3 l+1$ 时，$m=2$ ，战 $P(A(n))=4 \times 3^{l-1}$ ．
当 $n=3 l+2$ 时，$m=1$ ，故 $P(A(n))=2 \cdot 3^{l}$ ．证华

$$
A(k, n)=\left\{\left(a_{1}, \cdots a_{k}\right): n=a_{1}+a_{2}+\cdots+a_{k}, a_{i}>0, i=1, \ldots \ldots\right\} .
$$

造娄 当 $n>k$ 时．$P(k, n) \geqslant 2$ 。

$$
\begin{aligned}
& \text { ie } P_{m}(A(k, n))=\max _{\left(a_{1}, \cdots a_{k}\right) \in(k k, n)} a_{1} a_{2} \ldots a_{k} \\
& P_{m}(A(k, m))=\min _{\left(u_{1}, \cdots+a_{1}\right) \in A(k, n)} a_{1} a_{2} \ldots a_{k} \\
& d=\left[\frac{n}{k}\right] \quad, n=d k+r, \quad 0 \leq r<k .
\end{aligned}
$$

对 $\mathcal{F} P_{M}$ 与 P_{m} ，我们力。

庶理二

$$
\begin{align*}
& P_{M}(A(k, n))=d^{k-r}(d+1)^{r} . \tag{1}\\
& P_{m}(A(k, n))=n-k . \tag{2}
\end{align*}
$$

设 $n=a_{1}+a_{2}+\cdots+a_{k}=k d+r$ ，使得 $P_{m}(A(k, n))=a_{1} a_{i} \cdots a_{k}$ ．
若 $\left.\left\{a_{i}\right\} \neq 力_{0} 一 个 小\right\} d$ ，不始 $a_{1}<d$ ，又若
小子d，子是

$$
\begin{aligned}
& p\left(\left(a_{1}, a_{2}, \cdots a_{k}\right)\right)=a_{1} a_{2} \cdots a_{k}=a_{1} a_{l} \cdots a_{l} d^{i}(d+1)^{j} \\
& \text { 记 } a_{1}=d-p_{1}, \cdots a_{l}=d-p_{l} \text {, 则由于} \\
& a_{1}+a_{2}+\cdots+a_{k}=\left(d-p_{1}\right)+\cdots+\left(d-p_{l}\right)+i d+j(d+1)=k d+r \\
& p: \quad(l+j+i) d+j-p_{1}-\cdots-p_{l}=k d+r \\
& \text { 3 } l+j+i=k, \quad \text { 故 } \quad p_{1}+p_{l}+\cdots+p_{l}=j-r>0
\end{aligned}
$$

又对子 $m>0$ ，有 $(d-m)(\alpha+1)<(d-m+1) d$ 。

$$
\begin{aligned}
& \text { 足 } p\left(a_{1}, \ldots a_{k}\right)=\left(d-p_{1}\right)\left(d-p_{l}\right) \cdots\left(d-p_{l}\right) d^{i}(d+1)^{j} \\
& =\left(d-p_{1}\right)\left(d-p_{l}\right) \cdots\left(d-p_{l}\right) d^{i}(d+1)^{p_{1}+p_{l}+\cdots+p_{l}}(d+1)^{r}
\end{aligned}
$$

$$
\begin{align*}
& =\left[\left(d-p_{1}\right)(d+1)^{p_{1}}\right] \cdots\left[\left(d-p_{l}\right)(d+1)^{p_{k}}\right] d^{i}(d+1)^{r} \tag{3}\\
& \quad \text { 由 }] ~\left(d-p_{i}\right)(d+1)^{p_{i}}<\left(d-p_{i+1}\right)(d+1)^{p_{i-1}} d \\
& <\cdots<d^{p_{i} \quad(i=1, L, \cdots l)}
\end{align*}
$$

将其代入（3）玉得

$$
\begin{aligned}
& P\left(a_{1}, \cdots a_{n}\right)<d^{p_{1}+p_{1}+\cdots+p_{1}+i}(d+1)^{r}=d^{i-r+i}(d+1)^{r} \\
& =d^{k-r \rightarrow-1}(d+1)^{r} \leqslant d^{k-r}(d+1)^{r}=p\left(d^{k-1, \cdots d}, d_{1+1}^{r}, d_{1+1}\right)
\end{aligned}
$$

一个皆不只马 $d+1=$ 是石区消的。
若 $a_{2}, \cdots a_{k} 中$ 有一个大于 $d+1$ ，不始没 $a_{2}>d+1$ 。
设 $a_{2}=a_{1}+1+q$ ，由 $a_{2}<d$ ，故 $q>0$ 。作n个一个今据 $n=\left(a_{1}+q\right)+\left(a_{2}-q\right)+a_{3}+\cdots+a_{k}=k d+r$ ．

则

$$
\begin{aligned}
& p\left(a_{1}+q, a_{2}-q, a_{3} \cdots a_{n}\right)=\left(a_{1}+q\right)\left(a_{2}-q\right) a_{3} \cdots a_{k} \\
= & \left(a_{1} a_{2}+\left(a_{2}-a_{1}-q\right) q\right) a_{3} a_{4} \cdots a_{k} \\
= & \left(a_{1} a_{2}+q\right) a_{3} a_{4} \cdots a_{k}>a_{1} a_{2} \cdots a_{k}=p_{m}(A(k, n)),
\end{aligned}
$$

达久产生矛看。上述两矛后，即话 $a_{i} \geq d .(1+i \leqslant k)$ 。

著 $a_{1}, a_{2}, \cdots a_{x}$ 中直一个夫马 $d+1$ ，居始 $a_{1}>d+1$ 。
in $a_{2+1}=\cdots=a_{k}=d, \quad a_{j+1}=a_{j+1}=\cdots=a_{l}=d+1$ ，
$a_{1}, a_{2}, \ldots a_{l}$ 只 $\mathcal{C} d+1, \quad a_{m}=d+p_{m}, p_{m}>1 .(1 \leqslant m \leqslant j)$
则 $p\left(a_{1}, \cdots a_{k}\right)=\left(d+p_{1}\right) \cdots\left(d+p_{j}\right)(d+1)^{l-j} d^{k-l}$
且 知：$\left(d+p_{1}\right)+\cdots+\left(d+p_{j}\right)+(l-j)(d+1)+(k-l) d=k d+r$
从\} $\quad p_{1}+p_{2}+\cdots+p_{j}+\ell-j=r . \quad \sum_{i} \imath=\ell-j$ ，则

$$
p_{1}+p_{1}+\cdots+p_{j}=r-i .
$$

他了对子 $m \geqslant 1$ ，六 $(d+m) d \leq(d+m-1)(d+1)$ ．
故 $p\left(a_{1}, a_{2}, \cdots a_{k}\right) \leq(d+1)^{p_{1}+\cdots+p_{j}} d^{-\left(p_{1}+p_{1}+\cdots+p_{j}\right)}(d+1)^{i} d^{k-1}$

$$
\begin{aligned}
& =(d+1)^{p_{1}+\cdots+p_{j}+i} d^{k-l-\left(p_{1}+\cdots+p_{j}\right)}=(d+1)^{r} d^{k-l-r+i} \\
& =(d+1)^{r} d^{k-r-j}<(d+1)^{r} d^{k-r} \quad(\text { 目 } a j<\geqslant 1)
\end{aligned}
$$

子化 a_{i} 号取 d 或 $d+1(1 \leq 2 \leq k)$ 。
$i^{n} P_{m}(A(k, n))=d^{k-j}(d+1)^{j}$
且

$$
(k-j) d+j(d+1)=k d+r, \quad \text { 㕹 } j=r .
$$

这埌明：$P_{d}(A(k, n))=d^{k-r}(d+1)^{r}$ ．
下洒（2）式。先酒略 $k=2$ 的㤬况。
$p(x, n-x)=x(n-x)=n x-x^{2} \triangleq f(x)$ ，由 $f f^{\prime}(x)=n-2 x$
 $P_{m}(A(2, n))=\min \left\{n \times 1-1^{2}, n(n-1)-(n-1)^{2}\right\}=n-1$ ．

对了一般的K，面的用R．Bellman ${ }^{[2]}$ 动态规划向思垫，当 $n=x_{1}+x_{k}+\cdots+x_{k}$ 时。

$$
\begin{aligned}
\operatorname{Pm}(A(k, n)) & =\min _{\left(x_{1}, \cdots x_{k}\right) \in A(k, n)} x_{1} x_{2} \cdots x_{k} \\
& =\min _{x_{3}}\left(x _ { 1 } \operatorname { m i n } _ { x _ { L } } \left(\cdots\left(\min _{x_{k-1}} x_{k-1}\left(n-x_{1} \cdots \cdots-x_{k-L}-x_{k-1}\right) \cdots\right)\right.\right. \\
& =\min _{x_{1}}\left(x _ { 1 } \operatorname { m i n } _ { x _ { 2 } } \left(\cdots \left(\min _{x_{k-L}} x_{k-L}\left(n-x_{1}-\cdots-x_{k-1}-1-x_{k-1}\right) .\right.\right.\right. \\
& =\cdots=\min _{x_{1}} x_{1}\left(n-k+1-x_{1}\right)=n-k .
\end{aligned}
$$

上列长式中充分乐用了 $k=2$ 的传果。
系用上述方法，我的还要弥虎当口分解成

 $p(k, n)$ ，易知 $p(1, n)=1, p(2, n)=\left[\frac{n}{2}\right]$ ，伦毒 $k \geqslant 3$ 的性况此较复努。予且 3 知，$P(n)=\sum_{k=1}^{\infty} p(x, n)$ 。因此

参 考 女 㟈

［2］R．E．Bellman \＆S．E．Dreyfus，Applied Dynamic Programming．Princeton University Press 1－15．

